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Abstract. We prove a functional central limit theorem for additive functionals of
stationary reversible ergodic Markov chains under virtually no assumptions
other than the necessary ones. We use these results to study the asymptotic
behavior of a tagged particle in an infinite particle system performing simple
excluded random walk.

Introduction

In a recent work Lebowitz and Spohn [4] proved that diffusion of color for
“mechanically” identical particles with two colors as well as convergence to local
equilibrium in the hydrodynamical limit were related to the asymptotics, after
proper rescaling, of the movements of one or more tagged particles of the system.

Since for the moment purely mechanical systems seem to be out of reach, several
models which are to lesser or greater extent stochastic have been proposed. In [3]
Kipnis et al. considered the case of a one dimensional system of hard rods with
stochastic collisions. In this paper we consider the case of the so-called simple
exclusion process.

The intuitive description of the process is the following: Infinitely many particles
move on Z¢ according to a simple random walk with exponential (mean one) holding
time at each site and jump law p(x) which is symmetric, i.e. satisfies p(x) = p(— x) for
all x’s. However if a particle attempts a transition to a site already occupied, the
jump is suppressed.

The key remark is that, due to invariance of the mechanics under translations,
the evolution of the rest of the medium seen from an observer sitting on a tagged
particle follows a Markovian evolution (which possesses many reversible proba-
bilities) and that the movement of the tagged particle (the observer) in the absolute
frame is in a certain sense “driven” by this Markov process.

* Supported by NSF Grant MCS-8301364, ONR Contract N00014-81-K-0012 and a Fellowship
from John S. Guggenheim Memorial Foundation
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In Sect. 1 we prove an abstract theorem on weak convergence to Brownian
motion of a process driven by a reversible Markov process.

In Sect. 2 we prove that our tagged particle satisfies the conditions described in
Sect. 1 to conclude that if x, denotes the position of the tagged particle then ex, -2
converges to a Brownian motion with finite diffusion constant D. (Notice that before
taking the limit the random process x, is not Markovian due to the interactions!)

However it has been shown by Arratia [1] that when d =1 and p(1) = p(—1) =
1/2, the diffusion constant D is equal to zero and the correct scaling needed to
obtain a nontrivial limit is ex,,-+. We therefore prove thatifd = 2 or d = 1 and p(x) is
concentrated on more than two points then D is strictly positive.

In Sect. 3. we prove that two different tagged particles become independent in the
limit contrary to what happens in [3] where they remain correlated.

In Sect. 4. we apply our theorem to a jump process in random environment
obtained by first choosing (randomly) rates for each bond of nearest-neighbor
points of the lattice Z¢ and letting the particle jump across a bond with the
aforementioned rate.

1. Convergence to Brownian Motion of an Arbitrary Reversible Velocity Process

The question of proving a central limit theorem for the partial sums

n
X,=) Z
j=1
ofasequence Z,,Z,,...,Z,,...of random variables has been studied exhaustively in
probability theory for at least fifty years. We will limit our discussion here to the
situation where {Z;} forms a stationary sequence in the strict sense. If the Zs are
independent with mean zero and variance o then the classical central limit theorem
asserts that the distribution of X,/,/n converges to a normal distribution with mean
0 and variance ¢2. The invariance principle asserts that the distribution of the
stochastic process X (t) = 1//n X i converges weakly in the Skorohod space to the
distribution of a Brownian motion with variance o2.

These results have been generalized to the situation where the independence of
the random variables {Z} is replaced by asymptotic independence of one type or
other. The assumptions are often difficult to check in specific circumstances.

One special situation where analogs of the classical results are valid without
additional assumptions is the following:

Theorem 1.1. Let {Z; —oo <j< oo} be a stationary ergodic process such that
E[Z,,,|F,]=0 ae., where F, is the o-field generated by Z; for j <n. For such a
martingale difference sequence the distribution of X (t)=1/\/n [Z;+ - + Zyy]
converges weakly to the distribution of Brownian motion with variance ¢* provided
EZ!=0%< .

Proof. The above theorem is deduced easily from Theorem 3.2 of [2] where
condition (b) can be checked easily in our situation.

Remark 1.2. If {Z } is a vector valued sequence one has an identical theorem where
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one obtains in the limit a multidimensional Brownian motion with a covariance
matrix identical to that of any Z;.

