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Abstract. Homogeneous Kéhler manifolds give rise to a broad class of
supersymmetric sigma models containing, as a rather special subclass, the
more familiar supersymmetric sigma models based on Hermitian symmetric
spaces. In this article, all homogeneous Kdhler manifolds with semisimple
symmetry group G are constructed, and are classified in terms of Dynkin
diagrams. Explicit expressions for the complex structure and the Kéhler
structure are given in terms of the Lie algebra g of G. It is shown that for
compact G, one can always find an Einstein-Ké&hler structure, which is unique
up to a constant multiple and for which the Kahler potential takes a simple
form.

1. Introduction and Summary of Results

Non-linear sigma models are natural candidates for effective low-energy theories,
and they play an important réle in our present understanding of symmetry
breaking. In fact, whenever a field-theoretical model exhibits a (global) symmetry
under a Lie group G which is spontaneously or dynamically broken down to a
closed subgroup K, then independently of the details of the underlying dynamics,
the associated Goldstone bosons are, in the low-energy sector, described by the
non-linear sigma model on the homogeneous space G/K'. A similar scenario
applies when all models are replaced by their supersymmetric extensions — at least
as long as supersymmetry remains unbroken.

Now it is well known that the definition of a supersymmetric non-linear sigma
model (with ordinary N =1 supersymmetry in four dimensions or with extended
N =2 supersymmetry in two dimensions) requires the corresponding “field space”
to be a Kdhler manifold [1]. In fact, in four dimensions and in terms of superfields,
the Lagrangian of the model (to be integrated over superspace) is simply the so-

*  On leave of absence from Fakultét fir Physik der Universitit Freiburg, FRG
1 The term “homogeneous space” is synonymous for “coset space,” and similarly, the term
“Hermitian symmetric space” is synonymous for “symmetric Kéhler manifold”
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called Kahler potential, from which the K&hler metric can be derived. Thus
combining supersymmetry with the symmetry breaking picture, one arrives
naturally at the notion of homogeneous Kéahler manifolds which, perhaps
surprisingly, have been used only sporadically in the physics literature [2, 3] —
quite in contrast to the more special class of Hermitian symmetric spaces [4, Vol. 2;
5]. On the other hand, there is, at least in four space-time dimensions, no reason to
require the coset space in question to be symmetric. (This is not so in two space-
time dimensions, where the symmetric space property is crucial for the integra-
bility of the model [6].)

As an illustration of the extent to which homogeneous Kéhler manifolds are
more general than symmetric Kidhler manifolds, consider the following simple
example. Take G=SU(N) and K=S(U(N,)x...xU(N,)), where p and
Ni,...,N, are integers >0 such that N, +...+N,=N, and consider the coset
space M =G/K, which is the so-called generalized flag manifold

FI(N,,....N,)=SUN)/S(U(N,) x ... x U(N,)). (1.1)

Then M is a Kahler manifold. [The fact that M is a complex manifold can be seen,
e.g., by rewriting M in the form M = G/K, where G=SL(N, €) is the complexific-
ation of G=SU(N) and K=A4(N4, ..., N,) is the complex subgroup

0 == ... =
A(N,,...,N,)=43geSL(N,C)|g= S (1.2)
0 0 ... =

consisting of unimodular matrices with zeros below the block diagonal.]
Moreover, M appears as the orbit, under the adjoint representation of SU(N) on
its Lie algebra su(XN), through any generator Z, in su(N) of the form

il 1y,
1
Zy= e , (13)
idply,
with {4,,...,4,} some set of mutually different real numbers satisfying
N+ ... +N,4,=0. (1.4)

On the other hand, M is known to be symmetric, rather than just homogeneous, if
and only if p=2: this, of course, gives the complex Grassmannians.

The close connection between a) the Kéahler structure and b) the adjoint orbit
structure that shows up in the preceding example is far from accidental. Quite to
the contrary, it provides the key to a complete and explicit classification of all
homogeneous Kéhler manifolds which admit a semisimple symmetry group G.
For the compact case, the result is that these manifolds are precisely the orbits,
under the adjoint representation of G on its Lie algebra g, through generators Z, in

g, i.e., the sets 6 1
Mz,={9Z¢g" "9 € G}. (1.5)
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For the non-compact case, the situation is more complicated; we shall have more
to say on this later on.

It should be pointed out that these results seem to be well known to
mathematicians [7, 8], although some of the proofs may be new. However, our
main intention in this article is to make the whole subject of homogeneous Kéahler
manifolds accessible to physicists, and this requires a much more detailed and
explicit presentation than what can be found in the mathematical literature.

The paper is organized as follows:

Section 2 starts with a short introduction to the notions of Kéhler manifolds
and of homogeneous spaces; this is meant to make the presentation selfcontained
and to fix some notations.[Briefly, a Kdhler manifold is a Riemann manifold with a
complex structure which is compatible with the Riemannian metric in a sense to be
specified. In particular, every Kahler manifold comes with a symplectic structure,
ie., a closed two-form w which is nowhere degenerate.] The main result, stated
explicitly in the form of a theorem towards the end of the section, is that
homogeneous Kéahler manifolds with semisimple symmetry group are coset spaces

M§ =G/Gy,, (1.6)

where G is a semisimple Lie group and G, is the stability group (centralizer) of a
suitable generator Z, in the Lie algebra g of G:

Gz= {9€GlgZog™ ! =2y} . 1.7

The proof of this statement is based on an explicit determination of all G-invariant
closed two-forms ¢ (in particular, of all G-invariant symplectic structures w) on
homogeneous spaces M =G/K, where G is connected semisimple and K is
compact. In conclusion, a way towards the construction of Kéhler potentials in
terms of suitable frame fields is outlined.

Section 3 is devoted to the study of the coset spaces M = G/K as given by (1.6)
and (1.7), making use of the structure theory of semisimple Lie algebras. The
outcome of this investigation is an explicit construction of

a) all possible G-invariant complex structures,

b) all possible G-invariant pseudo-Kéhlerian metrics

on any such coset space, both for compact and non-compact G, in terms of an
appropriately chosen root system. Moreover, it is analyzed under what conditions
the pseudo-Kéhlerian metric can in fact be chosen to be Kéhlerian, i.e., positive
definite. As it turns out, this is possible, e.g., if M = G/K is compact, and also if it is
symmetric. In general, there exist whole families of metrics, depending on as many
parameters as there are independent generators in the centre of the stability
algebra f. In particular, the Killing form on the symmetry algebra g gives rise to
one such Kéhler metric if M = G/K is symmetric and — as must be emphasized —
only if M =G/K is symmetric. Once again, the main results are summarized in a
theorem at the end of the section.

In Sect. 4, we compute the Ricci tensor for homogeneous Kéhler manifolds.
Surprisingly enough, it turns out to be independent of the metric. Moreover, the
explicit expression obtained shows that if, and only if, M =G/K is compact or
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symmetric, there exists, up to a constant positive multiple, a unique Einstein-
Kahler metric, i.e., a Kéhler metric for which the Ricci tensor is proportional to the
metric tensor itself. (In the symmetric case, this metric is, up to a constant multiple,
the one given by the Killing form on the symmetry algebra g.) Here, our main
motivation for studying these Einstein-Kahler metrics is that they lead to a simpler
expression for the Kdhler potential. There is, however, also a physical reason for
the special role played by Einstein manifolds (as opposed to general Riemann
manifolds): namely that for the corresponding two-dimensional supersymmetric
non-linear sigma models, all on-shell divergences can be absorbed into a
renormalization of the overall scale of the metric. (For the 1-loop and 2-loop
counterterms, this has been proved in [9], but it is presumably true to all orders;
cf. [10].)

Section 5 contains a complete classification of all homogeneous Kéhler
manifolds with semisimple symmetry group, both compact and non-compact, in
terms of Dynkin diagrams. For the compact case, the result can be resumed in the
following cookbook recipe:

1. Draw the Dynkin diagram for the compact semisimple algebra g.

2. Paint any subset of its vertices black.

3. The unbroken subalgebra f is then obtained as the direct sum

f=u)® ... ®u()®t, (1.8)

where each white root gives rise to one u(1)-summand, and the set of black
roots, together with the connecting lines between them, yields the Dynkin
diagram of ¥

As an example, we consider the exceptional algebra g=eg:

1. . .
] N

3. f=u()@u()@t, FT=su(3)®so(8).

For the non-compact case, the classification problem is reduced, in a straightfor-
ward manner, to that for the compact case, together with that for the Hermitian
symmetric spaces of the non-compact type. The results are collected in several
tables at the end of the paper.

Certain classes of homogeneous Kéhler manifolds arising from the classical
groups, including explicit Kdhler potentials, have also been treated in [2].

In conclusion, we want to mention another class of Kdhler manifolds, namely
the so-called hyperkéhler manifolds, which are widely discussed in the context of
supersymmetric non-linear sigma models because they allow for a doubling in the
number of supersymmetries (extended N = 2 supersymmetry in four dimensions or
extended N =4 supersymmetry in two dimensions). An additional, perhaps more
physical reason for the special rdle played by hyperkdhler manifolds, and more
generally, by Ricci-flat Riemann manifolds, is that the corresponding two-
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dimensional supersymmetric non-linear sigma models are ultraviolet finite to
all orders of perturbation theory [9, 10]. Note, however, that (as a consequence of
the result of Sect.4) these manifolds cannot possibly be homogeneous under a
semisimple symmetry group, and we shall therefore not discuss hyperkdhler
manifolds in this paper — except for formulating the following general conjecture:

The tangent bundle TM (or equivalently the cotangent bundle T*M) of a
homogeneous Kéhler manifold M =G/K with a semisimple symmetry group G
can be made into a hyperkidhler manifold in a natural way.

This conjecture has recently been proved locally, i.e., in a neighbourhood of the
zero section, in TM (or equivalently T*M), and globally on TM (or equivalently
T*M) for Hermitian symmetric spaces M = G/K, with the help of twistor space
techniques [11].

2. Homogeneous Kihler Manifolds

We begin our discussion of the general mathematical situation by collecting a few
definitions from the theory of complex manifolds and the theory of homogeneous
spaces.

First, a Kédhler manifold can be viewed as a real manifold M on which the
following additional structures are given:

a) a Riemannian metric g,

b) an almost complex structure I which is isometric with respect to g:

g(u, Iv)=g(u, v). 2.1
Recall[4, Vol. 2, p. 121; 5, p. 352] that an almost complex structure on M is simply a

tensor field I of type on M satisfying I* = — 1 which, at every point m in M,

1
1
represents multiplication by i in the tangent space T,,M to M at that point. From g
and I, one constructs the so-called fundamental two-form w on M by setting

o(u, v)=g(lu,v), (2.2)

and one can combine g and w into a Hermitian metric -, - » which has g and w as
its real and imaginary part, respectively:

u, vy =g(u,v) + iw(u, v). (2.3)

The definition of a Kdhler manifold is completed by requiring that I be integrable (a
complex structure rather than just an almost complex structure) and that w be
closed (a symplectic form).

In any case, it is standard practice to extend g, I, and w, without any change in
notation, from the real tangent bundle TM to the complexified tangent bundle
T°M 2. This means that one continues to write, at every point min M, g,, and w,,
for the unique extensions of the real bilinear forms g,, and w,, on T, M, respectively,
to complex bilinear forms on T,;M, and I, for the unique extension of the real
linear transformation I,, on T,,M to a complex linear transformation on TM.

