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Abstract. A new direct proof of convergence of cluster expansions for polymer
(contour) models is given in an abstract setting. It does not rely on Kirkwood-
Salsburg type equations or "combinatorics of trees." A distinctive feature is
that, at all steps, the considered clusters contain every polymer at most once.

1. Introduction

In the study of classical lattice models it is often useful to rewrite their partition
function or their correlations in terms of polymer models. It is so whenever one is
able to rewrite the partition function in a volume V in the form

where the sum is over all compatible families d of certain geometrical objects (y)
called polymers. A particular form of the polymer weights Φ(γ) depends on the
considered model. See e.g. [1] for a collection of some typical examples. Notice
that when applied to low temperature expansions the term contour is used instead
of polymer.

If the weights Φ(γ) are small enough for "large" polymers y, one may expand
logZ(F) in a convenient form called cluster expansion, enabling one to make good

evaluations of the "free energy" ("pressure") lim-—-logZ(F) as well as of the decay

of correlations. There are essentially two approaches to the proof of convergence of
cluster expansion: one is based on the use of Kirkwood-Salsburg type of equations
[2-5], while the other relies on "combinatorics of trees of a graph" [1, 6, 7]. In both
these approaches many copies of one polymer may appear in a cluster. As a
consequence the cluster expansion for logZ(F) is an infinite series even for finite V.
Our goal here is to present a new formulation and a new proof of cluster
expansions which is in our view both simple and straightforward, since it uses, at
all stages, only clusters in which every polymer may appear at most once.
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To stress that the formulation as well as the proof do not depend on details of
"geometry of polymers" we state our theorem in an abstract setting.

2. Setting and Results

We shall consider a countable set K, the elements of which will be called polymers.
Let zCKx K be a reflexive and symmetric relation. A pair yi,y2£K *s called
incompatible (compatible) if (yl5 y2) e ι((yi,y2) Φ ι) We shall also use the notation
yγιy2 f° r incompatible polymers. Whenever Lc K, let ^(L) be the family of all finite
subsets of L and ^(L) (@0(L)) be the family of all (finite) subsets dc L consisting of
mutually compatible polymers; J> = J*(K), 3> = @(K), and Qj0 = ̂ 0(K). For C e f w e
denote by |C| the number of polymers in C and write Ciy whenever there exists
/ e C such that y'ιy. We call C e f a cluster if it is not decomposable into two
nonempty sets, C = C^uC^, such that every pair y1 e C l 5 y2 e C2, is compatible. To
evaluate a "decay rate" we shall use a function d:K->[0,00), and denote
d(C)= Σ d(γ) for every C e 9».

γeC

We suppose the "statistical weights" of polymers to be given by a polymer
functional Φ: K->C, and denote Φ(d)= Π Φ(y) f° r every de@0 [we put always

γeδ

Φ(Φ)= 1]. Thus we define the partition function ££(L; Φ) for every finite Lc K by

iT(L;Φ)= Σ Φ(d)

Whenever SOI is a contractible set of polymer functionals and it is known that
££(L; Φ) =t= 0 for every Φ e 9JΪ, we may uniquely define log J"(L; Φ) as that continuous
branch of logarithm for which log^f(L, Φ = 0) = 0 [let us notice that 5T(L, Φ = 0) = 1
for every LeJ^] This is the case (with fixed functions a and d) in the following
theorem and we shall always understand logJf(L Φ) in the above sense.

Theorem. Let functions a: K->[05 oo), d: K-»[(), oo), and Φ: K->(C fee 5wc/ι that

Σ efW+^ΦiyyύΦ) (1)

for each yeK. Then iF(L;Φ)Φθ for each finite LcK and there exists a unique
function ΦT\@^<L such that

logiF(L;ΦH Σ ΦΓ(C) (2)
r , ^ C : C C L

jor every Lew.

Moreover the function Φτ is given by the formula

the estimate

= Σ ( - l ) l c M B | l o g i T ( B ; Φ ) , (3)
B BCC

Σ \Φτ(C)\ed<c^a(y) (4)

Ciy
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holds true for every y e K, and

ΦT(C) = O whenever C is not a cluster.

The proof is given in Sect. 3.
Let us mention that the use of Mobius inversion (3) goes back to e.g. [8] (see

also [1]) and was later advocated by Mack [9]. He also suggested that the
formulas like (2) and (3) might be used as a computational tool-computing from
(3) the first few relevant terms in the expansion (2). Assumptions of the type (1) were
used by Guerra [10], in slightly stronger form, who applied it in a proof of the
existence of infinite volume limits of correlations, and by Navratil [11], who
derived (4) from (1) applying the Kirkwood-Salsburg equation approach accord-
ing to [5].

To evaluate the strength of the assumption (1) let us compare it with the recent
paper of Cammarota [7] (see also [6]). To do so, let us suppose that polymers are
certain geometrical objects and that the number of all polymers containing a given
lattice site and of the length \y\ = n may be bounded by Kn, where K is certain
constant. Then Cammarota proves the convergence of the cluster expansion if
\Φ(y)\^e~φl with τ>logK + log5 = logK+ 1,609.... Assuming that d = 0 and
Φ) = Φl we get (1) if

n = 1 1 — e

One easily verifies that the most convenient choice of a is a = *——— yielding the
slightly better estimate

τ>logjK + α + log(l+α)-logα = logK+1,580....

