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Abstract. We investigate the states ¢; on the C*-algebra of Pauli spins on a one-
dimensional lattice (infinitely extended in both directions) which give rise to the
thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising model
(with nearest neighbour interaction) at inverse temperature 5. We show that if f,
is the known inverse critical temperature, then there exists a family {vj: # f.} of
automorphisms of the Pauli algebra such that

_ ¢Oovﬂs 0§ﬁ<ﬁc
¢ﬂ'_{¢ooovﬂ’ ﬁ>ﬂc

1. Introduction

We consider the Ising Hamiltonian on a two-dimensional lattice, infinitely extended

in all directions, with nearest neighbour interactions and zero field. Thus the

problem is classically set in the commutative C*-algebra C(g’)=®¢32 of all
2

. . . Z .
continuous functions on the configuration space 2 = { + 1}2°. The transfer matrix
method allows us to transform the model to a non-commutative algebra «&/F=
®M , in one dimension less. More precisely, for each inverse temperature f,

séppose (>4 is the equilibrium state for the classical system obtained as the
thermodynamic limit of the Gibbs ensembles on the configuration space 2 using free
boundary conditions. Then there is for each , a map F— F; from the local
observables in C(P) into the Pauli or quantum algebra .«/* such that (F ) = ¢, (F ).
Thus any classical correlation or expectation value can be computed using a
knowledge of the Pauli algebra alone. The main result of [3] was the following:
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Theorem 1. The cyclic representation of /¥ associated with ¢ is irreducible for
0 < B < B., whilst it is reducible, with two-dimensional centre (for the weak closure) if
B> B..
Here . is the same as the (inverse) critical temperature given by Onsager [14].
We now improve on this, at least for § # f,, to show:

Theorem 2. There exist automorphisms {vy: p # B.} of " such that
(1.1) $p=0doovp, 0=SB<pB,
(1.2) Gp=boovs, B>PB,

In particular, since ¢4 and ¢, can be given explicitly, we give a simple proof of
Theorem 1, independent of [3].

We make use of the crossed product C*-algebra .o/ introduced by Araki [2] and
described below. The algebra .7 is generated by the Fermi algebra /% and a self-
adjoint element T: o/ = % + Tot%, + oAF + T4, where /%, and ¥ are the
even and odd parts of /¥, respectively. The important facts are that the Pauli
algebra o/ sits in o/ as o7 = o/, + To/", the state ¢, on /7 extends to a state
¢, on o/ whose restriction to &/F = .o/%, + A" is the Fock state ;. As pointed
out in [11,21], the state w; is connected to the infinite temperature state
w, by a Bogoliubov automorphism y;: w; = wey,. In this paper we remark that
the restriction of y, to /% is the Kramers—Wannier automorphism, and y,,
relates w, to the zero-temperature state w.:wo = W,°y". Our principal result
is that {ys], :0=<f<p} and {yz'vsl, :f>p} extend to automorphisms
{vp:B #B.} of %, such that

d) ={¢)00vﬁ7 O§ﬂ<ﬁc
’ ¢ooovﬂ’ B > ﬁc'

Theorem 1 (for B # B.) then follows from an examination of the explicit expressions
for ¢, and ¢,.

2. The C*-algebraic Formulation
We consider the two-dimensional Ising model with the Hamiltonian
L-1 M L M-1
H™(¢) = _< Z ) ZMJléij€i+1,j + ) ZL ) ZMJZéijéi,j+l>, (2.1)
I1=—Lj=-

i="‘L]=-’

where ;= + 1 is the classical spin at the lattice site (i, ))eZ? and J, and J, are
positive constants. Then the Gibbs ensemble average is given by

CFom= Z&ég F(¢)exp(— BH™M(£)), 2.2)

Zim= ;CXp( — BH™™(%)),

where the sum is over all configurations £;;= + 1, § 2 0 and F, a local observable, is
a function of ¢;;, for |i| <1, |j| £m, and some [ < L, m < M. The transfer matrix
method [10] allows us to compute the expectation values (- ), ,, in terms of a state
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@™ on the Pauli spin algebra .2/}, /i generated by the spin matrices ¢, 6, 6% on sites

i where |i| < M. Then /%, ~ @3 M,, and we adopt the convention that

. 1 0 . 0 i . 01
(i) — i) _ (i) —
2o 1) #=(7 o) 20 o)