Suppose {y;}, — 0 <j < co is a stationary Markov chain on a state space X and
Z;=V(y;. Let us suppose that n(dx) is the common invariant distribution and
q(x,dy) is the transition probability of the chain. Let us assume that the chain is
ergodic. We denote by the symbol g the operator (qf)(x) = [ f(y) q(x,dy) as well.
Suppose V(x)=f(x)—(qf)(x) for some bounded function f(x). Then V(x) has
necessarily mean O with respect to 7 and it is natural to ask if the central limit
theorem is valid for

X,= % V).

If we define

Zi=f(y) — @f)j-1)

then an elementary computation shows that

E[Z, . (|F,]= ELf(ns+ DIFa] — @) 0= (@) ¥a) — (@) (a) =0.

Moreover if
x=37
then 3
X,= 3 )= 3. @)= ¥ 2+ @hvo - @i

We write X, = X, + X, where X, = (q.f)(¥o) — (gf)(»,). Since X;:/\/r_l is negligible as
n— oo, the central limit theorem for X, follows from the central limit theorem for X,
which is an application of Theorem 1.1.

Although the approach is quite elementary, when the underlying Markov chain
{y;} is reversible the method is powerful enough to establish the central limit
theorem and the invariance principle for the most general V that one can expect the
theory to hold.

Let g(x,dy) be a translation probability on a state space X with n(dx) as a
reversible stationary probability. We will assume that the stationary Markov
process P with © as marginal distribution and g(x, dy) with transition probability is
ergodic. Let V(y) be a function on X with | V?(x) n(dx) < o0, and we will assume that
| V(x) n(dx) =0 and

lim %E”[(V(yl) + 4+ Vi)?]=0*< .

If we denote by e, (dA), the spectral measure of V corresponding to the selfadjoint
operator q on L,(X,n), we obtain

1+
=1

ep(dA) < 0. (1.1)
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The condition that 6% < co is therefore equivalent to the condition [ 1/1 — A e, (d2) <
oo or VeRange(I — q)'/. This can be verified by checking the inequality
1§ Vne)n(dy) < C(J (I - ) (»)d(y)n(dy))"/? (1.2)

for all test functions ¢ in L,(X,n). If we introduce the inner products

{finfe>= Ifl W f2(0)n(dy),
{Sisfao= f((l =9 f )W) f(y)n(dy),

then our assumption can be restated as (V,V ) _, < oo, where { )_, is dual to
{ >, under the pairing { .

We denote by £ the space of all X-valued sequences {y;}, — 00 <j < oo and by
F, the o-field generated by y; for j <n. We have the measure P on (€2, F), where

F=VF,.
Theorem 1.3. Let V in L,(x, n) satisfy condition (1.1). Then the sequence
X,= 3 V)
I=

can be written as X, = M, + &,, where M, is a martingale relative to (2, F,, P) and

1
lim T sup |£;| =0 in probability (P). (1.3)
n—w 1gjsn
Moreover
.1
lim ;E"Ié,,|2=0. (1.4)

Proof. We denote by u, the solution of the equation

(I+eu,—qu,=V (1.5)
for ¢ > 0. We will investigate the behavior of u, as ¢ »0. We can rewrite (1.5) as
u,—qu,=V —eu,. (1.6)

Therefore for every n >0,

Ep{us(yn+ 1) - ue(yn) - sua(yn) + V(yn)IFn} =0.
If we define

M= Y, [l ) = 5+ Vs

where V, = V — ¢u,, then for each ¢ > 0, M¢ if a martingale relative to (2, F,, P). We
can now express for each ¢ >0, X, = M + & + i, where

&= =% [l =)
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and

=3 ()()

We shall now establish that for each n > 1,

lim M: = M, exists in L,(£2, P), (.7
e—~0
lim & = &, exists in L,(€2, P), (1.8)
-0
limn: =0 in L,(Q2, P). (1.9)
e—0

It follows then that X, =M, + £,. We will then establish (1.3) and (1.4) for the
sequence {£,}. Since M}, is a martingale with stationary increments in order to show
that M} has a limit in L,(£, P), it is sufficient to check that

lim {u,(y,) — u,(y;) + Vi(y,} exists in L,(£2, P). (1.10)
e—0
From relation (1.6) the above limit is of the form

lim {u(y2) = (qu) (1)}
An easy computation yields

EPLf(y) ~ @) =<f,d—a)f>.