Formula (2) together with estimate (4) yield a convenient description for
polymer models. Whenever polymers are geometrical objects on some lattice, one
may write down a closed form expression for the bulk free energy and one has a
good control of boundary terms when comparing it with the finite volume
partition function. Without going into details, let us mention that if ||C|| denotes
the number of sites of the underlying lattice in all polymers from C, we get for the
translation invariant case

lim-LogZ(F)= Σ ^
\y\ C:suppC9i

with the sum over all clusters containing a fixed site i in some of their polymers. Let
us remark also that whenever Φ is analytic in some parameter, then clearly both
Z(V) and ΦT(C) are analytic, and thus the estimate (4) and Vitali theorem imply the
analyticity of the free energy and similar things.

Formulas (2) and (4) are also useful for an evaluation of the decay rate of
correlations. This may be done already in our abstract setting. Let us introduce the
correlations

Σ Φ(d)
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whenever d e @0 and 1_C K is finite. Here χL(d) is defined to equal 1 if dc L and 0
otherwise. Let us denote the set of all clusters in L by ^(L), (& = (&(K), and define

whenever d e S)o and A C K,

whenever dud2e @0, and finally

a(β)=ΣΦ) for
γeδ

Standard statements about the decay of correlations (cf. e.g. [1-4]) may be
summarized in the following

Proposition. Let Φbea polymer functional and suppose that there exists a function
Φ Γ :#->(C such that

Γ 1 (2')

for every finite I_C K and a function d: K->[0, oo) such that

Σ \Φτ(C)\ed^^a(y) (4)

Ciy

for every yeK and some function a: K->[0, oo). Then for every deS)0 and every
L, L l5 L 2 e J one has

( i ) \ ρ L ( d ; Φ ) \ ί ^

(ii) limρL(δ;

(iii) | ρ u ( 5 ; Φ ) - ρ ^ ; Φ ) | ^ | Φ ( δ ) | α ( 5 ) β ^ - ^ ' L - L ^ where L x - L2 = (LΛL2)

(iv) \ρL(d1ud2;Φ)-ρL(dί;Φ)ρL(d2;Φ)\

whenever d1v

Proof. In view of (2') and denoting [9] = {y eK\yιd}, we have

; Φ) = χL(d) Φ(d) ̂ f ] ) -χL{d) Φ(d)eχP Γ - Σ Φ T ( C ) Ί . (5)

Both (i) and (ii) then immediately follow from (4). To prove (iii) and (iv) one uses (5),
the inequality

| β Z l - e Z 2 | ^ m a x ( ^ | z i U | Z 2 l ) k 1 - z 2 | valid for every z 1 ? z 2 e(C,

and the inequalities

Σ | Φ T ( C ) | ^ ^ ^ ' L - L 2 ) Σ |

for (iii) and

for (iv). D

Σ
Ce'iί
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Let us finally remark that, in analogy with (3), one may introduce functions
:@-+<E for every de@0 by

BCC

and to prove in a straightforward way that

βL(δ)= Σ
L CCL

for each L e gβ and that

\Ad(C)\ed{C)^ea{d)+d^\Φ(d)\.

(7)

(8)

Moreover z^(C) factorizes: Ad(C) = Adί(C1) Ad2(C2) whenever d^dι\jd2,
C = C 1 u C 2 and every ye d1uC1 is compatible with every y'e 3 2 uC 2 . Using the
estimate (8) one may slightly improve (iii) and (iv) by omitting the factor a(d),
respectively a{d1κjd2) on the right-hand side. Let us note also that if Φ(y) is
nonnegative for each γ e K, the estimates (i), (iii), and (iv) may be improved by
skipping ea{δ\ respectively ea{dίUd2\ But in this case already the theorem may be
considerably improved [12].

3. Proof of Theorem

To prove the unicity of ΦΓ, suppose that ^ ( L Φ)ΦO whenever Le ffl. If (2) is
satisfied, then

B:BCC
H Σ (-

B:BCC

l Σ
A:ACC

since

= Σ
A:ACC

y (_
B ACBCC

Σ (-
B ACBCC

l= y (_
DCC\A

whenever A Φ C. This proves the unicity of Φτ. Similarly one easily shows that (3)
implies (2) and also the fact that ΦT(C) vanishes whenever C is not a cluster.

Realizing that the expression (3) for ΦT(C) uses only ^ ( B ; Φ) with B c C, the
proof will be finished after verifying the following statement for every finite l_c K:

for every Be Land

Σ |Φτ(C)|
Ce^(L)

C

(yeL) (S)

where ΦT(C) are defined by (3) for C c L.

