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Abstract. The integrated density of states has C®-like singularities,
In|k(E)—Kk(E,)|= —|E—E,| **¢/E), with ¢, >0, a milder function at the edges
of the spectral gaps which appear when the distribution function of the
potential du has a sufficiently large gap. The behaviour of ¢, near E, is
determined by the local continuity properties of du near the relevant edge:
o (E)=0(1) if du has an atom and ¢.=0O(n|E—E]) if p is (absolutely)
continuous and power bounded.

Introduction

Let H,=T+V, be a tight-binding Schrodinger operator with disordered
potential on Z” (or an infinite sublattice of it):

(Hof)(m)= X 1(n—m)f(m)+ Vo(m)f(n). (1.1)

Here I has compact support and V, (n) are independent, identically distributed
(iid) random variables. The (compact) support of their common distribution
function du contains at least two points.

Such operators appear in many models for electrons in disordered systems
either as finite difference approximations of Schrodinger operators or as
restrictions of such operators to subspaces spanned by localized (atomic or
Wannier) basis sets.

Let A(E, A) be the number of eigenvalues of the operator A which are less than
E. The integrated density of states (IDS) for H may be defined by

kE)= lim |A]” 'N(E, H), (12

where H4 is a restriction of H to the compact A CZ’ and |4/ is the number of points
in A.1

1 For Schrodinger operators on R, |A] is the Lebesgue measure of A
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Under rather reasonable physical assumptions (ergodicity and exponential
mixing for the process V,, see e.g. [7, 9, 13]) — which in our case are evidently true —
the limit in Eq. (1.2) exists for a.e. w and does not depend on w, the sequence {A} or
the boundary conditions used to define HZ.

For periodic operators k(E) is piecewise C* having algebraic singularities at
the spectral (band) edges and at some internal points (van Hove singularities).

Much less is known in the disordered case. Intuitively one would expect the
disorder to smoothen the singularities in k(E). For absolutely continuous du
Wegner [17] has shown that k(E) is Lipschitz continuous. Craig and Simon [2]
proved that k(E) is log Holder continuous for general u. Recently Simon and
Taylor [15] proved that ke C* for the one-dimensional Anderson model.

A nice physical argument by Lifschitz [8] predicts that near fluctuative spectral
(band) edges, where only large-scale fluctuations of the potential, resembling
ordered domains, contribute to k(E), it has an essential singularity of C* type:

k
o) = ()~ expl —E—E.| o E)], (13

for SpH, 3 E—E, with ¢ (E) a milder function.

Near the lowest edge of SpH,,, the IDS has been proven to have this Lifschitz
behaviour for a large class of discrete [4, 11, 14] and continuum models [1, 3, 6]
(see also references in [9] and [14]). For the Lorentz model of dilute, short-
range scatterers several terms in the asymptotic expansion of ¢J(E) were
obtained [10].

In [11] ¢. was shown to be O(1) if u[a]>0, where a=minsuppy and
O(n|E—E,)) if u[a, a+¢]=0(e", A>0, for E | minSpH,,.>

For many physically interesting models Sp H,, has gaps. Lifschitz’s arguments
predict singularities of type Eq. (1.3) at the corresponding spectral edges.

The purpose of this paper is to prove that k(E) has essential singularities of the
Lifschitz type at the edges of the gaps which appear in SpH,, if suppyu has
sufficiently large gaps.

Theorem 1.1 (Kunz and Souillard [7]). Let H,=T+V,. Then, for a.e. o,
a) SpH,>SpT+suppy,
b) SpH,C[infSp T, supSpT]+suppu.

In this paper we shall consider only T=T,, with T the finite difference
laplacian defined by Eq. (1.1), where

J, m=0;
Im)=y —=J, |m=1; (1.4)
0, otherwise.

2 f(x)=0(g(x)) as x—>x, is used in this paper as shorthand for 3C,, C, %0, with C;C, >0 such
X
that C, __<_1iminfmglim supf—l =C,

( (
g9(x) 9(x)
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Then, Sp T, =[0,4vJ] has no gaps and by Theorem 1.1
SpH,,=[infSp Ty, sup Sp T, +suppu, (1.5)
with probability one.