We can identify a function of &= (&), &;=+1, &'=(&), &=+1 with a 2?M*1 x
22M+1 matrix, and hence with an element of .o/%;. If we define

K M
(TM);,¢r=exp{2 _}; €& +EG ) +K 3 G } 23)

then under the above identifications

T, = (2sinh 2K M+ 12 Y12y, (2.4)
if
M-1
V:exp{K2 Y ai{’aﬁ{“)}, (2.5)
i==M
M -
W=exp{K’f Y a‘;’}, (2.6)
=M
and
K;=BJ;, j=1,2, K}¥=3log(cothK,). 2.7
If

Qm(€)~exp{ Z 9 ,+1},

then Z = [[(Ty)" 2y 1%, and (F > pp = @™ (F ) for some F gy e 3y, if oM is the
vector state {ThQy, Tx Q2 >Z7t on %, If K*¥ < oo, then by the Perron
Frobenius theorem, T, has a unique unit vector 2™ = Q™(&), 2™(¢) > 0 belonging
to the largest eigenvalue. Then as L — oo:

Hm (F)pp = (Y, Fpp QM.

L-w
Then if &/* denotes the Pauli algebra generated by the spin matrices 6@, 6, ¢ for

ieZ, so that o/F = lim /%, we have
M- o

lim Lim (F)py = @4Fp),

M- Lo

where Fy = lim F,,M and 9p=1 hm {QM,-QM) is a state on /7.
M-

Following [17 21,11, 12, 2, 3] the states ¢, on the Pauli algebra &/” are best
studied by introducing a Fermion algebra «/F generated by annihilation and
creation operators c¢; and c¥, i€Z, satisfying the canonical anticommutation
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relations:
[eneds =Lt cf]e =0, [encf]s =6l (2.8)

We adopt the self dual formalism of [3], so that .2/ is generated by the range of a
linear map B on [, ®1, given by

B =3 (e f;+¢9) h=<£ ) /=) 9=G). 29)

Here the convergence of (2.9) is in norm, and B satisfies

[B(h,)*, B(h;)1+ = Chy hy 31, B(h)* = B(I'h),

()-(7)

A unitary U on I, @ [, commuting with I” gives rise to an automorphism t(U) of .&/*
by

where

7(U)B(h) = B(Uh), (2.10)

and is called a Bogoliubov automorphism. A basis projection is a projection E on
I, ®1, such that

I'Elr=1-E.

Any basis projection E gives rise to a unique state w on " such that
o(B()B(f)*) =0, feE(l,®1,). We write w = wg. Then g is called a Fock state, is
irreducible, and satisfies

wgB(f)*B@9) =</, E;>, f.gel,®1,.

We define a unitary u_ on [, by
fi izl

(”‘f)’:{—f,- <0

and0_ =u_@u_onl,®l,. The corresponding Bogoliubov automorphism 7(6_) is
denoted by @_ so that

2.11)

_) e izl
@_c,._{_cj <0 2.12)

We construct the crossed product C*-algebra
A =AXg_7,,

which is generated by .«#" and a self adjoint unitary T in o satisfying TaT = @ _(a),
ae.o/¥. The Pauli spin algebra «/* is identified with a C*-subalgebra of .o/ generated
by

o =2c¥c;— 1 2.13)
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6P =TS, (c;+c¥), o =TSji(c;—ch), (2.14)
1

j_
o ifj>1,

ifj=1, 2.15)
[To® ifj<t.
k=0
We extend the automorphism @ to 7 by defining ©(T) = T, so that
O =09, O©Y)= o, O@V)=—0oY. (2.16)

Then © gives gradings to both &/ and &”, so that if &% = {xe«":O(x) = £ x},
then

S. =

k=1
J 1

(xedP Ox=x} =%, {(xed®Ox=—x}=TA",
and
A= + A%, AP =A% + TAE.
The state ¢; = ¢z° @ on /” gives rise to an even state w; = w;° @ on * by
wya+b)=¢ya), act, bed". (2.17)

Then wy is a Fock state, whose basis projection E is described after taking Fourier
series as follows on I*(T)@® L*T). (No confusion should arise when we often
identify, in the sequel, [ with IX(T) in this way).