Therefore we need to check only that

lim {u,, —u,,, (I — q*)(u,, —u.,)> =0. (1.11)
53
Equation (1.11) can be calculated in terms of spectral measure e, (d4) and the formula
reads

1 1 1 2
gy — Uy, (1 _qz)(um —uy,)) = jl(l "'12)(1 Yo 4 1 e, /1) ey(dA)

_ o emapa-a)
21l +e; —AP(1+e,— )2

e ldA).

If we assume that &, ¢, >0 the integrand is dominated by (e3(1 — A?)/(1 —1)%e3)=
(1 4+ 4)/(1 = ). Since our basic hypothesis is that [ (1 + A)/(1 — 1) e, (d1) < 0, we
have (1.7) by the dominated convergence theorem. By a similar argument we also
obtain

lim {u,, —u,, (I — q)(u,, — u,,)> =0. (1.11a)
£1—0
20
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A similar calculation also yields

+

tim it (1 — g, = [ e(dh) = 2
=0

1—-4
Equation (1.9) involves proving
lime|u,| =0.
e—>0
We will actually prove the stronger version,
lime{u,,u,) =0.
e—0
Again by spectral calculation

ey = |

4 m ey(di)

(1.12)

The integrand goes to zero and is dominated by 1/(1 — 4), which is integrable with
respect to ey(d4). Since X, = M% + & + n and is independent of ¢ > 0, (1.7) and (1.9)

clearly imply (1.8).

We now concentrate on proving (1.3) and (1.4) for the sequence {&,}. We first

prove (1.4). Clearly for every ¢ >0,

Since M — M, is a martingale with stationary increments,

1 3 3
Lerie e < 2B Me— My 1 2B 2 4 2 ER
n n n n

3

3
=3E"|M{ — M, +;,EPI€§I2 +;E”Inf.|2.

We have
lim E*|M% — M,|>=0.

[ad V]

Therefore it is enough to choose ¢ = 1/n and then show that

1
lim 1E"lvf,ﬁ’"l2 =0 and lim-Ef|pl"?=0.

ol n—w
Clearly
EP| &M% = EP[uyu(yn) — 1 n(p0) | S 4EF |y (yo)
=4ty ),y 0 = 0(n) by (1.12).
Moreover

1n-1 2
EFjna"? = EP[; 'Zo “1/;.(}’1)] < EPJuyu(yo) 2
i=

= Uy, s =0(n) again by (1.12).
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Now we turn to (1.3). We need Lemma 1.4 which we will use but prove after
completing the argument;

sup |&;| < sup |[M}"" — M| + sup |&j™] + sup |n;"].

1<jn 1<j<n 1Sjsn 1gjsn

Now by Doob’s inequality

P[Sup |Ml/n_M |>5f] <__EP[M1/n n]2

1gjsn
;ZEP[M”” M,]*=o0(l) as n—oo.
1n—1
P[ sup I'l”"|>5\/;] éP‘:— Z [ty u¥5)] 25\/;]
1gjsn

1

<'_5—2 ‘: Z ‘uljn(y.;)l] 52<u1/mul/n>

=o(l) as n—oo.

Finally

sup lf}/nl = sup |uy(y;) =ty n(Yo)l = sup lug,(yy)l + Uy m(yo)l,

Isjsn 1<)sn 1Sjsn

1
P[|“1/n()’o)i>5\/_]_ 52EP[“1/n(.VO)] = 2(“1/n,“1/n>
=o(l) as n-oo.

As for sup |u,,(v;)|, we write

1<jsn

sup |uy,(y) = sup |u(y;) —uym(yy)l + sup |uy;)l

1j<n I<jsn Isjsn

for some &> 0.
P[ sup |uy)| 2 6/n] S nP|u(yo)| 2 3/n] = o(1),

because EP|u(y,)|? < 0.
We use Lemma 1.4 to estimate

Psuplu(y) — uy,(y)| 2 6./n]

3
= 5——Jn("<ue—u1/n, (I — @)y — vy ) > + b=y, U=y ))'/2,
letting n— oo,

lim sup P[ sup |u(y) — uyu(y;)| = 8. /n]

n= o 1sjsn

3
<-lim <u£ — Uyns (I - Q)(ue - ul/n)>1/2'

On—o
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If we let e >0, we obtain

limlim sup P[ sup [u,(y)—u1,,(y)| 2 $/n]

e~+0 n—o© 1<jsn

< i fim Cut,— oy (1= )t~ 0,
= Oeby ;;.Ta),
and we are done.
Lemma 1.4. Let f(x) be an arbitrary function in L,(X,n). Let
hfor=a, {f,d-qf)>=b
Then
P(sup 1f0)| 21} 0 Jatmb. (113)

0<j=sn

Proof. Let G = {x:| f(x)| Z I} and let 7 be the hitting time of G, i.e. T = {infj: y;€G}.
Then

P{sup | f(y)| 21} = P{t<n}.