2 The superscript - will always denote complexification
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[Equations (2.1), (2.2) and the condition I2= —1 are, of course, preserved under
these extensions.] The main point in performing this complexification is that due
to I2=—1, the complex I,, has eigenvalues +i, while the real I,, has no
eigenvalues. (Of course, one has to keep in mind that the complex I,, arises from a
real I,, by complexification, or equivalently, that it commutes with the conjugation
in TeM with respect to T,,M, which is usually denoted by a bar [4, Vol. 2, pp.
116/117].) Correspondingly, the complexified tangent space

TiM={w=u+ivju,ve T, M}, (2.4)
and its dual, which is identical with the complexified cotangent space
THM = {w* =u* +iv¥u*, v* e T, M}, (2.5)
both admit natural direct decompositions
TEM=TOMOTO VM, TFM=T "M@ T*YM (2.6)

into mutually conjugate complex subspaces, defined as follows:
T&OM = {we TEM|L,w= +iw},
TOYM ={we TEM|I,w= —iw},
TxOM = (w* e T*M|w*(w)=0 for we T>VM},
T#O VM = {w* e T*M|w*(w) =0 for we T O M}

.7

(2.8)

(see [4, Vol. 2, p. 117]). These decompositions are useful in connection with
complex (local) co-ordinates z* on M (which exist due to our assumption that I is
integrable, i.., has no torsion [4, Vol. 2, p. 124]). Namely, T"* M and T> VM are
spanned by the complex tangent vectors (6/dz"),, and (6/32"),,, respectively, while
T 9M and T VM are spanned by the complex cotangent vectors (dz*),, and
(dz"),,, respectively. In terms of such co-ordinates, we have

g(0/0z*,0/02")=0=g(d/0z", 0/02"), (2.9)
and writing
9.y =9(0/02*,0/0Z"), (2.10)
so that
ds*=g,, dz"dz", (2.11)
we get
w=ig,; dz7" ndZ". (2.12)

Moreover, the fact that w is closed (dw =0) is equivalent to the requirement that
(on the domain of definition of the co-ordinates z*) the coefficients g,; can be
derived from a real-valued function F, called the Kdhler potential [4, Vol. 2,
pp. 155-158]:
52
9uv= WF (2.13)
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This potential is, of course, not unique, but may be subjected to “gauge
transformations” of the form F(z,Z)—F(z, 2)+ f(z) and/or F(z,Z)—>F(z,2)+ f(2),
with arbitrary functions f. (For the corresponding supersymmetric non-linear
sigma model, the resulting change in the Lagrangian vanishes after integration
over the odd variables.) One possible choice for the Kdhler potential is given by
explicit integration:

z

F(z,2)= |

(0)

&+ | a0 g,40.0). .14

For later use, we also note that — barring all considerations of positivity or
non-degeneracy — we can apply the same procedure as before with the metric g
replaced by the Ricci tensor Ric and the fundamental two-form w replaced by
the Ricci two-form g: this is possible since in analogy with (2.1), (2.2) and the
equation dw =0, we have

Ric(Iu, Iv)=Ric(u, v) (2.15)
[4, Vol. 2, p. 1497,
o(u,v)=Ric(lu,v), (2.16)

and the equation do=0 [4, Vol. 2, p. 153]. In particular, we have

Ric(0/0z*, 8/0z")=0=Ric(d/0z*, 0/02"), (2.17)
and writing
R,;=Ric(0/0z*,0/07"), (2.18)
we get
0=iR,; dz" A dZ”. (2.19)

A remarkable property of the Ricci tensor is that (on the domain of definition of the
co-ordinates z*) its coefficients R ,; can be derived from an explicitly known real-
valued function, namely the logarithm of the invariant volume element [4, Vol. 2,
pp. 155-158]:

2

Rw= =Gz

In det(g, ;). (2.20)

This gives an especially convenient choice for the Kéhler potential of an Einstein-
Kéhler manifold, i.e., a Kdhler manifold whose Ricci tensor is simply a constant
multiple of the metric. (Compare [4, Vol. 1, pp. 292-2941.)

In order to bring to bear group theory, we shall assume henceforth that the
Kéhler manifold M in question is homogeneous, i.e., that there exists a Lie group G
which acts transitively on M by holomorphic isometries. Then the stability group
of a given reference point o in M (which is fixed once and for all) is a closed
subgroup K of G, and the manifold M can be identified with the homogeneous
space G/K such that o appears as the left coset 1K =K of 1 in G. For the sake of
simplicity, we shall also demand that the symmetry group G is connected and
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semisimple and acts effectively on M, i.e., only 1€ G acts trivially on M3. As a
consequence of this, the stability group K is compact and connected, as will be
shown in the sequel.

We note first that the homogeneous space M = G/K must be reductive, i.e., that
the Lie algebra g of G can be decomposed into the direct sum

g=f@®m (2.21)

of the Lie algebra T of K and a complementary subspace m which is Ad(K)-
invariant*; this Ad(K)-invariance implies (and for connected K is equivalent to)

the commutation relations
[ff]ct, [Em]cm. (2.22)

Namely, G being semisimple, the Killing form of g is non-degenerate on g. We can

set
m=F" with respect to Kill, (2.23)

and the Killing form of g will then be non-degenerate on m as well (thus m being
actually complementary to f in g), because it turns out to be negative definite on £.
[Indeed, this can be proved in a more general context (without assuming g to be
semisimple) as follows. First, factoring out the redundancy group N of the action,
which is assumed finite*, we can regard G/N as a (not necessarily closed) Lie
subgroup of the group J(M) of all isometries on M ; then K/N becomes a (not
necessarily closed) Lie subgroup of the group J (M) of all isometries on M leaving
the point ° fixed. This last group being compact [4, Vol. 1, p. 239], one can use a
standard averaging procedure to construct a positive definite scalar product on the
Lie algebra of J(M) which is invariant under the adjoint action of J (M) [4, Vol. 2,
p. 199]. The restriction of this scalar product to g is also positive definite and is
Ad(K)-invariant. In an orthonormal basis of g, the linear transformation ad(X),
for any X €1, is thus expressed by a skew-symmetric matrix. Now the Killing form
of g is easily seen to be negative definite on , since ad vanishes precisely on the
centre of g and this has trivial intersection with 3, cf. [5, p. 133].] Going back to
(2.21), we shall write

X=X;+X,, (2.24)

for the decomposition of elements X in g corresponding to (2.21). Moreover, we
shall find it useful to identify the tangent space T, M to M at the distinguished point
o e M with m. Explicitly, this identification is given by X = X,,(c) for X em, or
more generally X,, =X () for X in g, where X,,; denotes the fundamental vector
field on M generated by an element X in g:

Xy(m)= %(exth - m) for meM. (2.25)

=0

3 More generally, it suffices to demand that the redundancy group of the action, i.c., the closed
normal subgroup N of G consisting of those elements in G that act trivially on M, is finite. For later
use, note that N CK always and that if Z(G) denotes the centre of G, which, for G semisimple, is
necessarily discrete [5, p. 132], then KnZ(G)CN, so KNnZ(G) is also finite

4 We write Ad respectively ad for the adjoint representations of G respectively g, as well as for
the various representations of K respectively f on f or m obtained from these by appropriate
restrictions, and Kill will denote the Killing form of g: Kill(X, Y)=tracead(X) ad(Y)for X, Yeg
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In passing, we mention that the homogeneous space M = G/K is called (locally)
symmetric if, in addition to (2.22), the following commutation relation also holds:

[m,m]Ct. (2.26)

Next, we exploit the G-invariance of the metric g, the almost complex structure
I and the fundamental two-form w on M to identify these, via left translation under
elements of G, with an Ad(K)-invariant positive definite symmetric bilinear form
go onmt, an Ad (K)-invariant linear transformation I, on m satisfying I3= — 1 and
an Ad(K)-invariant non-degenerate antisymmetric bilinear form w, on m,
respectively. Similar identifications are performed for the Ricci tensor Ric and the
Ricci form g. It can then be shown [4, Vol. 2, p. 219] that I is integrable, i.e., has no
torsion, if and only if for X, Yem,
[IOX’ IOY]m_[Xa Y]m—IO[Xa IOY]m_IO[IOX’ Y]m:() (227)

Moreover, given any G-invariant two-form ¢ on M, e.g., ¢ = or ¢ =g, a simple
calculation [evaluation of d¢ on three fundamental vector fields on M generated
by elements in m according to (2.25)] proves that ¢ is closed if and only if for
X, Y, Zem,

Po([X, Y1 Z)+ ¢o(LY, Z1w» X) + $o([Z, X 11 ¥) =0. (2.28)

Now since the Killing form of g is non-degenerate on 111, we can express ¢, in terms
of a unique linear transformation @, on m, which is necessarily antisymmetric with
respect to the Killing form: namely, for X, Yem,

do(X, Y)=Kill(,X, Y). (2.29)
In these terms, (2.27) states that for X, Y, Zem,
Kill(@y[ X, Y],.. 2) + Kill(®,[ Y, Z],.., X) + Kill(®,[ Z, X],, Y)=0, (2.30)
or equivalently,
Kill(®[ X, Y], Z) = Kill([Y, Z],, 2, X)+Kill([Z, X],,, D,Y)
(233)1{111([1/, 7], 9, X)+Kill([Z, X, ®,Y)

= Kill[$,X, Y], 2)+Kill(X,8,YLZ), (2.31)

where in the last equation, we have used the ad(g)-invariance of the Killing form.
But the ad(f)-invariance of ¢, means that for X, Yem, Z€f,

Kill([®,X, Y], Z2) +Kill([X, ®,Y], Z)
= —Kil(®,X,[Z, Y])+Kill([Z, X1, §,Y)
==X, [Z,Y])—o([Z, X],Y)
=0, (2.32)
where in the first equation, we have used the ad(g)-invariance of the Killing form.

Combining (2.31) and (2.32), we see that for X, Yem,

O [X, Y], =[P X, Y]+[X,D,Y]. (2.33)
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Therefore, extending @, from a linear transformation on m to a linear transform-
ation on g (we use the same notation for both transformations) by requiring

®,=0 on f, (2.34)

and exploiting the ad(f)-invariance of @, (which is equivalent to that of ¢,) once
again, we see that @, must be a derivation, i.e., we have for X, Ye g

By[X, Y]=[PoX, Y]+[X, D, Y]. (2.35)
Since G is semisimple, @, is necessarily of the form @,=ad(Z%) with Z%eg [5,
p- 132], and so we have for X, Yem

do(X, Y)=Kill([Z?, X], Y)=Kill(Z%,[X, Y]). (2.36)

Moreover, the Ad(K)-invariance of ¢, is expressed through the condition that
Z?% is K-invariant, i.e., that for ke K,

Ad(k)z®=2°. (2.37)
Indeed, (2.36) implies that for ke K and X, Yem,

Kill([Ad(k)Z?, X, Y)=Kill(Ad(k)[Z?, Ad (k) "1 X],Ad (k) Ad (k)" 'Y)
=po(Ad (k)" X, Ad(k)"'Y)
= ¢0(X7 Y)
=Kill([Z*,X], Y),
and from non-degeneracy of the Killing form on m, plus the fact that ad(Z%)= @,

and ad(Ad(k)Z?)=Ad (k)®,Ad(k) ! (ke K) map m into m, we conclude that for
keK and X em,

ad(Ad(k)Z9)X =ad(Z9)X .