First y(6) = 0 is determined by

cosh 2K* cosh 2K, — sinh 2K ¥ sinh 2K, cos 8 = cosh y(0), (2.18)
and 6(0) = @(0) — 0 is determined by
cos &(0) = (sinh p(0)) ~ (cosh 2K ¥ sinh 2K, — sinh 2K} cosh 2K, cos8)  (2.19)
sin 6(6) = (sinh y(6)) " * sinh 2K ¥ sin 6. (2.20)
Then if Vj is the self adjoint unitary

cos @) —isin @(0))

Vilh)= <i sin @(f) — cos O(6) @21)

E; is the multiplication operator (1 — V)/2.

The states ¢, and ¢, correspond to infinite and zero temperatures (8 =0, f = o
respectively) as follows. The region 8 > f. corresponds to K¥ < K,, and ff < f, to
K¥>K,. As in [3], we will regard K¥ and K, as independent parameters. Then
K, =0, K¥>0 corresponds to f =0, and K¥=0, K, >0 to f= 0.

Case (A). K, =0, K*>0, (8=0). Here y(0) = 2K*, () =n — 0, O(0) =,

-1 0

0 1>, E,=(1-=Vy)/2.

VO(B) = (

Then the even state ¢, on &% corresponding to the quasi-free state w, = wg, on /¥
0 p g o
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as in (2.17) is the product state,
¢O = _® @4,

. . 1
where w, =<z, ,z.) is the vector state on M, given by z_, =2‘”2(1>. Note that

01 1
0,= (1 O) has eigenvectors z, and z_=2"Y 2< 1) with eigenvalues 1 and —1

M
respectively. Thus the eigenspace of W = exp {K’f > a‘zj)} corresponding to the
j=-M
M
largest eigenvalue is non-degenerate, and spanned by (X) z, . The transfer matrix T,
-M

in the case when K, =0 is a scalar multiple of W (see (2.4)) and so the same applies
to Ty

Case (B). K*=0, K, >0, (8= c0). Here 3(0) = 2K, 5(0) =0, @(0) = 6,

6 —isin6
cos isin >’ E.

=(1—V,)2.
isinf —cosf (1 ©)/2

n@=(

The even state ¢, on .«/* corresponding to the quasi-free state w , = w g, On Fasin
(2.17) is the state

1 © 0
¢w=§<®u++®u-)
. 1 0
where u, are the vector states {x,, x, > on M,,ifx, = 0 ,X_ = ; . Note that

1 0 . oy .
0,= < 0 1) has eigenvectors x . and x _ with eigenvalues 1 and — 1 respectively.

M-1
Thus the eigenspace of V = exp {K D% a;f“’} corresponding to the largest
=M

M M
eigenvalue is doubly degenerate and spanned by (X)x, and (X)x_ (corresponding
-M -M

to all spins up and all spins down respectively). The transfer matrix T, in the case
when K¥ =0 is a scalar multiple of V¥, and so the same applies to this T),.

Note that ¢, is clearly pure, whilst ¢, is clearly not. Moreover the cyclic
representation of the state ¢, is a direct sum of two disjoint irreducible
representations, and so has a two dimensional centre.

For more details on the C*-formulation of the two-dimensional Ising model, we
refer to [17,21, 11, 12, 5, 3].

3. The Kramers—Wannier Automorphism Revisited

The even algebra & , is generated by

o =2ckc;— 1, (3.1)
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and
0Ped ™D = (c;~ cF)(cjer + CFey). (3.2)
Define an automorphism x of o7, by
k(@) = oQPai* ), (3.3)
Koo ™) = o ). (34

This automorphism relates high and low temperatures (cf. (2.4-6)) and is essentially
the mechanism by which Kramers and Wannier [10] located the critical point of the
classical two-dimensional Ising model, assuming only one critical point existed. See

also [14, p. 123].) Note that x? is the restriction of the shift on &% = (X) M, to

of ., but we will see in Corollary 4.3 that x does not extend to an automorphism of
2/F. However x does extend to an automorphism of .#F:
Let U be the shift on [,

UM =fes1, [=Uel, (3.5
identified with multiplication by ¢ * on L*(T). Let
1-U* 1+ U*)

(3.6)

Wz’/2<—1—U* U*—1

u* 0
W?=
(0 o)
so that ©(W)?=t(W?) is the Bogoliubov automorphism on the CAR algebra
induced by the shift, or t(c) =c¢;,.