0<jsn

Let us consider the function ¢ (x) = EP~{p"}, where P, is the Markov measure on the
space of sequences {y;} for j > 0 initialized to start from x at time 0. Then

P{r =y} s p™"[ ¢ (x)n(dx) < p~"[] d(x)m(dx) 1'%,

To estimate the last term we note that

¢,=pq¢, on G, $,=10nG.
By the Dirichlet principle

O30 S (9§, + 12 (B = 99> < (0,00 + 750 = o)
for any w which is 1 on G. The function (| f(x)|Al/l) = @ is an admissible choice;

1 1
(0,0) S =5 (DU-0d Sz hU-af > =p

Therefore

B a p b 1/2
<nLp Mo+
P[Tzn]zp <12+1_p12>
Taking p = e~ /" we obtain (1.13).
Corolla[ryl S.If V satisfies (1.1), then the distribution of X, (t)=1 /\/ n Xpm=
nt]

(1/ \/_ ) Z V(y;) under P converges to Brownian motion with variance o 2 weakly in the

Skorohod space on any finite interval. Moreover a? is given by (1.1).
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Remark 1.6. If V is vector valued then essentially the same result is valid. The vector
valued process X ,(t) converges weakly to a multidimensional Brownian motion with
the corresponding covariance matrix.

Remark 1.7. If we replace P by P, the Markov measure starting from x at time 0, then
the distribution of X ,(t) under P, will again converge to the correct Brownian
motion but the convergence is in measure as functions of x relative to the measure 7.
The question of almost sure convergence is open.

In the case of continuous time Markov processes we have the transition
probabilities p(t, x,dy) and an invariant probability measure n(dx) with respect to
which the process is assumed to be reversible and ergodic. We also have the
infinitesimal generator L of the process. L is self adjoint on L,(r) with a nonpositive
spectrum and a simple eigenvalue of 0, constants being the eigenspace correspond-
ing to that eigenvalue.

If one is interested in proving a central limit theorem for an additive functional of
the form

X()= g V(y(s))ds,

where | V dn =0, then

lim L EP[X%(0] =2 [ E'LVO()V((O) Jds =2 | <T,V, V >ds
0 0

g—»got
=2{-L"'V, V),

where T is the semigroup induced by the transition probabilities.
The natural assumption on V then is that VeD((— L)~ '/?) or equivalently an
estimate of the form

KV, <c{—Lg,¢p>'"? (1.14)

for all ¢ in the domain of L. We will assume that V in L,(n) satisfies (1.14). When we
say domain of L we mean the domain as the generator of a semigroup in L,(x).
We now state the analog of Theorem 1.3.

Theorem 1.8. Let y(t) be a Markov process, reversible with respect to a probability
measure m, and let us suppose that the reversible stationary process P with m as
invariant measure is ergodic. Let V be a function on the state space in Ly() satisfying |
V dn =0 and condition(1.14). Let F, be the o-field generated by the process up to time t.
There exists a square integrable Martingale M, relative to (Q,F,, P) for f =0 such
that M, has stationary increments and

1
lim — sup |x(s) — M| =0

=0 0<s<t

in probability with respect to P, where X(0)=M,=0 and

X() = 5 V(/(s)ds.



10 C. Kipnis and S. R. S. Varadhan
Moreover

L1
lim - E?| X(t) — M| =0.
t— o0 t
Corollary 1.9. It follows now from results is Helland [2] that 1 /\/ A X(At) satisfies a
functional central limit theorem relative to P and the limiting variance o? is given by

2= lim%EXz(t)=2 [KTV,Vydt=2{—-L"'V, V).
t— 0

Remark 1.10. If we denote by P, the Markov process starting from a point x in the

state space and by Q, , the measure on the space of continuous functions induced by

1//A X(4t) from P, and by Q the Brownian motion measure with variance 62 on the

same function space, then we have besides [Q, m(dx)=Q actually Q, .=Q in

measure with respect to n. The question of almost sure convergence is open.

Remark 1.11. If V is a vector of functions one has analogous results regarding
convergence to the corresponding vector Brownian motion with appropriate
covariance matrix. The basic approximation in Theorem 1.8 can be done for each
component and in [2] the multidimensional version of the central limit theorem for
vector martingales can be found.