Let suppu=ula,b;, ], with b;<a;<b;,,. Let €={c; b, +4vJ<a,}. Then

U (b,,a,) belongs to the resolvent set of H,, and these are the only gaps in its
ce?

spectrum.
Definitions. 1. The pair E, x, where E,=a,, x,=a,or E,.=b,+4vJ,x,=b.;ce ¥ are
a spectral edge of H, and the associated edge of the measure du.

2. The edge is of type A if u(x,—e, x,+&=0(e"), A>0 and of type B if
pufx]>0.3

The main result of this paper is

Theorem 1.2. Let H, =T, + V,, be given by Egs. (1.1) and (1.5); E, and x_ a spectral
edge and the associated edge of du;
Then, k(E) has an essential singularity of Lifschitz type at E,:

In|k(E)—k(E)|=—|E—E/|""*¢/(E), (1.6)
for SpH, > E—E,_. Here ¢, is a milder function:
O(n|E—E)), x4,
o), x.€B;

As a corollary to Theorem 1.2, a theorem proved by Kirsch and Martinelli [6]
for a class of disordered Schrédinger operators and by Simon [14] for the
Anderson model is generalized to the internal singularities:

PE)= { SpH,>E—E,. (1.7)

Corollary 1.3. In the assumptions of Theorem 1.2

. Infln|k(E)—k(E)I| v
orS Ly InE—E| 2

(1.8)

for all the spectral edges of H,,.
Our basic tool is the following

Proposition 1.4. Let Z'(IR) be tiled with nonoverlapping congruent domains: Z"(IR")
=U A4, 4,nA5=0, A,=A+n, n,eZ".

Let H, be bounded from above and below by direct sums of statistically
independent domain Hamiltonians:

@H"<H,< PHLIT. (1.9)

Then, ’ )
A" YN (E, Hy )} o SKE) S|AI™ HAN(E, HG Dy s (1.10)
where { o },, is the expectation value with respect to the ensemble of potentials V,(n).

3 The edges of the Anderson model are of type A, while those of the binary alloy model are of
type B



170 G. A. Mezincescu

Proposition 1.4, together with a reasonable choice of approximating Hamil-
tonians allows the bounding of k(E) to be reduced to estimating several
eigenvalues of the approximating Hamiltonians which lie close to E.

This approach, which has been widely used for estimating k(E) near the bottom
of the spectrum [5, 6, 11, 14], is simpler and more general than the functional
integration methods [1, 3, 4, 10], whose application requires quite specific (and
irrelevant to leading order) assumptions on the analytic properties of the
logarithm of the Laplace transform of dp.

2. Approximating Hamiltonians and Reduction to Lowest Edge

Let ACZ' be a domain and 04={ne A, Ime Z"\A, |m—n|=1} its frontier. We
shall consider three types of boundary conditions defining restrictions of the
operator Ty, to functions with supp f C A.

a) Ty*=P,T,P,, where the projection P, is the characteristic function of A:

(T ) m)=2vIf(n)—J |s|2=1 fn+i); 20

b) Dirichlet boundary conditions:
TP =T5"" + Koy, 2.2)
with
Ko )m)=l(m)Jf(n), 2.3)

where {(n) is the number of bonds between n and sites in Z"\A. Evidently {(n)=0,
n¢oa;
c) Neumann boundary conditions:

TV =Tg"" ~ Koy (24)
These operators satisfy the evident inequalities
OSTHN<STHP < TP <4vJ. (2.5)
One may readily see [11, 14] that for any tiling of Z*,
@TO “N<T, £ @To =P, (2.6)

Hence, adding the diagonal operator V,, to Eq. (2.6) will yield approximating
Hamiltonians for Proposition 1.4.

Remark. For general T, Eq. (1.1), the approximating Hamiltonians may be
obtained by adding/subtracting to P P, H,P,, the direct sum of K,, with

(Kosf)(m)=f(m) me%m H(n—m)|.