Let us fix a finite Lc K and denote by (ls) the modified assumption (1)

Σ ea

γ' .γ'iγ
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and consider the set / of those s e [0,1] for which (S) holds true for every Φ fulfilling
(1J. The set / is nonempty since Oel [the only functional fulfilling (l 0) being the
zero functional] and thus α = suρ/e[0,1] .

We shall prove first that α e / . In fact, let Φ fulfill (lα). The functional Φt = tΦ
satisfies (l ία) and thus also (S) for every t e [0,1). Hence for every t e [0,1) and every
B C L we have

|^Γ(B;Φf)|= e x p [ Σ ΦfT(C)Ί| ^ e x p Γ - Σ a(y)\ (9)

since

Σ
CCB

ύ Σ Σ l « . . .. _
γeL Ciγ γeL

;Φt) is continuous as a function of t and thus it follows from (9) that
; Φ)φO. Hence we may define Φτ by (3), and since according to (3) it is ΦT(C)

^, the estimate in (S) is fulfilled for Φτ.
ί l

Suppose now that α < l . We shall show that

\Φτ{C)\ed{c)^u a(y) (10)
Ce^(L)

Ciγ

for every Φ satisfying (lα). But this would contradict the assumption that α = sup/.
To see it, we notice that the set of contour functional fulfilling (lα) is a compact
space contained in the open set {Φ|^(B;Φ)φO for each BcL}. Hence, there is
αx > α such that iF(B Φ) φ 0 for every B C L and every Φ fulfilling (lα i). Similarly, the
set of all Φ fulfilling (lα i) and such that Σ |ΦT(C)| ed{C) < a(y) whenever y e L and

Ce^(L)
Ciy

a(y)>0 is a relatively open subset of {Φ|Φ fulfills (lαi)}, and in view of (10) it
contains {Φ|Φ fulfills (lαi)}. Thus, there exists a2^{oί,aί) such that the inequality
from (S) holds true for a(y) > 0 and Φ fulfilling (lα2). But, if a(y) - 0, then Φ(yO - 0 for
all y'ιy, and thus Φτ(C) = 0 for every Ciy. To verify the last fact we consider any
γ'eC such that y'ιy and use (3) to get

ΦT{C)= Σ ( - l ) | C M B | l o g i T ( B ; Φ ) + Σ ( - l ) | C M B | l o g i F ( B ; Φ )
BCC BCC

= Σ ( - l ) | C M B | [ l o g i r ( B ; Φ ) - l o g i r ( B \ { / } ; Φ ) ] = 0 , (11)
BCC

since Φ(y') = 0 and thus ^(B;Φ) = e^(B\{y/};Φ). Thus (S) is verified for all Φ
satisfying (lα2).

Finally, to prove (10) let us consider a functional Φ fulfilling (lα) and fix y e L
Defining now Φt(y") = ίΦ(yO for every y'ιy and Φt(y/) = Φ(y') for remaining y' and
introducing ε(C) e(C such that |ΦΓ(C)| = ΦΓ(C) β(C), we get

(12)
_) 0« ί I Ce^(L) I

Ciy
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since the same argument as that in (11) shows that Φj(C) = 0 for every
such that Ciy. To evaluate the right-hand side of (12) we observe that Φt satisfies
(lα) and thus also (S) and using this, the formula (2), the definition of £?(B; Φt\ and
recalling that [/] is the set of all polymers incompatible with y\ we get

^ B d(Φtf)) it
yΊy

y'eB ^yu,-rt) y - e

yΊy yΊy |_ D/y'

Hence

d Γ

LCC?y(L) J
d

Ce^(L) BCC αί
Cty

= Σ Φ(yΊ Σ ε((V(c) Σ (-i) | c |~ lBlexp
y'eL Ce^(L) BCC
yΊy Csy' B3y'

oo I

= Σ Φ()0 Σ s(C)edic) Σ —
y'eL Ce^(L) n = 0Ϊl-
γΊγ Cay'

n

Σ ΓΊ (~-Φf (D )̂) Σ (~ 1)
Di,...,DπCL / = 1 BCC

Dity',..., Dniy' B3uD^u{y'}

= Σ Φ(y') Σ -1. Σ Π (-Φ,τ(Dj£(υD,u{/})^^f ».
y'eL « = θW! Di,...,DnCL j?=l
y'ϊy Diίy',...,Dnίy'

In the last equality we used the fact that Σ ( - l ) | C M B | = 0 whenever
BCC

Γ - Σ Φt

Γ(D)]
DCB

L Diy' J

Thus recalling that d(uD,u{y'})g Σ ^ D ^ + ΦO, and using (S)
for Φt and (lα) for Φ, we get

^ Γ Σ ΦΪ(C)e(C)e"^
at

^ Σ \Φ(yΊ\ed^ Σ ^ Σ Π
y ' e L n = θ Π ! D i , . . . , D n C L ^ = 1
y'ιy D i t y ' , . . . , D n i y '

= Σ |Φ(/)kd(/)expΓΣ |Φt

τ

'
y'eL DCL
yΊy LDry'

^ Σ
y'eL
y'ιy

Using this in (12) we finally get (10).
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