Comments on Proofs. The proof follows the discrete time situation very closely. The
only tricky point is the analog of Lemma 1.4. Since the X(¢) process is almost surely
continuous and M, can be taken to be almost surely right continuous, one replaces
the supremum in

sup | X(s) — M|

0ss<t

by a supremum over diadic points in [0, ¢]. Denoting by Dy, the set of diadic points of
the form j/2V, it is clearly sufficient to prove

Lemma 1.12. Let f satisfy { f,f > =a, {f, —Lf > =b. Then for every t, N and |
3
P[ sup |f(ys)21] §7\/a+tb-
0ss<tseDy

Proof. If we denote by gy(x, dy) the transition probability p(1/2", x, dy) and by g, the
operator T),~, then by the spectral theorem,

AN 1 b
Sl =an)f>=[(U = e MEfdy) S 55 fs = Lf ) =35.

We now apply Lemma 1.4 for the discretely sampled process with n = [12"], and
we obtain the validity of the lemma.

2. Asymptotics for a Single Test Particle in Simple Exclusion

In this section we study the behavior of one test particle in the symmetric simple
exclusion process. We will denote by £e{0, 1} the state of such a process



Additive Functionals of Reversible Markov Processes 11

) = 1 if the site u has a particle
W= 0 if the site u is free.

For any state ¢ and any two sites u, v we denote by £*” the new state obtained by

&z) if zs#uorvw
E2)= (w) if z=v
o) if z=u

The evolution of the process &(t,-) is governed by its infinitesimal generator L

(LF) =} [F(&"") = F(&)1pu —v). @1

u#v

The summation here is over unordered pairs (u, v) with u # v. For the process &(t, )
the Bernoulli measures Py, where 0 is the probability that any site is occupied
(independently of all the other sites) are reversible ergodic measures provided the
random walk p(x — y) is irreducible.

If we have a single test particle in the system, it is more convenient to describe the
system in terms of the location x of the test particle and the configuration # of the
entire system seen from the test particle:

nu)y=E&x+u) for u#0, (2.2)

and the state space for the system is xeZ¢ and ne{0,1}7'~%. The infinitesimal
generator for the (x,#), process is given by

(LF)(x,n =}, p@) (1 = n()[Flx +z,7-.1) — F(x,n)]

z#0

+ 3 [Flon*") = Flx,n)]p(u—v), 2.3)

u#v#0

where
(- mMW)=nu+z) for u#—z
=0 for u= —z. 2.4)
From the form of (2.3) we see that # by itself is a Markov process with generator
(LoF)(n) = ;1)(2)( 1 —n(@)[Fx_.n)—Fn)1+ Z#O[F (") — F(n) 1p(u—v)
= (LaF)) + (LoF) ), 3

The invariant measures for the # process will turn out to be Bernoulli product
measures P, with common probability 6, and these will be ergodic and reversible for
L,. [Although for the # process there is no site at 0 we will continue to denote by P,
the Bernoulli measure over all the other sites.]

Lemma 2.1. The #, process is reversible and ergodic with respect to Py.

Proof. We need only check that
jfLogdPo = IgLofdPe,
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where f and g are of the form

fl)= ug n(w), gn)= LIB n(u),

where A, B< 79— {0}.
From the form of the generator (2.5) we need only check that
§.f**)gn)dPy = [ g("*) f (m)d Py, (2.6)
[ fmg(z_m)(1 —n(z))dPy = [g(n)f (z)(1 — n(— z))dP,. 2.7
Equation (2.6) follows from the invariance of P, under the map #—#** and (2.7)
follows from the fact that # — 7,7 maps (1 — 7(z))dPy to (1 — n(—z))dP,. It is easy to
see that Py is reversible and ergodic for L,. Since any harmonic function ¢ such that
(Ly + L,)¢ = 0 has the property | ¢L,¢pdPy= — [ pL,$ dPyand | ¢L,p dPy <0 for
i=1, 2 we have [§L,pdPy=| ¢L,¢dP,=0. But L, is reversible and ergodic.
Therefore ¢ is a constant almost surely with respect to P,. This completes the proof
of the lemma.