Note that

Lemma 3.1. The restriction of the Bogoliubov automorphism t(W) from «F to 7%
is K.
Proof. We have if t = ¢(W)

i
T(C}k) = ‘2‘(C}k - Cfﬂ —C;—Ciy 1)

i
r(cj)=§(c}" +cfir— ¢t i)

Then
tej—cF)=i(cki i +¢juy)
e+ cF)=i(ck —c)
Hence (e~ cF)cjus + ctiy)

= —(cF o)t —ciy)

— *
—20j+10j+1 - 1.
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Since t3(c;) = ¢;, 1, We see
t2cfe;— 1) = (c;—cF)cj+ 1 +cFiy).

We now extend the Kramers—Wannier automorphism x to /¥ by putting
k = 7(W). Also note that

1 0 1/—(U+U* U*-U
* ——
WI(O -1)"1 2( U-U* U>+U*>' 3.7)

This means that « takes the infinite temperature state w, to the zero temperature
state

We°K =W, (3.8)

as one would expect from (3.1-2) and (2.4-6).
We now define

Ug=e'® (3.9
where @ is as defined in (2.18-20), and
i 1-U} 1+ U}
W,=— g A )
”2(ﬂ+%)%—0 (3.10)

Then
oy eGP
This means that if y; = ©(Wj), the Bogoliubov automorphism induced by W, then
Wo°Yp = Wg, (3.11)
and
®,°0; = wy, (3.12)

if dp=w"lyy=t(W*W;). We will show that ({y;, :0=p<p} and
{04l 4, : B> B} extend to automorphisms {vs:f # B.} of &/ such that

$oovg =5 0=ZB<p,,
¢aoovti=¢ﬁ’ ﬂ>ﬁc }

Remark 3.2. The Kramers—Wannier transformation on the even subalgebra of the
Pauli algebra also has an analogue on a certain subalgebra of the UHF algebra

(3.13)

Z ,= @M, which is relevant for the high temperature-low temperature duality in
o)

the g-state Potts model, and has also recently appeared in work on the index of
subfactors and entropy [8,9,16].
To describe this, let {E;: i, j=1,...,q} be matrix units for M,, and then let

q q
f= . Z Eij/q,g = -; Eii®Ei,'

i,j=1
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be rank one and rank g-projections in M, and M, ® M, respectively. Then define a
doubly infinite sequence {e;}*, of projections in #, by
€= 1®1®f®1®1...., i"position
e ="1®1®g®1®1...., i(i+ 1) positions
and let o/, be the C*-algebra generated by {e;}*,. Thus if g =2,

erio1 =00+ 1)/2, ey=(aPal"V+1)2.

and so ., is the even part of the Pauli algebra. The projections {e;} satisfy the
relations

ee;=eje;, i —]I =2, (314)
1
eieiileizgeh (3.15)
1 .
trxe, = (—Itr x, if xeC*-algebra generated by {e;}'"}, (3.16)

where tr is the trace on & .

The local transfer matrix in the g-state Potts model can be written [4,22], upto a
scalar, as X'2YX'2 where X =exp2K,Xe,;, Y =exp2K% Xe,;_,, and K;=
BJsj=1,2, (= 1) —~1)=q.

As in the Ising model, where g = 2, the automorphism «: e; —>e; ., of %, can be
used to locate the critical temperature (see e.g. [4]). Families of projections satisfying
(3.14-16) and the automorphisms x, have recently occurred in the work of Jones
[8,9] on index of subfactors and braid groups, and Pimsner and Popa [16] on index
and entropy of subfactors.

4. Extendibility of Automorphisms

We consider the problem of deciding when an automorphism of the even algebra
o/ , extends to an automorphism of the Pauli algebra .«/”.