This formula also holds for ke K and X €t [both sides are then equal to zero; cf.
(2.34)], and since the adjoint representation of g on g is faithful (g, being
semisimple, has trivial centre [5, p. 132]), we arrive at (2.37).

To summarize, we have shown that a closed G-invariant two-form ¢ on M can
be expressed, according to (2.36), in terms of a K-invariant element Z° in g.
Infinitesimally, the invariance condition (2.37) becomes

fckerad(Z?), (2.38)

and the equality will hold if and only if ¢ is non-degenerate. In that case Z® must
belong to the centre of the stability algebra f, and the stability group K can be
shown to be the centralizer of a torus T'in G; in particular, K is compact connected,
and

K={geGAd(g)Z*=2%}. (2.39)

For the proof of these statements, we follow the argument of Koszul [12, p. 56].
First of all, let K denote the isotropy group of Z¢ under Ad, ie.,

K={geG|Ad(g)Z*=2Z%}, (2.40)
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and let T be the closure of the one-parameter subgroup {exptZ?/teR} of G
generated by Z?. Then applying the exponential map in (2.40), together with a
continuity argument, we see that K is the centralizer of 7'in G. On the other hand,
(2.37) states that K C K. But K and K have the same Lie algebra, namely ker ad (Z¢).
Therefore, K is an open, thus also closed, subgroup of K. Similarly, Ad (K) must be
an open, thus also closed, subgroup of Ad(K), while Ad(K) is obviously a closed
subgroup of Ad(G), which itself, by the semisimplicity of g, is a closed subgroup of
the group GL(g) of all non-singular linear transformations on g [5, pp. 126 and
135]. Now we have seen [ cf. the proof following (2.23)] that Ad(K) leaves invariant
a positive definite scalar product on g. Therefore, Ad (K) is a closed subgroup of the
corresponding orthogonal group O(g), hence compact. But Ad(K)=~K/KnZ(G)
under Ad [5, p. 129], and KnZ(G) is finite*, so K must be compact as well. This, in
turn, implies that T is a torus, so that accordmg to a classical theorem [5 p- 2871,
the centralizer K of T in G must be connected: this proves that K = K is compact
connected and that (2.39) holds. [Strictly speaking, the aforementioned classical
theorem can be applied directly only if G itself is compact. However, the non-
compact case can be reduced to the compact case by fixing a maximal compact
subgroup L of G containing K [5, p.256], and then proving that K must be
contained in L as well: this proof is based on using the polar decomposition

=(expX)!l of group elements g € G [5, pp. 252/253], with X e pand [ € L, to show
that ge K forces X =0. We leave it to the reader to work out the details]]

In particular, since M =G/K is supposed to be a Kéhler manifold, the

fundamental two-form  is non-degenerate. We have therefore proved the
following

Theorem. Let M be a connected homogeneous Kdhler manifold, and assume that M
admits a symmetry group G which is a connected semisimple Lie group and which acts
effectively on M, i.e., only 1 € G acts trivially on M 3. Then the stability group K of a
given point ° in M is a compact connected subgroup of G and is the centralizer of
some torus T in G. Moreover, M= G/K can be identified with an orbit under the
adjoint representation of G on the corresponding Lie algebra g.

For later use, we note that in this situation, the stability algebra f will contain a
maximal Abelian subalgebra of g, so the element Z? in g corresponding to an
arbitrary closed G-invariant two-form ¢ on M must belong to the centre of the
stability algebra £, even if ¢ is degenerate.

The form ¢ given by (2.36) plays a prominent réle in symplectic geometry: it is
the Kirillov-Kostant-Souriau form associated with the G-orbit through Z¢ under
the adjoint representation (assuming that the Killing form of g has been used to
identify coadjoint orbits with adjoint orbits). See [13] for details.

In the second part of this section, and throughout the next section, the various
tensor fields of interest on M are always evaluated at the special point o ; they are
then extended to all of M by making use of their G-invariance. In order to make
this last step more explicit, and also to make contact with expressions in terms of
complex (local) co-ordinates z* on M that were used in the first part of this section,
we introduce complex (local) frame fields on M as follows: Let 6 : U— G be a (local)
section of the principal K-bundle n: G— M, defined on a suitable open neighbour-
hood U of  in M, and such that 6(c)=1[4, Vol. 1, p. 55]. Then given X e m*?, we
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define a complex vector field X° on U by setting
X°(m)y=o0(m) - X = %(a(m) exptX - o) for meU. (2.41)
t=0

[Note that X° is simply the inverse image, under o, of the restriction to ¢(U) C G of
the left invariant complex vector field on G generated by X.] The G-invariance of

the complex structure I on M implies that
Xem®? = XmeT "M for meU,
(2.42)
Xem®) = X°meT®VYM for meU.

Therefore, choosing any basis of vectors E, in m*9 we obtain complex vector
fields EZ and EZ on U which form a complex frame field on U, and it is easy to see
that the components of any G-invariant tensor field on M with respect to this
complex frame field are constant functions on U which, in addition, do not depend

on the choice of g, either. In particular,
g(E;, Ef)=0=g(E, E}),
. ! o HD) 2.43)
Ric(Eg, Ef)=0=Ric(EZ, Ej)

[cf. (2.9), (2.17)], and
g(E:’ —E) = gO(Ea’ EB) = gaﬁ ’

] _ _ (2.44)
Ric(E7, Ej)=Ricy(E,, E)=R,;

[cf. (2.10)+2.12), (2.17)+2.19)]. Finally, the transition from this complex (local)
frame field to complex (local) co-ordinates is performed, as usual, by writing

0/0z*=eiE;  and (hence) 0/0z*=¢E.E],
EZ=¢!0/0z" and (hence) EZ=¢é"0/07",
where ¢; and &) are the complex conjugates of e} and e}, respectively, and

e =05, eyer=04. (2.46)

(2.45)

(For simplicity, we have omitted reference to the choice of ¢ in the coefficient
functions e, &.) Then, for example,
Gur=0apeul
SR (2.47)
R,;=R,zeié.

3. Root Systems and Kéhler Structures on Semisimple Adjoint Orbits

Let G be a connected semisimple Lie group with Lie algebra g. Given any element
Z, in g, the G-orbit through Z, under the adjoint representation can be identified
with the homogeneous space G/K, where the stability group

K={geGlAd(9)Zo=Z,} (3.1
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is the centralizer of Z, in G, and the corresponding stability algebra
I={Xegl[X,Z,]=0} (3.2

is the centralizer of Z, in g. In accordance with the discussion in Sect. 2, we shall
demand the stability group K to be compact (rather than just closed in G), and as
before, the Killing form of g will be non-degenerate on g and negative definite on {,
hence

g=f®m (3.3)
with
m=Ft" with respect to Kill. (3.4
Note that ad(Z,) being antisymmetric with respect to Kill, we can also write
f=kerad(Z,), m=imad(Z,). (3.5)
Anyway, we have the commutation relations
[£f]ct, [Em]lCm, (3.6)

but not necessarily the commutation relation [m, m] C¥; this means that G/K is a
homogeneous space but not necessarily a symmetric space. Next, the connected
one-component T of the centre of K is a torus in K, and the centre { of f is the Lie
algebra of T. For the following, we let T be a maximal torus in K containing T, and
we write t for the Lie algebra of T, so that TC TCK and

Zyetctct. 3.7

Finally, K is necessarily connected, because it is the centralizer of the torus 7 — or
more generally, any torus T satisfying {exptZ,/teR}cTCT - in G; cf. the
discussion in Sect. 2. Moreover, K must contain the (necessarily discrete) centre
of G.

Before going on, we should mention the fact that we suffer no loss of generality
by assuming, wherever this may seem convenient, that apart from being
semisimple, G is simply connected and/or simple. Indeed, if G is not simply
connected, and if G is the universal covering group of G, then G/K =~ G/K, where K
is the centralizer of Z, in G. (This uses the fact that the kernel of the covering
homomorphism from G to G is contained in the centre of G, and hence in K.)
Similarly, if G is simply connected but not simple, and if G, ..., G are the closed
normal subgroups of G generated by the simple ideals g'*), ...,g® in g, then G/K
~2GY/KW x ... x GP/K®, where K% is the centralizer of Z{ in G” (1<i<r), and

g=gV®...®g", Z,=ZP+ .. +ZY.

We may therefore consider each factor separately.

Independently of whether G is simply connected or simple, the non-compact
case requires further conventions. Namely, if G is non-compact, we let L be a
maximal compact subgroup of G containing K, and we write [ for the Lie algebra of
L. Note that Lis connected [5, p. 256] and that once again, the Killing form of g is
non-degenerate on g and negative definite on I, hence

g=I®p (3.8)
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with
p=I* with respect to Kill. (3.9)

In fact, (3.8) is a Cartan decomposition of g [, pp. 182-185 and 256], i.e., we have
the commutation relations

[Lgct, [LplCp, [p,plcl, (3.10)

while the Killing form of g is negative definite on [ and positive definite on p; this
means that G/L is a Riemannian symmetric space of the non-compact type [5, pp.
252/253]. Again, the connected one-component C of the centre of Lis a torusin L,
and the centre ¢ of | is the Lie algebra of L. Thus

cCtctctcl, pcm. (3.11)

We note here that for G simple, we have ¢+ {0} if and only if G/L is a Hermitian
symmetric space of the non-compact type [5, p. 381].

Returning to the general situation, we extract further information by invoking
the structure theory of semisimple Lie algebras.