The x, process is driven by the #, process. If we pick a vector [ and consider (x1),
then

Lo(x) =Y (2 Dp(2)(1 = n(z)) = pi(n),

so that

(x,-l)—j)¢,(ns)ds=N£ @7)

is a Martingale relative to the natural g-fields. We now apply Theorem 1.3 to ¢(1)
and write

t
g di(n)ds = M; + Ey,

where M! is another martingale and E! is negligible. Taking  to be the various basis
vectors, we can approximate each component of x, by a sum of two martingales. The
central limit theorem now follows from what we said earlier. We need to show
that the conditions of Theorem 1.3 apply and that the limiting covariance of the sum
M, + N, is nondegenerate. We assume that

Y 1z1?p(z) < 0. (2.8)
Lemma 2.2, For any | the function
$uln) =Y (2-D(1 — n(2))p(2)
satisfies the condition
|f dUmF APyl < C(— [ (LoF)()F(n)dPy)*'2.

Proof. We can take F to be a function depending on a finite number of coordinates
and then
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§ SUmFm)dPy = [ (3. (2, (1 —n())p(2))F(n)dPy
= %f(;(Z'l)[(l —n(z)) = (1 = n(=2))JF(n)p(z))dP,
=5[22 )(1 = n(2))[F(z_ 1) — F()]p(z)dP,

Y. 0@z D)2 (X (1 = n(2) [F(z 1) — F(n)1*p(2)dPy)*'?

S C(f (=L F)F(n)dPy)'?

< C(= [(LoF)(nF(n)dPy)*'>. 2.9)
For the next lemma which is required to prove the nondegeneracy of the limiting
covariance we will assume that under the random walk p(u — v) one can get from any

nonzero site to any other nonzero site without going through the origin. Notice that
this rules out only the nearest neighbor random walk in one dimension.

IIA
(SIS
~~ N

Lemma 2.3. Under the above assumption we have an estimate of the form

|§ @mF(n)dPy| < C(— [ (Lo F)(n)F(n)dPg)" .
Proof. 1t is clearly sufficient to prove (see (2.9))

I§ L(1 = n(w) = (1 = n())JF(ndPy| < Clu — v|(— [ (L, F)(m)F(n)dPy)" /.

In view of the triangle inequality is to enough to establish

sup | (1 = 1)) — (1 — @) IFE)AP| < C(— [ (LFYn)F(n)dPy)' " (2.10)
ju—v|<k
The estimate is going to be derived through a random walk path from u to v that
avoids zero. Since for a fixed path of finite length, translations will produce only at
most a finite number that will go through zero the supremum in (2.10) comes for free
provided we establish (2.10) for each fixed u and v (with “translation invariant” C, see
below). Let

U=Zg, Zi,...Zy=10

be a path that avoids 0, and let p(z; — z;_ ;) > Ofori=1,2,...,n. Again because of the
triangle inequality we can concentrate on

IJ L1 = n(z)) = (1 = n(z;- ) TF(m)dPy| = J(1 = 1(z; - )(F - +%) — F (1) )d Py
< ([ [FOr+-+%) — F(n)1*dPy)'"?

, 1/2
< <—1——> (= [ (Lo F)()F(n)dPg)' . O
pzi—z;i-y)

We are finally ready to state and prove our main theorem: Let us consider a test
particle in simple exclusion where the underlying random walk probabilities p(u — v)
are assumed to be symmetric and satisfying Y’ |z|? p(z) < co. Moreover the random
walk is assumed to be irreducible and not the one dimensional nearest neighbor
random walk. The test particle is assumed to start at 0. The rest of the configuration
is distributed according to the invariant Bernoulli product measure P,. Then
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Theorem 2.4. The distribution of (1//A)x;, converges to a nondegenerate diffusion
with covariance o in the Skorohod space. Moreover the covariance o is also the limit of
the covariances of (1//A)x; as A— .

Proof. In view of the earlier comments we need only prove nondegeneracy. There
are many martingales associated w1th the (x,n), process

—mes oy () = nv)| — f () —nv)] f Iny(w)—nv)| pu—v)ds,

vl = ; X(q‘s:r_zqs‘) - gp(z)(l - ”s(z))ds

are basic martingales, and any other martingale is expressible in terms of these. For
instance N, given by (2.7) can be expressed as

N, = Z zvi,
z#0
For any function F the martingale

M = F(n(t) — F(1(0)) ~ i(LoFxn(s»ds

can be expressed as

= I[F(n“ “(s)— F(n(s)) ]dV“”+Z§[F(t-zn(S)) F(n(s))1dv;.
up#00
Moreover the martingales {v;v**} are mutually orthogonal in the sense that the

product of any two distinct ones is again a martingale. For any ! the martingale
(N1 is of the form

(NI =Y (20,
z=0

and {(M,, [} of the decomposition

t
g bilng)ds = M; + E{

comes from M{+ as A—0, where F, = (Al — L,)”'¢,. From the orthogonality of
these martingales it is clear that the nondegeneracy of M, + N, is assured if we
establish that M, should involve at least some v** component so that it cannot
cancel N,. In other words we need to prove

lim EM{ Y p(u—0v)[F,n""(s)) — F;(n(s)1*} #0,

A—0 utfv¥0
1.e.

lim < “’Lz(l] —_LO)_1¢I’ (A,I_Lo)_l(ﬁl > #0.