Let € be a graded unital C*-algebra, i.e. % is equipped with an automorphism @
such that ®?% = 1, and we define the even and odd parts of € by

%, ={xe%:0(x)= + x},

respectively. We say that an automorphism v of % is graded if v6, = %, . An inner
automorphism of ¥ is said to be even (respectively odd) if it is implemented by an
even (respectively odd) unitary.

Note that if ¥ is simple, then a graded inner automorphism v on € is always
either even or odd. For then, if v = Ad(u), ue%, we have v = @ v, since v is graded,
and so Ad @(v) = Ad(v) on %. Since ¥ is simple, this implies @ (v) = Av for some AeT.
Letting v = a + b, where a, b are even and odd respectively, we see that a —b =
Ma+b), or a(l1 —1)=5b(1 +2)=0. Hence either b=0, A=1 and v is even, or
a=0,A= —1, and v is odd.

We need something stronger than this:
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Lemma 4.1. Let u be a self adjoint unitary in a graded C*-algebra such that € , is
simple and

ué, u=%..
Then u is either odd or even.

Proof. Letu=a+ b, where a, b are even and odd respectively. We have to show that
either a or b is zero. Now q, b are self adjoint and (a+b)x(a + b)e¥ , , for all xe¥% , .
This means

axb+bxa=0, forall xe¥,. 4.1)
In particular ab + ba =0, and since u is unitary we have
a*+b*=1. 4.2)
From (4.1) with x = a we get
a’b + ba* =0. 4.3)
Then using (4.2) we have (1 +b?)b + b(1 —b?*) =0, or
b=0b> 4.4)

Then (ab)*ab = ba*b =b(1 —b?)b =0, using (4.4), hence ab=0=ba. But then
using (4.1), b(axb + bxa) = 0, for all xe% , implies that b>xa =0 for all xe¥ ., or
(1 —a?xa=0 for all xe% .. But %, is simple and so either a> =1 or a =0, i.e. by
(3.2) either b=0 or a=0.

We now consider the following general situation. Let ./ be a unital C*-algebra,
with o, f two commuting automorphisms such that «> = 2 =1, and a unitary
element U satisfying «(U)= — U, U2 =1, (U) =

Let o7 be the crossed product of 7 by the f-action of Z, which is generated by ./
and a Ted satisfying T2 =1, T* =T, Ta = f(a)T, ac.o/. We grade .o by « so that

. ={xedalx)= + x}, and let = of . + T/ _,whichis a C*-subalgebra of /.
Extend a, f to & by

&(a + Tb) = afa) + Tu(b),
Bla+ Tb) = p(a) + TP(b), a,beA.

We grade &/, % by & and 4 =4/, respectively, so that B, =/ ,, B_ =T/ _.

If vis a graded automorphism of ., we now give a criterion when v|.«Z , extends
to an automorphism of #. We will then apply these criteria to the case o/ = <7*,
a=0,0=0_,8=4F,U=c;+c*loranyi=1,and v a quasi-free automorphism
of o/F.

Theorem 4.2. Let v be a graded automorphism of o/, where </ , is simple. If v|,
extends to an automorphism ¥ of %, then ¥ must be graded.

Proof. Let 6 =TUeT«/ _, so that ¢ is a self adjoint unitary in %4, and # =
s +aof,. 1fv], extend to an automorphism ¥ of %4, then v, Ad(o) leave </,
invariant and

vAd(o)v ™! = Ad(¥(6)) on ..
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Hence by Lemma 4.1, #(0) is either odd or even. If #(0) is odd, then 7 is graded, but if
#(g) is even, then ¥(%#) = %, which is impossible as ¥ is an automorphism.

Corollary 4.3. The Kramers—W annier automorphism k.o , — </ | does not extend
to an automorphism of <"

Proof. Suppose k extends to a graded automorphism & of /. Then ¢yok = ¢, on
</ , means that ¢,°k = ¢, on &%, since ¢, and ¢, are even states. But this is
impossible as ¢, and ¢ are pure, impure respectively by Sect. 2 or [3].

Note that since k extends to an automorphism of 2/*, it follows from Corollary
4.3 that the Jordan—Wigner transformation which identifies /%, with &% in (3.1)
and (3.2) cannot be extended to an isomorphism between /% and .o/ (although o/
and /% are isomorphic C*-algebras).