First, h=1¢is a Cartan subalgebra of the complex semisimple Lie algebra g°2;
we let 4 denote the root system of g° with respect to b, and write

=@ Pg* (3.12)
for the corresponding root space decomposition [5, pp. 165/166], with
X,eg®” < [H,X,]=a(H)X, for Heb. (3.13)

For later use, we introduce the generators H, €} (o« € 4), uniquely determined by
the condition

Kill(H,,H)=«(H) for Heb, (3.14)

as well as generators E, € g® (x € 4), satisfying the commutation relations
[E,E_,J=H, for acd, (3.15)
[(E,Eg]l=N, 4E,.; for afed, a+pB=+0, (3.16)

with coefficients N, ;suchthat N, ;=0ifa+f¢dand N_, _,=—N, zifa+fe4
[S, p. 176]; this implies the normalization conditions

Kill(E,E_p)=1 for wae4, (3.17)
Kill(E,,E)=0 for o,fed, a+p+0 (3.18)

[5, pp. 166/167]. Note that T being compact, the Killing form of g is negative
definite on t [5, p. 133]; this implies that the generators iH, (x € 4) belong to t (in
fact, they span t), and that all roots « € 4 take imaginary values on t [5, pp. 170 and
1717]. Moreover, it follows that for all & € 4, the conjugation in g° with respect to the
given real form g [5, pp. 180], which we shall denote by a bar, maps g® into g(~%,
and we may even assume, without loss of generality, that

either E,=—E_, or E,=+E_,. (3.19)
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[Indeed, the ansatz E,=c,E _, with ¢, e C implies
E,=E,=¢E_,=¢c_,E, = ¢c_,=1,
Hy=~H,=—[E,E_J=—c,c [E ,E]=cic H, = cc,=1,
Ca+ﬂNa,ﬁE—a—/3:Na,/3E—a+ﬂ=[E_wE_ﬂ]= —CCpNopE g = Cuip= —cuty,

where we have used N_, _;,=—N, gjand N7 ;>0,s0 N, ;,=N, ;. In other words,
the coefficients c, must be real and must satisfy ¢_,=c, ' and |c, 4| =lc,c4l. On
the other hand, the ansatz E;=aq,E, with a,eC and a,a_,=1 gives [E,, E_,]
=H,, [E,Ez]l=N,4E,,;, and E,=c,E_, with N, ,=a_, sa,a;3N,, and
,_ 2 . r_ ,_ : . -1/2
¢, =la,|*c,, so we can achieve N, ;,=N, ; and ¢,= +1 by setting a,=|c,|~'/*.]
Note that

E,=—E_, = i(E,+E_),E,—E_, span gn(g?®g %)
= Kill negative definite on gn(@@®g"%),  (3.20)
E,=+E_, = E,+E ,i(E,—E_,) span gn(g”®g"*)

= Kill positive definite on an(g@®dg "),  (3.21)

which provides the motivation for calling roots « € 4 compact respectively non-
compact if they satisfy (3.20) respectively (3.21). If Gitselfis compact, all rootsa € 4
are compact, and conversely, compactness of all roots a € 4 implies compactness of
G [5, p. 133]. If, however, G is non-compact, and we use the conventions from the
beginning of this section that are relevant to this case, then?

F=ho P ¢”. = @ (322)
a compact a noncompact

Second, the stability algebra f and the complementary subspace m [cf. (3.3) and
(3.4)] can also be described explicitly in terms of the root system 4, simply because
the commutation relation

[Zo, E]=0(Zy)E, for aecA (3.23)

states that the complexification ¥ of the centralizer f of Z, contains precisely those
root vectors E, for which y(Z,)=0. This leads us to a splitting of 4 into two pieces,

. A'={yedlyZ, =0},

T {y e dly(Z,)=0}
A={ue Aau(Zo)+0},

and also to a direct decomposition of t into two subspaces

R t={Xetly(X)=0for ye 4},
t=1ot": ‘ _ (3.25)
t'=linear span of {iH |ye 4},

(3.24)

which are orthogonal under the Killing form of g. Then
i=tot, (3.26)

where (in accordance with our previous notation) 1 is the centre of f and ¥ is a
semisimple ideal in . Moreover, h)’=1* is a Cartan subalgebra of the complex
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semisimple Lie algebra £°2, A’ is the root system of £ with respect to Iy, and

=@ @ g” (3.27)

yed’

is the corresponding root space decomposition [5, p. 191, Ex.B.1]. Finally,
m'= Pg®. (3.28)

aed
More explicitly, all roots y € 4” are compact, while roots o € A may be compact or
non-compact, and

i(E,+E_),E,—E_, span In(g”@®g""") for yed’,
i(E,+E_),E,—E_, span mn(g®®g"¥) for aed compact, (3.29)
E,+E_,i(E,—E_,) span mn(g®”®g"?) for aed noncompact.

Third, the notions of positive and negative roots, of simple roots, of Weyl
chambers, etc., can all be extended and modified in such a way as to apply
specifically to the present situation.

We begin by recalling [14, p. 280] that an ordering in A can be defined by
singling out a subset A of 4, whose elements are called positive, subject to the
following two conditions:

Atud =4, AtnA4" =0, where 4 =—-47, (3.30)
wfedt, a+fed = a+fed”. (3.31)

Now consider the splitting 4=4"U4 of 4 given by (3.24), and observe that A is
invariant under 4’ ie.,

-~

wed, yed, a+yed = at+yed. (3.32)

(In view of (3.25)(3.28), this is simply one way of rewriting (the complexification of)
the commutation relation [f,m]Cm.) Then although 4 is not a root system by
itself, an invariant ordering in A can be defined by singling out a subset 4™ of 4,
whose elements are called positive, subject to the following three conditions:

A*ud= =4, Atnd =0, where A =-—A"%, (3.33)
w,fedt, a+ped = a+fed”, (3.34)
acdt, yed, a+yed = atyed*. (3.35)

[Note that due to (3.33) and (3.35), one cannot have o, fe 4™ but a+fe 4’ in
(3.34).] On the other hand, an ordering in 4 will be called compatible (with the
splitting 4 =4’ 4) if (3.35) is satisfied when we set

FoArnA,  Ar=4% N4, (3.36)

and it is clear that the choice of a compatible ordering in 4 amounts to the choice of
an ordering in A’ together with an invariant ordering in 4, with

AEOATE =A%, A*nA*=0. (3.37)
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Next, given any such ordering, one defines ae 4™ to be simple if it cannot be
written in the form o =0, + o, with o, € 4+ and «, € 4*. Then the difference of two
simple roots in 4% does not belong to 4, which implies that the set B of simple
rootsin A is linearly independent [5, pp. 177/178 and 456-4587, while an iterative
argument [5, p. 178] shows that B is a basis of 4, i.e., every root fe€ 4 can be
uniquely represented in the form
f= X nuo (3.38)
aeB
with integer coefficients n, which are all 20 (at least one being >0)if fe 4+ and all
<0 (at least one being <0) if fe A~ ; in particular, {iH,/x € B} is a basis of t°.
Moreover, setting
B'=BnA’, B=Bn4 (3.39)

one obtains a basis B’ of A’ together with a “basis” B of 4, or more correctly, of 4
modulo 4’;in partlcular {iH,/y € B’} is a basis of t" and {inf;/o € B} is a basis of the
dual space t* of 5. (It should perhaps be noted that B cannot be defined solely in
terms of A: in fact, explicit examples show that B will in general depend on the
choice of ordering in A4".) Finally, it is known [5, p. 458] that orderings in 4 are in
one-to-one correspondence with Weyl chambers in t, which are defined as the
connected components of the open dense subset t o of t obtained by removing all
hyperplanes t,= {X €t/a(X) =0} (x € 4). Namely, « € 4 is positive with respect to
some given ordering if and only if it takes strictly positive values on the
corresponding Weyl chamber C, which means that for an arbitrary vector X € C,
we have’®

signa=sign(ie(X)) for aed, (3.40)

where, of course, signa = + 1 means « € 4*. Similarly, one can show that invariant
orderings in A4 are in one-to-one correspondence with Weyl chambers in T, which
are defined as the connected components of the open dense subset f° of f obtained
by removing all hyperplanes t,={X e t/a(X) =0} (« € 4). Namely, o€ 4 is positive
with respect to some given invariant ordering if and only if it takes strictly positive
values on the corresponding Weyl chamber C, which means that for an arbitrary
vector X € C, we have’

signa=sign(in(X)) for acd, (3.41)

where, of course, signa= +1 means a € A*. Finally, it is clear that combining an
invariant ordering in A with an ordering in 4’ to yield a compatible ordering in 4,
one will have

B'UB=B, BnB=0( (3.42)
for the set of simple roots and
chl=Cent, C'=Ceni (3.43)
for the closures of the Weyl chambers C in t, C’in t, and C in 1.

5  Strictly speaking, it is i4, rather than 4 itself, which forms a root system in the abstract sense
[5, pp. 455/456], so that in some formulae, we must insert factors of i in a consistent manner
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With all these preliminaries out of the way, we can now discuss the
construction of G-invariant Kéhler structures on the homogeneous space
M = G/K, which is the G-orbit through Z, under the adjoint representation.

We begin with the invariant complex structure I. According to the discussion
in Sect. 2, and using that K is connected, such a structure can be represented by an
ad (¥)-invariant complex linear transformation I, on m® which commutes with the
conjugation ~ in g° with respect to g and which satisfies I3 = —1 as well as (the
complexified version of) the integrability condition (2.22). In particular, I, must
commute with all ad(H) (H €b), and therefore,

I,E,=i¢,E, for oaed (3.44)
with coefficients ¢, (« € A) which must satisfy
g,=+1 for aed (3.45)
in order that I3= —1 and
e_,=—e¢, for aed (3.46)

in order that I, commute with the conjugation -. [Here we have used (3.19).]
Moreover, (3.26) and (3.27) tell us that I, must also commute with all ad(E,)
(y € 4"), which means that

&,0,=8 for a€d, yed suchthat a+yed. (3.47)

Finally, the integrability condition gives the constraint

eqsple,teg)=¢.85+1 for a,fed such that a+pfed. (3.48)

This is automatically satisfied if ¢,+ ¢, =0, and hence (3.48) reduces to

wfed, a+Pfed, e=¢ = g,=¢t,.5=¢. (3.49)

But now comparison between (3.33), (3.34), (3.35) and (3.46), (3.47), (3.49) reveals
that ¢, must be the sign of « with respect to a certain invariant ordering in 4, which,
in turn, corresponds to a certain Weyl chamber C’ in t. In other words,

¢, =sign(ia(Z") for aed, (3.50)

where Z'is any element in the centre t of the stability algebra f which belongs to the
Weyl chamber C’, and

E,em®® for aed™,
; (3.51)
E,em®Y for aed™,

with respect to this ordering. In particular, the element Z|, itself gives rise to a
distinguished complex structure by setting Z'=Z in (3.50).

Before going on, let us briefly consider the special situation where M = G/K is
not only homogeneous but is (locally) symmetric. First of all, we note that I,
necessarily leaves the Killing form invariant, i.e., we have for X, Yem

Kill(I, X, I,Y)=Kill(X, Y). (3.52)
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[This follows by combining (3.17), (3.18) with (3.46).] Now if M = G/K is (locally)
symmetric, we can combine this formula with the commutation relation [m, m] C¥
to show that for X, Yem,

X, I, Y]=[X, Y], (3.53)
or equivalently
[IoX,Y]+[X,I,Y]=0. (3.54)

Indeed, for X, Yem, both sides of (3.53) belong to f, and if Z ¥, the ad(¥)-
invariance of I, on m gives

Kill([1,X, I,Y], Z)=Kill(I, Y, [Z, I,X]) = Kill(I, Y, I,[Z, X])
=Kill(Y,[Z, X]) =Kill(X, Y], Z).

Therefore, extending I, from a linear transformation on m to a linear transform-
ation on g (we use the same notation for both transformations) by requiring

I,=0 onf, (3.55)

and exploiting the ad (f)-invariance of I, once again, we infer from (2.22), (2.26), and
(3.54) that I, must be a derivation, i.c., we have for X, Yeg,

I[X, Y]=[I,X, Y]+[X,I,Y]. (3.56)

Since G is semisimple, I, is necessarily of the form I,=ad(Z}) with Z{eg [5,
p- 132], and so we have for X em,

I,X=[Z}, X]. (3.57)

Moreover, (2.22),(2.26), (3.55), and the fact that I§ = —1 on m, imply that Zj must
belong to the centre t of the stability algebra f and that

wZh)?=—1 for acd. (3.58)

Conversely, combining (3.55) and the fact that I2= —1 on m into the formulae
I3=—I, and f=kerl,, m=iml, (3.59)

[cf. (3.5)], we can easily convince ourselves that if I, is a derivation, then M = G/K
must be (locally) symmetric. Indeed, (3.59) and (3.56) imply that for X, Yeg,
L[X,Y]=-R[X, Y]= —I5([1X, Y]+[X, [, Y])

= —Io([I3X, Y1+2[1oX, [, Y]+ [X, I3 Y])

=—[I3X, Y1-3[I3X, [, Y]-3[1,X, [§Y]~[X, [5Y]

=[LoX, Y]+ [X,1,Y]=31,[1X,I,Y]

=1o[X, Y]-3[[IoX,1,Y],
from which the commutation relation [wm, m] CT follows immediately.