An useful property of the restrictions of Ty defined above is that subtracting
one from 4vJ yields another:



Internal Lifschitz Singularities 171

Lemma 2.1. Let H%°, with o =P, D, N, be given by Egs. (2.1)~(2.4). ThenVxeR

HAP=x+4vJ—-U*HAPU, (2.7
HAP=x+4vJ - U*HANU (2.8)

where the unitary operator (Uf)(n)=(—1)"***"f(n) and
V() =x—V,(n). 2.9

Proof. Itis sufficient to note that the diagonal matrix elements of H4'* are equal to
2vJ + V,(n) and that U changes the signs of the off-diagonal ones. [

By the preceding lemma one needs to investigate only the edges of the lower
component of SpH,,.

If suppu has a gap it is useful to partition A into a lower and an upper
subdomain with respect to the values of V, (n).

Let V (n)e[a,b]ulc,d], ne A, with a<b<c=d. Then

A=A, 9B 4005 (2.10
A po={neA, Vymyela,bl}, Bro=A\A - (2.11)
The indices of o7, # will be omitted whenever it does not lead to confusion.

Lemma 2.2. Let suppuCla,b]ulc,d] with B=b+4vJ<c. Let EZXf and the
domain A is partitioned into lower and upper domains, Eqs. (2.10), (2.11). Then a.e.

N(E,HyP) = ||~ IiTm N (B—E,HyY), (2.12)
where
_jb=V,(n), nedd;
Va(n)= {x, ned. (2.13)

Proof. By the min-max principle the first |.o| eigenvalues of H4'? are bounded
from above by the eigenvalues of P, H4-PP_,
Neglecting the other eigenvalues which are >c¢>p,

N(E,Hyy )2 N (E, P,HPPy). (2.14)

By Lemma 2.1 P,HZ% PP, is unitarily equivalent to f— P,H4,NP_,, defined by
setting x=b into Eq. (2.9), since P, commutes with U.
The relation

N(E, C)=dim# — N (—E, —C), (2.15)

is valid a.e.* for any Hermitian matrix C on a finite dimensional space .
Thus, from Egs. (2.14), (2.15), and (2.7) follows a.e.

N(E,Hy P 2|t |— N (B—E, Py HG"P,). (2.16)

4 Because /(E, o) is continuous from the left; redefining 4" at discontinuities to be half the
sum of its left and right limits would eliminate this restriction, but we shall use the standard
definition
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To complete the proof we need the following lemma which is readily
established by direct calculations:

Lemma 23. Let o/ CACZ, B=Aot, H=T+V=H* (Vf)n)=Vn)f®),
Vx—_—PdVPd‘f‘xP@ Then VZE(D Wlth ImZ:*:O,

lim (z—T—V)"' =P, g, — P,HP,] ", (2.17)

uniformly in the resolvent norm for z in compact sets with Imz=+0.

The eigenvalues of P,,H4 NP, are given by the poles of its resolvent in .o¢. Since
the restriction does not depend on P,V , P, one may replace V,, by Eq. (2.13).

Analytic continuation of Eq. (2.17), together with the fact that the other
eigenvalues of H4'M go to + oo as x T oo completes the proof. [

Lemma 2.4. In the assumptions of Lemma 2.2
N(E, HAN) < |.of| — max [0, lim A (B—E, H4?)— |ad1|], (2.18)
xto

where 0 ={nedsf; Ime B=A\, |m—n|=1} and V; is given by Eq. (2.13).

Proof. Let us uncouple o/ and £ by inserting Neumann conditions at the broken

bonds
HAN>HZ N HAN (2.19)

Since Sp HZN > ¢ > B, for E < B only the eigenvalues of HZ' contribute. By the
same arguments as in the proof of Lemma 2.2,

N(E,Hy M) S N (E, H ) =|o/|— N (B—E,H3"). (2.20)

Substituting V; in H4P and taking x Too would yield P, ,H4PP,,=HZ*
+P_K, P, instead of the required H%”=HZ%? +K,,.
The (diagonal) matrix element of their difference

Ky=Ksy—PyK:4P,20, (2.21)

are nonzero only on 0.7, — the part of .7 that has nearest neighbours in CA.
A rough estimate of the effect of this semipositive perturbation is

N(E,P H4PP ) — N (E,HZ ) <rank K, =0, . (2.22)
Together with the obvious inequality A (E, o) =0 this yields Eq. (2.18). O

Lemmas 2.1, 2.2, and 2.4 allow us to replace the estimates of A '(E, o) in
Proposition 1.4 for E near an arbitrary spectral edge E, of H, by estimates of
N'(E, o) for some effective Hamiltonians near the bottom of their spectrum.