If v is a graded automorphism of .«Z, which extends to an automorphism ¥ of .27,
then

BvBv~1(x)= THT)xHT)T for all xes.

In particular, if ¢ is graded, then TH(T) is in &, . Note that by the argument of
Theorem 4.2, if &7 , is simple, then ¥ must be graded. In the converse direction we
have:

Theorem 4.4. Let v be a graded automorphism of o/, where s/ . is simple, and Bvfv~!
is an inner even automorphism of /. Then v extends to a graded automorphism of </,
leaving % invariant, and given by

¥a+ Th)=v(a)+ Tvv(b), a,be. 4.5)
where v is a unitary in < , such that
vBv)=1, PvBv = Ad(v) on &
Proof. Suppose fvBv~* = Ad(v), for some v unitary in o7 , . If y = Bvfv ™!, we have
yByB = 1. Therefore for xeo/:
x = yByB(x) = vB(v)xPlvy*v*.

But <, is simple and so we must have vf(v)eC. By rotating v we may assume
vp(v)=1. Define ¥:o/ >/ by (4.5). We use vf(x)= Tov(x)v*T, xes/, and
TvT = v* to check that ¥ is an automorphism: For a, be .o/,

V[ (a+ Th)*] = ¥[a* + TPb*] = v(a*) + TovB(b*)
=v(@)* + v(b*w*T = [¥(a + Th)]*.
Moreover
%(a; + Thy)(a, + Th,) = ¥a,a, + f(b,)b, + Thya, + Th(a,)b,)
= Wa,a,) + v(B(b1)b,) + Tov(b,a,) + Tov(B(a,)b,)
=v(ayv(ay) + Tvw(b,) Tov(b,) + Tov(b,)v(a,)+ v(a,) Tov(b,)
=[va,) + Tov(by)][va,) + Tov(b,)]
=9a, + Th,)¥a, + Tbh,).
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Thus ¥ is an automorphism, and if vis in .7 , , it is clear that ¥ is graded and leaves %
invariant.

5. The Main Results

We now apply the criterion of the previous section for extending automorphisms
from the even algebra /% to the Pauli algebra .&/F to deduce:

Theorem 5.1. The (Bogoliubov) — automorphisms — {t(W*W))|, :B>B;} and
{t(W))l,,,:0= B <P} extend to graded automorphisms {vs:p+# B} of the Pauli
algebra /F such that
¢Oovﬂ=d)ﬂ’ 0§B<Bc5 (5'1)
bV =y, for f>B. (5.2)

The (Bogoliubov) automorphisms

(f(W*W)), 0<B<B) and {<(Wpl,, :f> B}

do not extend to automorphisms of the Pauli algebra.
First we need some lemmas.

Lemma 5.2. The operators

o—u_ou_, for B>pB, (5.3)
and

O —u_Ou_, for 0ZB<B,, (5.4)
are trace class.
Proof. If z;=tanh K;=e 2! and z¥ =tanh K¥ =e™ 25 then (2.18), (2.19) and
(2.20) can be solved (see e.g. [13]) to get
2id(w) _ (- zzz’feim)(l - z’{‘e—':“’/zz) ‘ (5.5)
(1 —zyzte™ )1 —zfe'/z,) '

Then for f> B, (i.e. z¥ <z, < 1), the Fourier coefficients {k,} of id are given by

e

b= [EH2 — (a2t =~k >0

([13,Eq.(75)])- Letp, =(1 £ u_)/2,thend —u_du_ =2(p, dp_ + p_op.).Since d is
real, it is enough to show that p, 5p _ is trace class if > f,. Let {e " **:k=0,1,2,...}
and {e**:k=1,...} be complete orthonormal bases for p_I, and p, [, respectively.
Then the matrix of ip,dp_ with respect to these bases is

{kyisy1:r8=0,1,2,....}.
Thus with this identification of p_l, and p.l, with L,(N)=I7, and if y,=
(A} 0€l;, for 0 A< 1, we have

1 2¥/z,
ip+5p—={kr+s+1:r,S}=§ I x> <aalda, (5.6)

ZzZT
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which is trace class for 0 < zf <z,. We have from (5.5) that
(1 = zyzfe™)(1 — z,¢"/z})
(1= zyz3e ™) (1 — zpe™"/2f)’

2i6(0) —

e
so that i® has Fourier coefficients {h,} given by
—1
b= LE/21) + 28] = oy n>0.