Returning to the general case, let us now consider the invariant metric g and the

invariant fundamental two-form w. According to the discussion in Sect. 2, and
using that K is connected, these can be represented by ad(f)-invariant complex
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bilinear forms g, and w, on m°, respectively, which are given by
9o(EnE_)=—ig,(Z®), wo(E,E_)=a(Z®) for aed, (3.60)
9o(Ex E))=0,  o(E, Ep)=0 for w,fed, a+p=+0, (3.61)

where Z® is an appropriate element in the centre T of the stability algebra f [cf.
(2.36)]. Obviously, non-degeneracy of g, and w, requires e(Z®)+0 for all . € 4, so
Z° must belong to a certain Weyl chamber € in t. Similar statements hold for the
Ricci tensor Ric and the Ricci two-form g, i.e.,

Ricy(E, E_ )= —ig,(Z%), 0o(EpE_)=0(Z° for aed, (3.62)
Rico(E,, Ej)=0, 0o(E,E)=0 for afed, a+p+0, (3.63)

where Z¢ is an appropriate element in the centre T of the stability algebra  [cf.
(2.36)]. This element will be computed explicitly in Sect. 4.

The main problem that remains to be solved is to find out under what
conditions the invariant metric g can be made positive definite. Now g, will be
positive definite on m if and only if

go(E, E)>0 for aed, (3.64)
or [cf. (3.19)3.21) and (3.60)]

ie,((Z°)>0 for aeAd, o compact,

. (3.65)
ie,(Z°)<0 for aed, ononcompact.
Let us define
§=4e¢, for aed, «compact,
~ A (3.66)
§,=—¢, for aed, ononcompact.
Then g, will be positive definite on m if and only if
£ =sign(ia(Z?)) for aed, (3.67)

and so the coefficients &, (o € A) given by (3.66) must define an invariant ordering in
A, namely the invariant ordering that corresponds to the Weyl chamber C® in t
which contains Z°.

In the compact case, existence of a positive definite metric is therefore a trivial
consequence of the fact that all roots are then compact [so §,=¢,, C*=CT, Z®
=Z"; cf. (3.50), (3.67)]. In the non-compact case, however, existence of a positive
definite metric, rather than being automatic, imposes a severe restriction.
Namely, in terms of the conventions from the beginning of this section that are
relevant to this case, the G-invariant complex structure I on G/K must induce a
G-invariant complex structure J on G/L, and the space G/L, when equipped with
the metric induced by the restriction of the Killing form of g to p (which is
positive definite), becomes a Hermitian symmetric space — rather than just a
Riemannian symmetric space — of the non-compact type [5, p. 373].

To prove this last statement, note first that just as before, such a structure can
be represented by an ad(l°)-invariant complex linear transformation J, on p°
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which commutes with the conjugation - in g° with respect to g and which satisfies
Ji=—1, while the appropriate analogue of (the complexified version of) the
integrability condition (2.22) is an automatic consequence of the commutation
relation [p, p] CL. But the condition that I induces J means that J, arises from I, by
restriction, i.e.,

JoE,=i¢,E, for aed, ononcompact (3.68)

[cf. (3.44)], and this restriction will have all the desired properties provided that its
ad(¥)-invariance extends to an ad (I)-invariance, i.e., provided that the coefficients
&, (0 € 4) satisfy, in addition to (3.47), the condition

&,45=8 for aeA noncompact, Bed compact
such that a+fed. (3.69)

Therefore, our statement will be proved if we can show that this is equivalent to the
requirement that the coefficients £, (x€ 4) given by (3.66) define an invariant
ordering in A, which means that they must satisfy the condition

wped, atBed, &=8 = &=8,,=8. (3.70)

[The Egs. (3.46) and (3.47) for &, rather than ¢, are automatic consequences of the
corresponding equations for ¢ and of the definition (3.66).]

Thus assume that (3.70) is satisfied, and choose o, f € 4 such that o+ f € 4 and
such that « is non-compact while f§ is compact; we have to show ¢, , ;=¢,. Using
that o+ must be non-compact [cf. (3.10), (3.22)], we distinguish two cases:

a) ¢,=¢; Then ¢, ;=¢, by (3.49).

b) &,+¢;=0. Then &,=8;, 0 ¢,4 5= —&,, ;= —&,=¢, by (3.70).

Conversely, assume that (3.69) is satisfied, and choose o, e 4 such that
a+pedand &,=&;; we have to show £, ;=¢,, say. We distinguish three cases:

a) aand p are compact. Then «+ ff is compact [cf. (3.10), (3.22)], and ¢, =&, s0
8yt p= s p=28,=&, by (3.49).

b) o is non-compact and f is compact, say. Then «+ f§ is non-compact [cf.
(3.10), (3.22)], 50 &,4 5= —&,4+ 5= —&,=§, by (3.69).

¢) aand f are non-compact. This is impossible since we have assumed &, =&,
hence ¢,=¢,. Indeed, the equation

[JoE, JoEg]=[E, E;] for a,fed noncompact (3.71)
[cf. (3.53)] shows that
e,=¢; = a+pf¢4 for «,fed noncompact. (3.72)

Let us summarize the results of this section in a

Theorem. Let M =G/K be a semisimple adjoint orbit as explained at the beginning
of this section, i.e., G is a connected semisimple Lie group, K is a compact connected
subgroup of G and is the centralizer of an element Z € g, or equivalently, of a torus
TCG, in G (cf. the theorem at the end of Sect.2). Then

(i) M is a complex manifold, and the set of all G-invariant complex structures I
on M is in one-to-one correspondence with the set of all Weyl chambers C in the
centre T of ¥ (cf. (3.44), (3.47)).
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(i) a)If M iscompact, M is a Kdhler manifold. b) If M is non-compact and Lis a
maximal compact subgroup of G containing K, then M is a Kdhler manifold if and
only if G/L is a Hermitian symmetric space.

In both cases, fixing a complex structure I on M, the set of all G-invariant
Kdhlerian metrics g on M is in one-to-one correspondence with a certain Weyl
chamber C in the centret of ¥ (cf. (3.60)). In the compact case, C® equals C', while
in the non-compact case, the relation is in general much more complicated.

4. Calculation of the Ricci Tensor

In this section, we shall compute the Ricci tensor for the semisimple adjoint orbits
M = G/K of Sect. 3. It will turn out that the Ricci tensor Ric does not depend at all
on the choice of the metric g, and that it is always non-degenerate. In the compact
case, it is positive definite and can itself be used as a metric. This metric, or any
positive multiple thereof, will turn M = G/K into an Finstein-K dhler manifold, and
as has already been indicated in Sect. 2, the corresponding Kéahler potential is then
simply a negative multiple of the logarithm of the invariant volume element on
M =G/K [cf. (2.13), (2.20)]. In the non-compact case, analogous statements (with
opposite signs) can be made if and only if M =G/K is Hermitian symmetric.

We proceed to the proof. For arbitrary vector fields &, 5, { on M, the
Riemannian curvature tensor R is defined by

R(¢, )= VeVl =V VL —Vie il 4.1)

where V' denotes the Riemannian connection corresponding to the Kéhlerian
metric g [5, pp. 43 and 48]. (In passing, we note that for the calculation of the Ricci
tensor, the positive definiteness of g is irrelevant: it is sufficient to assume g non-
degenerate.) Moreover, for Kdhler manifolds, the Ricci tensor Ric and the Ricci
form ¢ [cf. (2.16)] take a particularly simple form [4, Vol. 2, p. 149]:

e(& m)=Ric(I¢, n)=5trace (IR, 1)) 4.2)

In our case, R, Ric, and ¢ are G-invariant, so it suffices to evaluate them at the
distinguished point o. This is done by introducing, for every X em, a linear
transformation A,,(X) on m by setting, for Yem,

An(X) - Y=V, Yar) (0) = [ X, Vi 1(0). 43)

(Here, and below, X, and Y,, denote the fundamental vector fields on M generated

by X and Y, respectively; cf. (2.25) and [4, Vol. 2, pp. 188 and 191].) In terms of 4,,,,

one finds [4, Vol. 2, p. 192] that the curvature tensor at the point o, evaluated on

X,Y,Zem,is

Ry(X, Y)Z = A (X)A(Y)Z— A (Y)A(X)Z = A, ([X, Y])Z—[[X, Y], Z].

4.4)

The important observation is now that the trace in (4.2) can actually be computed

by passing to the complexification, due to the following two basic facts:
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a) The complex structure I is simultaneously G-invariant and covariantly
constant with respect to V [4, Vol. 2, p. 148], which means that for X, Yem (or
even g),

[Xy 1% =1[X,, Y] and Py, (I%)=1Vy, Y.

But this implies that, for every X em, 4,(X) commutes with I, so that for
X,Yem,

trace (I o A,(X)A,,(Y)) =trace (A, (X)) oA,,(Y))=trace(IoA,(Y)4,(X)),
i.e., the contributions from the first two terms in (4.4) cancel under the trace in (4.2).
b) According to (3.63), it suffices to evaluate the trace in (4.2) with X = E, and
Y=E_, (x€4). But then [E,E_,]J=H,e¥ [cf (3.15)], so [E,, E_,],.c=0 and

[Ew E —a]fc = Ha'
We are therefore left with

0o(E, E_ )= —4trace,.(Ioad(H,) for acd. (4.5)

But on m‘, both I, and ad (H,) have the root vectors E; (f € A) as eigenvectors, with
ieg and B(H,) as eigenvalues [cf. (3.44) and (3.13)], so

CoEnE-)= =5 % B

__ %(l,% P~ T fUH)

=—i Y ﬁ(Ha)=—i<x< > H,,) for acd,
pedt Bed+

where the invariant ordering in 4 is, of course, that given by the complex structure
I [cf. (3.50), (3.51)]. Thus we have once again proved (3.62), i.e.,

RiCO (Ew E_ oz) = i‘gaa(ze) ) QO(Eas E_ a) = a(ZQ) for ae AA > (4'6)
or in other words,

Rico(E, E_)= — 2 Kill(Hy H,), 0o(EnE_)=—2iKill(Hs;H,) for acd,

4.7
where
5:%13513, (4.8)
while H; is uniquely determined by the condition
Kill(Hs, H)=6(H) for Heb, (4.9)
or equivalently
H;=3 Y H, (4.10)

[cf. (3.14)], and Z¢= —2iH;.
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With these explicit expressions for Ric and ¢ — which, remarkably enough, do
not depend on the choice of the metric g — at our disposal, we can now prove that
the Ricci tensor is non-degenerate, and can investigate its signature. As will
become clear below, all the necessary information can be extracted from the
following formula:

Kill(H;, H)>0 for aeA*, Kill(HyH)<0 for acA . (4.11)

For the proof of (4.11), we recall from Sect. 3 that the given invariant ordering in A
can be combined with an arbitrary ordering in 4" to yield a compatible ordering
in 4 [cf. (3.33), (3.37)]; then
5=0+9, (4.12)
where
=3 X B, =1 % . (4.13)

ped™* yed'*
Now combining (3.38) with the fact that for the simple roots o € B,
Kill (H& Ha) = (53 O‘) =%(“9 OC) s

[5, p.461], we see that the vector 4, which plays a fundamental rdle in
representation theory, has positive scalar products with all positive roots; in
particular,

Kill(Hs, H)+Kill(H,, H)>0 for acA*. (4.14)

But since the ordering in 4" was arbitrary, and independent of the invariant
ordering in A4, the same result holds if the ordering in A4’ is reversed (4'* —4'",
A7 —A"), 1e., if & is replaced by —J":

Kill(Hs, H)—Kill(Hy, H)>0 for acd*. (4.15)

Adding (4.14) and (4.15) gives the first formula in (4.11), which trivially implies the
second one.