Using the estimates of [ 14] one could proceed to prove directly Corollary 1.3.

Since we want to prove the sharper estimates, Eq. (1.7), which show how the
function ¢, depends on the local properties of du near the relevant edge, in the next
section, which has some overlap with [11], some bounds on the lowest eigenvalues
and A'(E, o) near the bottom of the spectrum are given.
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3. Estimates for A"(E, ©) and the Lowest Eigenvalue

Lemma 3.1. Let H=T+V, with V(n)=0 and the compact ACZ’. Let
o ={neA; Viny=0}, B=A\A. Then

a) N (E, HA?)2 max [0, /' (E, TA?)—|8[]; (3.1)
b)  N(E,HAMNS N (E, TAY) - @[, (HAY) - E]1O[E—1,(T4Y)],  (32)

where A,(°) is the lowest eigenvalue of o.

Proof. a) follows from the equivalent of Eq. (2.22) — a semipositive ¥V may not push
the n' eigenvalue of H*? beyond the (n+rank V)® one of T42. b) follows by
taking L,(H*M = 1(T*Y), iz2. O

To apply Eq. (3.2) we need a lower bound on 4,(H*-"). In the case of positive V
it may be obtained from Thirring’s inequality [16]. The following lemma will allow
us to avoid taking the inverse of V.

Lemma 3.2. Let H=H,+V; Hy=0, Hyo=0, A,(Hy)=1,>0; V=0. Then

MHEH)ZW=Y W2 =XV, (3-3)

where (o) =(c0, ),

(3.4)

vt 2

<V

Proof. Let w>0. Then V + w > 0is invertible and applying Thirring’s inequality to
(Hy— )+ (V + w) yields

A (H)Z —w+min[d, (V+o)~ > 1. (3.5)

The right-hand side of Eq. (3.5) is concave in . Therefore, it has an unique
maximum for >0. If 1, >V 1>~ ! it is attained for w, — the solution of

IV +w) ty=1.

Instead of solving this equation, let us substitute the inequality

1\ 1 - 1 ry?
<V+a)> _6[1_ <V1/2V+wV /2>] éa[l“ <V2>+w<V>] (3.6)

into Eqg. (3.5). Solving the quadratic equation for best w yields Eq. (3.4). O

Remark. The bound (3.5) is expressed in terms of the same quantities as Temple’s
inequality, which does not require the (semi) positivity of V. If
Iy >LV2/{V Y>>V, Temple’s inequality gives

V2 —=(V>)?
dy=<V>
For (V)< ,<{V?*»/{V the right-hand side is negative although we know

A(H)>0. One may improve this by considering H>=H,+gV,0<g <1, using Eq.
(3.7) and choosing the best g < 1. The resulting bound is still smaller than Eq. (3.4).

MH) 24,2V ) — (3.7)



174 G. A. Mezincescu

A similar approach may be used to worsen the Thirring bounds for several
eigenvalues to obtain manageable equations for lower bounds from variational
upper bounds when calculating [PV ~*P] ™! is a difficult task but PVP and PV2P
are available [12].

4. Proof of Theorem 1.2

Using the lemmas in Sect. 2 near any spectral edge k(E) is bracketed by expressions
of type {|.«Z|+ F},,, where {|.«/|},, is equal to the average number of sites having the
values of the potential in the lower component of supp u — which is equal to k(E,) —
and F involves bounds on A(E, H.) near the lowest spectral edge for an
approximating Hamiltonian H ;.

Thus we need to prove the estimates Eq. (1.7) only near the bottom of the
spectrum.