A=0
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Lemma 2.3 assures us that

<P Y > < C{= Loy, Y )12

(—Ly'¢, ¢ =C.

or

We can estimate

@i (Al — L)"') = <(— L7 Py, (— L) > (A —Lo) "¢y
S{=L3 'y, ¢V —Ly(Al — Lo) ¢y, (Al — Lo) ' ¢y
SC{—LyM —Lo) "¢, (Al —Lo) " '¢)>.

Since {¢;, (Al — L)™', can go to zero only if ¢, =0, we are done.

Corollary 2.5. Suppose the initial configuration in the sites u # 0 is different from P, but
is some measure Q < P,. Then the basic central limit theorem is still valid and the
limiting distribution is the same as before. If dQ/dPg is bounded, then the covariance of
(1/4/A)x; converges to the covariance of the limiting Brownian motion. The proof
follows easily from Remark 1.10. The boundedness of dQ/dP, guarantees that the
error is still negligible in the sense of mean square.

3. Asymptotic Independence of Two Test Particles

In this section we study the behavior of two test particles located initially at points x
and y.

Theorem 3.1. The scaled positions of two test particles converge jointly to two
independent Brownian motions.

Proof. First of all we note that we are working with an initial distribution
conditioned to having sites x and y occupied. Since the conditioning set has nonzero
measure by Corollary 2.5, the two individual positions converge to Brownian
motions separately and only asymptotic independence has to be proved. In view of
the results in Helland [2] in order to prove that two Martingales satisfying the
central limit theorem separately converge jointly, after rescaling, to independent
Brownian motions we need only show that

1
lim = EMYM® =0,
t— oo
where M{) is the i component of the j** martingale. By standard formula one can
compute

t
EMEM = E [y fo)s

for some suitable function y(s).

We will carry out these computations in the next several lemmas and establish
that Ey;;(s) =0 as s— oo. This will prove the result.

First some notation. The probability that a typical site is occupied is of course 6
and is fixed. We will not specify it hereafter. We have the initial measures P, P, P,
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P, corresponding to no conditions, conditioned for site x, site y and both sites x and
y to be occupied respectively at time 0. We also have the measures for the entire
process £, of the infinite particle system corresponding to these initial conditions
which we denote by Q, Q,, Q, and Q,, respectively.

Lemma 3.2. The positions x, and y, of two tagged particles starting from x and y at time
t =0 can be represented as

x=x+ MO LB,y =y+ MO+ B,

where M and M(® are martingales relative to Q. and Q, respectively. They are both
martingalesrelative to Q. ,. Further E{"), E® are negligible relative to Q. , in the mean
square sense.

Proof. The representation of x, relative to Q, and y, relative to Q, follow from Sect. 2.
Since all martingale properties are valid relative to almost all initial starting points
and P, ,« P, aswellas P, , « P, the martingale property holds true for Q, , as well.
Moreover dQ, ,/dQ, and dQ, ,/dQ, are bounded. So all the negligibility results are
valid in the mean square sense as well.

Let us look at the complete class of martingales for the &, process for any a, be 74
and a # b:

n@m&=~@¢%@ﬂb-mgma—aw»w

is a martingale where N(a, b) is the number of transitions in time [0, t] from site a to
site b. Since any martingale is expressible in terms of these basic ones

M) = Z I(bfl,,’b(s dn(s, a, b) (3.1)
and
M@ = Z [¢52‘,’b Ydn(s, a, b). (3.2)
Lemma 3.3. For each t >0
t
ECo MM = E% [ 5k
where

Yils) = Z LS ssna) (1 — nyb))p(b — a).

atb

Proof. Follows from the fact that unless a = a’ and b = b’ the martingales n(t, a, b)
and n(t,a’,b’) are orthogonal and