Returning to the Ricci tensor, we see directly from (4.7) and (4.11) that it must
be non-degenerate. More explicitly, we can combine (3.29) with (4.7) and (4.11) to
show that

Ric, positive definite on  mn(g@@g"¥) for aed compact,
. . . ) (4.16)
Ric, negative definite on mn(g®@®g"*) for a«ed noncompact.

This implies that the Ricci tensor will be positive definite if M = G/K is compact,
negative definite if M = G/K is a Hermitian symmetric space of the non-compact
type, and indefinite in all other cases.

5. Classification of Homogeneous Kihler Manifolds

In this section, we shall give a classification of the semisimple adjoint orbits
M =G/K of Sect. 3 in terms of Dynkin diagrams, thus providing a scheme for the
possible ways of breaking an internal symmetry from G down to K in such a way
that the coset space M = G/K is a Kéhler manifold.
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In the non-compact case, this symmetry breaking proceeds in two steps,
namely by choosing some maximal compact subgroup L of G containing K and
breaking 1. from G down to L and 2. from L down to K; the homogeneous space
G/K is then a fibre bundle with base space G/L and typical fibre L/K. Now on the
one hand, we have seen in Sect. 3 that the space M = G/K being a Kadhler manifold
forces the space G/L to be a Hermitian symmetric space of the non-compact type,
or equivalently, a bounded symmetric domain [5, pp. 382/383]. But then G/L must
be the direct product of irreducible Hermitian symmetric spaces of the non-
compact type [5, pp. 374 and 376], and for a complete list of the latter, we refer the
reader to Table 1, reproduced from [5, p. 518]. Next, let C be the centre of L and ¢
be the centre of [ [cf. (3.11)]; note that C is necessarily connected [5, pp. 381/382],
so CCTCK. Then, on the other hand, the space

L/)K=LJK, with L=L/C, K,=K/C (5.1)

is one of the semisimple adjoint orbits of Sect. 3, but of the compact type.
Therefore, the classification of the non-compact Kéhlerian orbits is reduced to that
of the compact ones.

In view of this situation, and of arguments presented at the beginning of Sect. 3,
we may assume without loss of generality that the symmetry group G is simply
connected, compact, and simple. Then imitating a procedure due to I Satake,
which has been invented in connection with the classification problem for
symmetric spaces [ 5, pp. 530-535], we can characterize the orbit M = G/K by what
we shall call a painted Dynkin diagram, which is obtained as follows:

1. Draw an ordinary connected Dynkin diagram, which is a connected graph
consisting of vertices representing the simple roots for the symmetry algebra g.
Thus every pair of vertices is connected by 0, 1, 2 or 3 lines according to whether the
angle between the corresponding simple roots is 90°, 120°, 135° or 150°,
respectively, and in the last two cases, i.e., for double or triple lines, an arrow is
attached, pointing from the longer to the shorter root.

2. Paint this Dynkin diagram by letting black vertices represent the simple
roots for the semisimple part ¥’ of the stability algebra £, while white vertices
represent the remaining simple roots. [In particular, the subdiagram formed by the
black roots is automatically an ordinary (not necessarily connected) Dynkin
diagram in itself.]

More concretely, in the notation of Sect. 3, the construction proceeds by fixing
a maximal torus T in G containing the torus T (which, by definition, is the
connected one-component of the centre of K), together with an ordering in the
resulting root system 4 which is compatible with the splitting 4 =A"UA. This
uniquely determines a basis B in 4 such that B=B’UB, and thus gives rise to a
division of the r simple roots in B (r =rank g = dimt) into 7 simple black roots lying
in B’ (+ =rank¥ =dimt’) and 7 simple white roots lying in B (# = dim1). It should be
noted that the resulting painted Dynkin diagram does not depend on the choice of
T, and hence of 4. In fact, G being a compact connected Lie group, any two
maximal tori in G, and hence the corresponding root systems, are conjugate under
an element of G [5, p. 248], and if both maximal tori contain the same torus 7, this
element can be chosen to normalize 7, and hence K. (The last statement can be
deduced from a group-theoretical version [5, pp. 297-300] of a proposition in [5,
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p. 285].) On the other hand, the necessity of making a choice for the compatible
ordering in A does lead to a certain ambiguity in the painting process. However,
this is really an advantage, rather than a drawback, because it reduces the number
of painted Dynkin diagrams; we shall return to this aspect below.

The converse procedure of (re)constructing the orbit M =G/K from the
painted Dynkin diagram that corresponds to it, uniquely up to isomorphisms of G
respecting all additional structures, does not present any problems, either. In fact,
given any painted Dynkin diagram, we begin by reducing it to an ordinary one.
Then we can (re)construct the root system 4, and from that, the complex Lie
algebra g, with prescribed Cartan subalgebra b and root space decomposition
(3.12), uniquely up to isomorphisms [5, p. 481]. Moreover, the real Lie algebra g,
being a compact real form of g¢, is also unique up to isomorphisms (in fact, up to
inner automorphisms of g°) [ 5, p. 184], so that G, being simply connected, is unique
up to isomorphisms as well, while t becomes a prescribed maximal Abelian
subalgebra in g and T becomes a prescribed maximal torus in G; we shall therefore,
in the following, consider G, g and T, t as being fixed. Next, we can make use of the
splitting B=B’UB, which is precisely the additional information coded into the
painted Dynkin diagram (as opposed to the ordinary one), to derive the splitting
A=A"0U4 [from (3.22) and (3.38)] and the orthogonal direct decomposition
t=t'@1 [from t=gnh and (3.25)]. This defines ¥ as a subalgebra of g¢ and f as a
subalgebra of g in a unique manner, and finally K will be the unique connected Lie
subgroup of G that corresponds to the Lie subalgebra f of g.

As indicated before, an important role is played by the observation that
differently painted Dynkin diagrams may give rise to the same orbit and should
therefore be considered equivalent. Namely, the homogeneous spaces G/K and
G/K, areidentical as orbits in g, differing from one another simply by the choice of
their reference points Z,, ; and Z,, ,, if and only if the stability groups K, and K,
or equivalently, the tori T; and T, are conjugate under an element of G. But since
we are considering the maximal torus T in G as being fixed, so 7, C TCK, and
T, C TCK,, they must then be conjugate under an element of G which normalizes
T.(Once again, this statement can be deduced from a group-theoretical version [5,
pp- 297-300] of a proposition in [5, p. 285].) In other words, we are left with the
freedom of performing Weyl group transformations — the Weyl group W(G) of G
being the quotient of the normalizer of T modulo the centralizer of T [5, pp. 284
and 297-300]. More specifically, we may use a Weyl group transformation w to
transform the subspace f of t to a new subspace w”t (where T denotes transpose of
linear maps), or equivalently, the splitting A=4’U4 of 4 to a new splitting
A=wA’UwA; the ordering, however, is kept fixed. [Equivalently, one could
transform the ordering and leave the subspace, or equivalently, the splitting, fixed.
This procedure, which gives rise to the ambiguity mentioned in the penultimate
paragraph, would however change the basis B itself, rather than just the way in
which it is painted, and that is why we prefer the other point of view.] Now for the
diagram, application of a Weyl group transformation w makes sense (if and) only if
the new splitting 4=wA’UwA shares the property of the original splitting
A= A"U4 of being compatible with the given ordering. Formulated as a condition
on w, this amounts to demanding that if w preserves (switches) the sign of a root
o € 4, then it must also preserve (switch) the sign of any rootin 4 that can be written
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in the form o+ y with y € 4’; in this case, we shall say that w is admissible. Thus it is
the admissible Weyl group transformations which, out of a given painted Dynkin
diagram, produce a repainted Dynkin diagram that should be considered
equivalent to the original one.[Note that products of reflections along the black
roots a € B’, which constitute the Weyl group of the semisimple part of the stability
group K, are, of course, admissible, but they are uninteresting since they do not
lead to any repainting. Reflections along the white roots o € B, on the other hand,
are in general not admissible] Observe finally that if two differently painted
Dynkin diagrams are supposed to arise from one another by repainting, as above,
then the two subdiagrams formed by the black roots must be isomorphic (since
they generate isomorphic — in fact, conjugate — centralizer subalgebras). How-
ever, this necessary condition is far from being sufficient (cf. the discussion below).

Before proceeding further, we want to illustrate the concepts introduced so far
on the typical and important example of the generalized flag manifolds considered
in Sect. 1, for which G=SU(N) and K=S(U(N) X ... x U(N,)) [cf. (1.1)(1.4)].
The Lie algebra g consists of all traceless antihermitian complex (N x N)-matrices,
and the maximal Abelian subalgebra t of all traceless purely imaginary diagonal
(N x N)-matrices. The corresponding root systemis A4 = {«; ;|1 £i,j< N, i#j} with

o, (diag(Ay, ..., Ay)) =4, —4; for ;.. AyeC
such that A+ ... +44y=0, (5.2)
and we choose the ordering where «; ;is positive (negative) if i <j (i>j). That this is
indeed an ordering can be deduced, for example, from the relations
—0 =0 (5.3)
and

(5.4)

Gy Ao ed < {either i%l, j=k, then ozi,j+ock,,=oc,~,,}
LJ s

or i=l, j*k, then o; ;+oy =0y ; '

This gives the basis B={o; ;,,|]1<i<N—1} as the corresponding set of simple
roots, depicted by the ordinary Dynkin diagram

\ ~ / (5.5)
N-1
(cf. [5, pp. 186/187 and 462]). Now the generator Z, in (1.3), and the (p—1)-
dimensional Abelian subalgebra t, whose common centralizer is the stability
algebraf=s(u(N)x ... xu(N,)) of block diagonal matrices in g=su(N), give rise
to the splitting 4=A4"UA with

A= {wo; ;€ Ai,j are in the same block},

- . (5.6)
A={a; ;€ Ali,j are in different blocks} .
It is then immediate that the corresponding painted Dynkin diagram is
\ / \ — 7 ~ (57)

p
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This becomes especially transparent if we use the thumb rule that in

Zo=diag(Ay, ..., A1, Ags s Aoy ey Ao A)s (5.8)
Ny N2 Np
the simple roots are placed on top of the commas and are painted black (white) if
the adjacent eigenvalues are equal (different). (Some of the N; may, of course, be 1,
in which case the corresponding blocks of black roots are absent.) Next, the Weyl
group of G=SU(N) is the symmetric group of permutations w of the set {1, ..., N},
which acts on 4 according to
WOl = Dby, wij - (5.9)

Then using (5.3), (5.4), and (5.6), it is easy to see that w is admissible if and only if it is
a block permutation, i.e., if and only if for any two different blocks and for indices
1<4,j,k, 1< N with i,j in the first block and k, [ in the second block, we have

w(i) <w(k) = w(i)<w(l). (5.10)

Thus in (5.7), the repainting procedure amounts to a permutation of the integers
N;, which in (5.8) corresponds to a block permutation of the different eigenvalues
A;: this modifies Z, but does indeed leave the orbit as a whole invariant.