Thus

. 1 2y/2% z,2¥
zp+@p—=—§[ (I) [x27 <xaldA + (I) lm><xlld/1], (5.7

which is trace class for 0 <z, <z¥or 0 < f,.

Lemma 5.4. The operators

W W, —0_W*W,0_ (5.8)
and
Wy —0_W;0_ (5.9
are trace class for f # f..
Proof. We have
1/1+U0Uf 1-UU}
W*W"=E(1iug§ 1+L%];f=> (519)

Thus W*W; —0_W*W0_ being trace class is equivalent to UU} —u_UUju_
being trace class. But UU} = ¢ as @(0) — 0 = (6), and

1
e —u_e®u_=ifu_e"u_[5—u_ou_]eds. (5.11)
0

Thus by (5.3) in Lemma 5.2 we see that
W*W,—0_W*W,0_, B << (5.12)

are trace class. Since U} = ¢'®, we see in a similar manner using (5.4) of Lemma 5.2
that

Wy—0_Wy0_, 0<B<pB. (5.13)
are trace class. Now W_ =W, and a direct computation shows that
W*—0_W*6_ (5.14)
is trace class. The lemma now follows from the identity:
WHWy — 0 _W*Wy0 - = WXWy —0_W,0_)+ (W* —0_W*0_)0_W,0_,
(5.15)
and the operators in (5.12), (5.13) and (5.14) being trace class.
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Remark 5.5. Tt follows from [3, Sect. 6] that the operators in (5.9) (and hence in (5.8)
using (5.15)) are Hilbert—Schmidt, but this is not enough for our approach here.
Note that it also follows from [3, Sect. 6] that W*W, —0_W*W,;0_ and
W, —0_W, 0_ are not Hilbert Schmidt.

By [1], a Bogoliubov automorphism t(v) on /% is inner if and only if one of the
following conditions hold:

1 — v is trace class and det v=1, (5.16)
1 + v is trace class and det (—v)= — 1. (5.17)

An inspection of the proofs in [1] shows that if (5.16) holds then 7(v) is even, and if
(5.17) holds then 1(v) is odd.

Also note that if a unitary v commutes with I, and 1 — v is trace class, then
det(v)= + 1 [1, p.414]. Moreover the map w— det(l —w) is continuous on the
trace class operators [20].

We apply these considerations to the unitaries

O_W*W,0_WEW, (5.18)
0_W,0_ Wi (5.19)
for f # B..
Lemma 5.6.
det (0 W*W,0_WiW) = { B i g; ﬁﬁf ,BC:O’ (5.20)
det (0_W,0_W¥) = { - i ziﬁ B;B;O. (5.21)
Proof. By Lemma 5.4, we see that
L— O_W*W,0_WEW = (W*W, — 0_W*W,0 )W W (5.22)
and
L= 0_W,0_W§ =(W, — 0_W,0_)W3 (5.23)

are trace class if f§ # f..

As in [3] we now treat K¥ and K, (or z, and z%) as independent parameters.
From [3, p. 500] we see that W, is norm continuous in the region z{ # z,. Then we
have from (5.10), (5.11) (5.6), (5.7), (5.22), (5.23) and (5.15) that 1 —0_W*W,0 _WiW
and 1 —0_W,0_W} are continuous in z} and z, in the trace class norm when
z¥ #z,. Hence using continuity of the determinant, it is enough to compute the
determinants in the cases zf =0, z, >0, (f = o) and z, =0, z¥F > 0, (f =0), which
is an easy exercise.

Proof of Theorem 5.1. We now apply Theorem 4.4 to the automorphisms

v, = T(W*Wp), ﬂ>ﬂc
7 W), 0<p<B’
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using Lemmas 5.5 and 5.6 and (5.16) to see that vy, extend to graded
automorphisms of .2/ also denoted by vg. Then (5.1) and (5.2) follow from (2.17),
(3.11) and (3.12).

Finally, it is now clear using Corollary 4.3 that the automorphisms

{tW*Wyl,,:0sp<p} and {t(Wpl,, B> B}

do not extend to /7.
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