Eﬁmmm—gmmu—m@ww—mw

is a martingale.
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Lemma 3.4. For any L < o,
lim Q,,[1x(t) — y(t)| < L]=0.

t—= o

Proof. Let us consider the system consisting of the first tagged particle being the
origin of reference and the rest of the world including the second tagged particle
being viewed from the first tagged particle. For this system there is a o-finite
invariant measure with mass one corresponding to each location of the second
tagged particle. Given the location of the second tagged particle the rest of the
universe (excluding also the origin) is provided a Bernoulli product measure. One
checks that except for the one dimensional nearest neighbor model the system is
ergodic. Moreover the system is reversible so that if T, is the evolution semigroup for
the system { f,T,g>—0 by the spectral theorem provided f and g are square
integrable with respect to the invariant measure. Picking g =y, <;,(*) and f= yx,,
i.e. the indicators of the sets where the second tagged particle is within a distance L of
the origin and at y respectively we obtain our result.

Lemma 3.5.
lim E%»j,{t) = 0.
t— o
Proof. We use the simple inequality
[Wif0)] S xE() 0 E(t) # ¢- [0V 12 [QP (1) ]
+ [0 PIOR 1)1 + [QR (012 [0 (]2, (3.3)
where L < oo is fixed, and
E ()= {(u,v)eZ* x Z° u+# v and max[|u — x,|, |[v —x,|] < L},

E,(t) = {(u,v)€Z° x Z%, u # v and max[|u—y,], Jv—y,|]1 <L},

0P ()= ;}I GO P (1 = n,0)) plo — u),

Qﬁfﬁ(t)( Y 160 LOPnu)(1 — nv)plo — ).

uv)ed
We write for each L < o
ECos|¢hi{0)] < ag(t) + by(t) + ¢y 8),
corresponding to the estimate (3.3), which we think of as
Yil®) = Ty, (1) + To 1(0) + T5,10).
Step 1.
at)=E% T ()< [ [QM©QP(0)]%dO,,

|xr‘.\’z|.—<—_2L

SO | 0Pmde. ) [ 0P(0d0. )

X =yl S2L Ix;—yl<2L
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To show that a,(t) - 0 as t — 0, it suffices to know that Q{"(t) are uniformly integrable
with respect to Q, ,. ButdQ, ,/dQ, and dQ, ,/dQ, are bounded and Q{"(¢) and Q{*(t)
are stationary processes relative to @, and Q, respectively.

Step 2.
by(t) = E%T, 1(t) < (E%[Q{V(6) 1) (ES[ QR (0])'?
< CES[OMODVHELTOR (0]).

E2-[Q{"(1)] is independent of ¢ and so is E®[Q2 L(t)]. Moreover the last quantity
tends to zero as L— oo, and we are done.

Step 3. The estimate for ¢,(t) is identical to step 2 with the roles of the two tagged
particles reversed.

4. Application to a Bond Diffusion Process

In this section we want to study the movement of a particle in a random
environment. Consider for each bond b of Z¢ a positive random variable a, and
suppose that these random variables are iid.. Once this random environment
is chosen, let a particle evolve according to the jump process with generator
Lf(x)= Y a,,[ f(y)—f(x)], where y ~ x means that y and x are nearest-neighbors

y—x
and a,, is the rate of the corresponding bond. We also assume that the a,’s have a
uniform upper and lower bound. Call x, the position of the particle at time ¢, and
£x,2 the rescaled position. Then

Theorem 4.1. After rescaling the position of the particle converges to Brownian motion.

Proof. The only quantities that matter in this problem are the values of the rates
given to each bond (which we call an environment).

It is also clear that the process &, of the environment seen from the position of the
particle at time ¢ is a Markov process whose generator is

& =2 a)f(x5)—f(O)]

Therefore to prove our central limit theorem we only have to check that, for any
% eR?, the function

=) a(0)(€%)

satisfies the condition of Theorem 1.3, because we easily check that the original
product measure (say m(d¢)) is reversible for this process;

[ al&)e-)g(Emde) = [a_ (1.8)(€-5)g(E)m(de)
= — [a_ (m)(—¢ - )g(r_ mm(dn).

Therefore

Y 9()a ()€ dm(de) = fzae(é f(2.8) —f(©)Im(d?)
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<300 fad&)(€- 0’ mdE) Y. [ adO)(f (zed) —f(£))*m(dE)],

which is the bound that we were looking for.

Remark 4.2. With some additional work one can prove the nondegeneracy of the
limiting Brownian motion.
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