Returning to the general case, we are now going to develop a technique for
extending admissible Weyl group transformations from smaller painted Dynkin
diagrams to larger ones. For convenience, we formulate this as a

Lemma. Let D be a painted Dynkin diagram and D, be a painted Dynkin subdiagram
such that Dy is joined to the rest R of D by a single white root:

Dy, R . .D.9_< R PQ>__.R.

Assume that w is a product of reflections along the simple roots belonging to D,.
Then, if w defines an admissible Weyl group transformation on Dy, it also defines
an admissible Weyl group transformation on D which, in addition, leaves the
connecting root white and the rest R of D unchanged.

For the proof, let us denote the connecting white root in D by &. Then any two
roots 3,y € 4 have the representation

B=Bo+netPBr, Po= X no, Pr= X na,

aeDg aeR
V=VoFMEFVR, Vo= 2 M,  Yp= 2, M,
aeDo aeR

where all coefficients are integers of the same sign. Now for the reflection s, along
any simple root o belonging to D, we have s o= for a € R (since o is orthogonal
to R) and s,e=¢—n, .0 with n, ,=2Kill(H,, H,)/Kill(H,, H,)=0, +1, +2or +3.
Hence the inverse image of f,y under any product w of such reflections takes the
form

w“ﬁ=w_1l30+n£s+ﬂR, W_1ﬁ0= Z n;le’

ae Do

-1 -1 -1
W =w ok met e, W= X my,
aeDo
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where again all coefficients are integers of the same sign. Note also that if the
e-coefficient vanishes (i.., n,=0 or m,=0), then the partial sums over D, and R
(e, Bo» W 1By, and Br Or yo, w1y, and yg) must also belong to 4, since
the subdiagrams are orthogonal. But the statement that w defines an admissible
Weyl group transformation on D means that

BewA, yewd = Bryewh)t.

Now, for fe (wd)* and y e wA’, we must have n, =0, m,=0,and n,=0foralla € R.
Hence for n,>0, it is automatic that f+ye(wA)*, while for n,=0, the proof
follows from the requirement that w defines an admissible Weyl group transform-
ation on D, i.e., that

Boewdo)t, yoewdy = Bo+yoe(wdy)”.

Indeed, this is clear if n,= 0 for all « € R, and if n, > 0 for some o € R, it follows that
w lye 4’ and w‘lﬁeAJr implying w”ﬂ—l—w yeA+ so n,+m,=0 for all 2 € R.
But then either n, +m, >0 for some « € R, forcing f+7y e (wA)+ or n,+m,=0 for
all «€ R, which gives fig+7yx=0 and f+y=p,+7, with e (wAO) , Vo € WAy,
hence B, +7,e(wdy)™, qed..

We are left with the task of showing that w leaves the connecting root ¢ white.
But since D,u{e} is a linearly independent system of linear forms on the centre t of
f, one can find a vector Z, in t such that all roots in D, (i.e., all white roots in D)
take integer values on Z,, while ¢(Z,) is an irrational number. But then

wle=g+e,+E,,

where &, and &, are linear combinations of the roots in Dy and D, (the black and
white roots in D), respectlvely, with 1nteger coefficients. Here EW(Z ) 0,8,(Z,)is
an integer, and &(Z,) is irrational, so (w™ '¢)(Z,)+0 and hence w™'ce 4, which
means that after repainting, ¢ € B, = BawA is still white. This completes the proof.

As it turns out, the lemma that we have just proved is the basic technical tool
for establishing the equivalence of differently painted Dynkin diagrams. The main
application is, of course, to suitably shift around connected blocks of black roots
inside su(N)-subdiagrams (for which the admissible Weyl group transformations
are, as we have seen before, just the block permutations); we show an example for
g=¢g and =u(l)@u()@u()@t with ¥'=su(3)@su(4) [as before, I’ denotes the
semisimple part of the stability algebra f; cf. (3.26)]:

Two other types of equivalences, which are not covered by this strategy and which
play a rdle in the classification of painted Dynkin diagrams for the exceptional
groups Eg, E,, Eg, are diagrammatically depicted as follows:

p; [—— == ~ [—= == ifrodd, 5.11)
\ \ / !

rf2 r:,—2




634 M. Bordemann, M. Forger, and H. Ro6mer

R IR
E,: (5.12)

D SN S

(Here, ® denotes a root that may be either black or white.) The proof is based on
explicit Weyl group calculations, of which we shall only give a brief indication for
the first case. There, G=SO(N) with N =2r, so the Lie algebra g consists of all
antisymmetric real (N x N)-matrices, and the maximal Abelian subalgebra t will
be chosen to consist of all matrices

D(Ay, . dy)= (5.13)

witﬁ A5 ..., A, real. The corresponding root system is
A={ta; |l i, jSrio{£p; JISi<j<r}
with
% (DA, oos A)) = A= 4
Bi, DAy, ooy A)) = A+ 4,

and we choose the ordering where the «; ; and ; ; (1 <i<j<r) are positive. This
gives the basis B={o; ;|1 Si<r—1}U{f,_, ,} as the corresponding set of simple
roots, depicted by the ordinary Dynkin diagram

c,__o_<<: ;,_,,, (5.15)

r—1,r

(5.14)

(cf. [5, pp. 187/188 and 464/465]). Now the generators Z{" and Z{¥’ corresponding
to the two painted Dynkin diagrams in (5.11) must have the form

ZP=DOWY, .., 20, AV with AV =+ 10, +0,
and

Z@=D(P,....22,1?) with 1P=-1? %0,
respectively. On the other hand, the Weyl group of G=SO(N) is the semidirect
product of the symmetric group of permutations ¢ of the set {1,...,r} with the

multiplicative group of r-tuples (¢, ... ,) of signs ¢;= + satisfying ¢, ... &, = +.
More explicitly, for w=(0; ¢, ... ¢,), w acts on t according to the formula

WT(D(lll, ceey /1,,))=D(81/10— I(1)s =+ 8'.240.— l(r))
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(where T denotes transpose of linear maps). [In fact, the permutation group is
generated by the reflections along the simple roots ay »,...,a,_ , While the
product of the reflections along the two simple roots o, _; , and f,_, , gives rise to
the r-tuple (+, ..., +, —, —).] But from all this, it is obvious that as long as » is odd,
w=(1; —,..., —, +) belongs to the Weyl group of SO(N), with

W == (ISISr—=2),  wo,_y,=—PB1,, Wh-1,=—% 1,,
and yields the desired equivalence in (5.11).

So far, we have made extensive use of Weyl group transformations, leaving aside
automorphisms of the Dynkin diagrams themselves. The former, as we have seen,
generate inner automorphisms of g and leave the orbit M = G/K invariant, while
the latter generate outer automorphisms of g and transform the orbit M =G/K in a
non-trivial way. This, however, is not really a problem, because two homogeneous
spaces G/K | and G/K, with stability groups K and K, related to one another by
an outer automorphism of G could still be viewed as essentially identical; in
particular, they are diffecomorphic as Kdhler manifolds, i.e., both isometrically and
holomorphically. And indeed, the reason why we use the complicated equivalences
(5.11) and (5.12), rather than the standard automorphisms

D, o—-- —o——o<:) (5.16)
Eg: O_O‘Q;//_I_—O_O (5.17)

and

of (ordinary) Dynkin diagrams, is a different one: it is that “outer equivalences”
between differently painted Dynkin diagrams, which originate from the applic-
ation of an automorphism to the common underlying ordinary Dynkin diagram,
cannot always be extended from smaller diagrams to larger ones. As an
illustration, consider once again the D-series. For r=4 (g=s0(8)), the following
painted Dynkin diagrams are equivalent under an outer automorphism:

—  ad  —<

(f=u(l)®t, I'=s0(6)=su(4))

ol and <

(t=u(l)@u()®t, I'=s0(4)=su(2)@su(2))

(5.18)
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For r>4 [g=so(N) with N=2r>8], however, the painted Dynkin diagrams
obtained by attaching the same chain (ending in a white root) on the left-hand side,

ie.,
[®—~~—®-—o—+<>—< and !@——--«—@—o%—o—<

(where as before, ® denotes a root that may be either black or white) are no longer
equivalent, not even under an outer automorphism, simply because the automor-
phism of the root system for so(8) induced by the automorphism

—=

of the ordinary Dynkin diagram for so(8) cannot be extended to an automorphism
of the root system for so(N) with N=2r>8.

Applying the previously described techniques to classify the possible painted
Dynkin diagrams, up to equivalence, we arrive at the results assembled in Tables 3
and 4, referring to the classical groups and to the exceptional groups, respectively.
In some cases (A-Series, D-Series for ry = 4, E¢, Eg), these diagrams are determined,
uniquely up to equivalence, by the structure of the stability algebra f alone.
However, this circumstance can by no means be considered as a rule. In fact, it
cannot possibly be a general statement for diagrams containing double or triple
links (B-Series, C-Series, F,, G,), simply because stating that the semisimple part
I’ of the stability algebra f is an su(2)-subalgebra, say, does not convey any
information on whether this subalgebra is generated by a long root or by a short
root. Moreover, there are exceptions even when all roots have the same length.

Table 1. Hermitian symmetric spaces [5, pp. 518 and 531]

Series Compact type Non-compact type

A 11l SU(N;+N2)/S(UN,) xU(N3)) SU(Ny, N,)/S(UNy) x U(N,))

B1 SO(N)/SO(N—-2)xSO(2) SO(N—2,2)/SO(N—-2)xSO(2)
N odd N odd

Cl Sp(N)/U(N) Sp(N,R)YU(N)

DI SO(N)/SO(N —-2)xSO(2) SO(N-—-2,2)/SO(N—-2)xS0(2)
N even N even

D III SO(2N)/U(N) SO*(2N)/U(N)

EIII E¢/U(1) x SO(10) E,/U(1) xSO(10)

E VII E,/UQ)x Eg E,JU(1) x Eg
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Table 2. Dynkin diagrams, with coefficients of 2d. (The numbers on each simple root indicate the
coefficient with which it contributes to the vector 24, the sum of all positive roots, and r =rankg)

A-Series: g=su(N) with N=r+1
1-r,2r—1), ..., k(r—k+1), .., ¢=12,r-1
B-Series: g=so(N) with N=2r+1 odd

1-(2r-1),22r=2), .., K2r—k), .., (r—=1)(@+1),r>

C-Series: g=sp(N) with N=r

121,20 =1), ..., kQ2r—k+1), ..., (r—1)(+2),r(r+1)/2

D-Series: g=so(N) with N =2r even
(r—1)r/2
(r—1r/2
1-(2r—=2),2(2r=3), ..., kQ2r—k—1), ..., (r=2)(r+1)

Eg: 22

N

16 30 42 30 16

E,: 49

1.