A positive measure dy may be arbitrarily well approximated by ladder
measures — weighted sums of Dirac measures — which appear as the natural
approximants. For our purposes two-step ladders (binary alloy model measures)
will be sufficient.

Let ﬂ(X) =Au(— 0, X), suppucC [aa b]
Definition. Let &€ (a,b), p=pla, &), q=1—p. The measures f and y defined by
BX)=pO(x—)+qgO(x—b) S u(x) S pO(x—a)+qO(x— &) =7(x), (4.1)

are a pair of binary alloy measures bracketing p.

Remark. Proposition 1.4 remains valid if one replaces the averages over the
ensemble generated by ®du by the average over the relevant binary alloy
approximant: ®df for the upper bound and ®dy for the lower one.

Let A={1,2,...,N}", a hypercube of side N. Then the eigenvalues of Ty ° are
given by

lo=4J 2 sin < Qs) 4.2)

where Q=(Q4,0,,...,0,)€{0,1,....N—1}* for =N and Qe{1,2,...,N}’ for
o=D.

Substituting the inequality (3.1) into the lower bound in Proposition 1.4 and
using the Remark above to replace du by dy one obtains by considering only the
contributions of .,

KE)zN*{max[0, N(E-¢ Tg" ")~ 18,1} 2N 'p""O (E— %’Z—j - (43)

Choosing N =1+Int|/vJn?/(E—¢), one may find a constant C, >0, inde-
pendent of p and E, such that for small enough E —a>0,

Inp
> —F
Ink(E)=C, 111a<xE E—o7 4.4
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If the estimate followed from Lemma (2.4) the |07, term which was to be
subtracted from A (E, Tg""P) is zero for the configuration A =.«7, considered in the
second inequality (4.3).

For measures of type (4.1) V(n) may take only two values. In this case the
bound (3.3) coincides with the best Thirring bound from Eg. (3.5):

MHEN2F(B)=a+W—)/W?>—n2J|B|(E—a)/N>"", (4.5)
where
1 w2J
W=§<€—a+F>, (4.6)

and |4| is the number of sites with V(n)=¢>a.

Then, for N <]/ n2J/(E —a), Proposition 4.1 with Lemma 3.1b and Eq. (4.5)
give, using again the Remark,

M
KE)YSN™ X CRp" " "q", (4.7)
m=0

where M = M(E, N) is the integer part of the solution of the equation

F(m)=E, 4.8)
with F defined in Eq. (4.5).

If M < gN" the inequality (4.7) remains valid if the summation is replaced by M
times the summand for m= M.

Let x=MN ™. Taking the logarithm of Eq. (4.7) and using Stirling’s formula
for the factorials, one may find a constant C, >0 independent of E, &, p¢ such that
for small enough &, E—a<&—a

< in S 4.9
WE min (X,i). ( . )

E—E—g—<x<q

Ink(E) <

Here

S(x, &)= [x('f‘g’l—*;—E]wz [x ln% +(1=x) P x]. (4.10)

The optimization with respect to N was replaced by optimization with respect
to x, using the solution of Eq. (4.8).

If the edge is of type B one may take ¢ |a in Eq. (4.4). Then p=u[a]>0
and the estimate (1.7B) is true in the liminf sense. For the upper

bound let E<a+ #(50—0), where £0=maxy‘1<1+g[a]), Then,

/

lim sup S[3(1 — u[a]), &,] is finite and negative and Eq. (1.7 B) is true also in the
Ela

lim sup sense.

For an edge of type A, choose & =(1—y)a+ xE, with y ~ |In(E —a)| ™! for small
enough E. Then, since for edges of type 4 Inp= 0(In(¢ —a)), taking the liminf as
E | a of Eq. (4.4) yields the liminf half of Eq. (1.7 A).

Taking x=v/(v+2) and & = E+ (E—a)|ln(E — a)| in the bound (4.10) yields the
remaining lim sup half of Eq. (1.74). O
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The Corollary (1.3) follows now from Eq. (1.7) since

Aim InloE)/In|E—Ej|=0.

Acknowledgement. 1 thank Prof. Barry Simon for his interest in this paper and for sending me
some of his results prior to publication.
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