34 66 96 75 52 27

Eg: 136

od e

92 182270220168 114 58

F4.' O——a—xD—0
16 30 42 22
GZ [s==4]

6 10
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Table 3. Painted Dynkin diagrams for the classical groups

Conventions. p, 1, 1o, Ty, ..., T, are integers =0, with r =rankg and r; < ... =7,. As in the text,
denotes the semisimple part of the stability algebra f, and u(1)®...@®u(l) is its centre, with
dimension equal to the number of white roots

A-Series: g=su(N) with N=r+1 .
>~ ——O0—  —O——— - —8—O—— - —8 > r+(p—1)=
| —, y \ y ) ;
1 Fp—1 » (p— 1 white roots)
I'=su(N)® ... ®su(N,) with N;=r;+1.
Remark. G/K is Hermitian symmetric iff p=2 (4 III):

~—  ——O——— :  —@

B-Series: g=so(N) with N=2r+1 odd

)4
< .+ —e—0- ... —O0— *—O0—e— - ——a D r0+2ri+p:r
N - v ~ N——— ‘
Ty "p To (p white roots)

'=Su(N)® ... ®su(N,)@so(No) with Ny=r;+1, No=2r,+1.
Remark. G/K is Hermitian symmetric iff p=1, N;=1, Ny=N-2 (BI):
C-Series: g=sp(N) with N=r

-~ ... —e¢ 00— . —o0—— . — O o — ... —a<t=m Tot+ 2 T;+p=r
\ / \'_\/ / \ v___/ i=
r r, o (p white roots)

P=su(N,)® ... ®su(N,)®sp(N) with N;=r,+1, Ny=r,.
Remark. G/K is Hermitian symmetric iff p=1, N;=N, Ny=0 (CI):
D-Series: g=so(N) with N =2r even

Case 1: At least one of the last two roots (say the upper) is white.

e =

i | Tot Zr+(p+1)*r

N— — N— 7 (p+ 1 white roots)
ry rp to

U'=su(N)® ... ®su(N,)@su(N,) with N;=r;+1, No=r,+1.
Remark. G/K is Hermitian symmetric iff p=0, No=N/2 (DIII):

Case 2: The last two roots are both black, o= 2.

[m==-=7=7=7777 -1 »
-~— —o— B —o-——o—;-—o—-— : ro+ X ri+p=r
i=1
b ' 3
(p white roots)
\__V_/ \—‘—‘v / - Y
ry TP Fo

F=su(N)® ... ®su(N,)@so(N,) with N;=r;+1, Ny=2r.
Remark. G/K is Hermitian symmetric iff p=1, N;=1, Ny=N—~2 (D I):

Note that blocks of black roots having zero length are explicitly allowed: the neighbouring white
roots are then directly connected
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Table 4. Painted Dynkin diagrams for the exceptional groups. Beneath each diagram, the
corresponding semisimple part ¥ of the stability algebra f is given. The diagrams are ordered
according to the number r’ =rank¥’ of black roots,and f=u(1)®... ®u(1)®¥ with 7 copies of u(1),
where #=rankg—rank{’ is the number of white roots

EG:

‘\
I
<

{0}

‘\
Il
=

su(2)

;

e

su(3) su(2) @ su(2)

r=3: o———c»——I———o—-—o o———o——jl——o———o 0—-«}——I——4}——4
su(4) su(2) @ su(3) su(2) e su(2) @ su(2)

r’ = 4: 0—0—1——0——. ’—4—1—0—0 .—4—1—0—‘ 0—*—~L—-‘—Q
su(5) su(2) @ su(4) su(3) @ su(3) su(2) @ su(2) & su(3)

so(8)

r=5: o—-—o—-—:[———o~——o o—-—o———I——-o——-ao o———<>—-I———o———o o———o—-—lL——o———o

su(6) so(10) su(2) @ su(5) su(2) @ su(3) @ su(3)

|

Hermitian symmetric
(ETII)

{0}




640 M. Bordemann, M. Forger, and H. Romer

Table 4 (continued)

su(2)
r'=2: o—o——I——o—o—a 0—0——1——0—v0—~
su(3) su(2) @ su(2)
=3 o——o——I——o—o—-o o—o—i———o—«o—o
su(4) su(2) @ su(3)

d e s

su(2) @ su(2) @ su(2)

r=4: H—LH o—-—1—~—~—< # w—o—l——~—~——‘

su(5) su(2) e su(4)

N DU SN

su(3) @ su(3) su(2) @ su(2) & su(3)

N DU SO

su(2) @ su(2) @ su(2) & su(2) so(8)

su(6) su(2) @ su(s5)

S U

su(3) @ su(4) su(2) @ su(2) @ su(4)

S U COUN U S

su(2) @ so(8) su(2) @ su(3) e su(3) su(2) @ su(2) @ su(2) @ su(3)

I

so(10)
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Table 4 (continued)

SIS VU SN S

su(7) so(12) su(2) @ su(6)
su(2) @ su(3) o su(4) su(3) @ su(5)
su(2) @ so(10) s

'

Hermitian symmetric
(EVIID)

¥ =0: 0—4)—-1—@—0—4)—43

{0}

r=1: 0—0—1—4—0—0—4

su(2)

=2 D_O_I_o_o__._. O—O—I—Q—ho—‘

su(3) su(2) @ su(2)

P IS S S

su(4) su(2) e su(3) su(2) @ su(2) @ su(2)
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Table 4 (continued)
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S IS EPUNUEU T S

su(5)

su(2) @ su(4) su(3) @ su(3)

D SN

su(2) @ su(2) @ su(3)

N

so(8)

su(2) @ su(2) @ su(2) @ su(2)

A DU SV S

su(6)

su(2) @ su(s) su(3) @ su(4)

U SN S

su(2) @ su(2) @ su(4)

su(2) @ su(3) @ su(3)

U EUUDUNU U I S

su(2) @ su(2) & su(2) o su(3)

su(2) @ so(8) so(10)

S U U I

su(7)

su(2) @ su(6) su(3) & su(5)

S SN S

su(4) & su(4)

su(2) & su(2) & su(5)

NS ESUNE D SN SN

su(3) @ so(8) su(2) @ so(10) so(12)

N SIS I

su(2) & su(3) & su(4)

S

6

su(2) @ su(2) @ su(3) @ su(3)
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Table 4 (continued)

su(8) so(14) su(2) @ su(7)
su(2) @ su(3) @ su(5) su(4) & su(5)
su(3) @ so(10) su(2) @ eg e,
F,:
r=0 O——a=xXD—0
{0}
r=1: o—a=rpD—e F e——aEXrD—0
su(2)
r'=2: o—ax»—e # e—a&rp—0 —axrDp—e o—ear»——o0
su(3) su(2) o su(2) so(5) = sp(2)
r=3: *—a»—e Ff e—a&rD——e oO—a > —o —ar»—o0
su(2) @ su(3) sp(3) so(7)
G,:
¥'=0: L==1]
{0}
F=1: == F e

su(2)
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Table 5. Matrix form of 26 and 28 for the classical series A, B, D

A-Series: g=su(N) with N=r+1
p
F=s@(N)®...®u(N,)) with > N;=N (cf. Table 3).
j=1

In terms of the standard Cartan subalgebra of su(N) consisting of all diagonal
matrices, 26 =diag(26,, ..., 20y) and 28 =diag(24,, ..., 26y), where for 1Sk N

20, =i(N—2k+1),

-1 -1 1
25k=i<N—N,—2 Nj> if ¥ N;<ks ¥ N;, 1£I<p.
“ ; =

j= j=1
B-Series: g=s0(N) with N=2r+1 odd
D-Series: g=so(N) with N=2r even
p
f=u(N,)®...®u(N,)@so(N,) with No+2 3> N;=N (cf. Table 3).
j=1

In terms of the standard Cartan subalgebra of so(N) consisting of all block diagonal
matrices with antisymmetric (2 x 2)-blocks, of the form

0 A4
- 0
D(Ay, .. A)= 0 A if N=2r+1,
-4 0
0
0 A
—4 0
Dy, ..n b)) = if N=2r,
0 2
—4 0
26=D(26,, ...,28,) and 28 =D(28,, ..., 2,), where for 1S k<r,
26, =N -2k,

Jj= j=1 ji=1

1 -1 1
{N-N,—Z S N—1 if ¥ N<k< YN, 1<I<p
26, = =1 '

0 otherwise

One of these occurs for the D-Series with r, =3 or r, =2, where the diagrams given
in Table3 under Casel and Case2 have the same stability algebra
f=u(1)®...0u()®t (pu(l)-summands), with

" =s0(6)=su(4) for ro=3,

F=sulV)®. @suNJ®OTs o, ) cud)@su@) for ro=2,

(5.20)
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but are inequivalent. The other exceptions occur for E, where there are three pairs

of diagrams, also mentioned in Dynkin’s list [15, p. 149] that have the same
stability algebra, namely

,}I &_O_I_.*_. (5.21)

f=u(l)®ou()@F" ¥=su(d)

o_._l_._H o__o_l_._._. (5.22)

f=u()@u)@u)@t, =su2)®sud)

e I - e H.l_._y_‘ (5.23)

f=u()@u)@ul)eu)@t, T=su@2)®su2)®su(2)

but they are once again inequivalent.[ This can be proved, e.g., as follows. First, for
each of the two diagrams in (5.21) or (5.22) or (5.23), one writes the vectors in the
centre of the corresponding stability algebra ¥ as explicit linear combinations (with
the appropriate number, 2 or 3 or 4, of parameters) of the vectors iH, (cf. (3.14)),
where o runs through the simple roots for E,. Using this, one can decide which of
these vectors belong to the root system A4, for E,, and what is their number. Now if
the two diagrams in question were equivalent, there would exist a (necessarily
inner) automorphism of A, taking the centre of f for the first diagram to the
centre of f for the second diagram, so these numbers would have to be the same
for both diagrams. But in all these cases, it turns out that they are not.]

To conclude, we would like to point out that the vector 6 which, as explained in
Sect. 4, gives rise to the Ricci tensor and, hence, the Einstein-Kihler metric on
M = G/K, can easily be computed from Table 2 by subtracting the sum of positive
roots for the semisimple part ' of the stability algebra f from the sum of positive
roots for the symmetry algebra g. As an example, consider the painted Dynkin
diagram for g=eg, F'=50(8):

N

136 6

S IV

92 182270220168 114 58 0 6 106 0 0 O

Then take the difference

to obtain the coefficient of 28 for this case:

130

S

92 176260214168 114 58
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In Table 5, 2§ is written down in matrix form for the classical Lie algebras su(N)
and so(N), using the standard simple roots [5, pp. 462-465].
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