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Abstract. We investigate the states φβ on the C*-algebra of Pauli spins on a one-
dimensional lattice (infinitely extended in both directions) which give rise to the
thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising model
(with nearest neighbour interaction) at inverse temperature β. We show that if βc

is the known inverse critical temperature, then there exists a family {vβ:β Φ βc} of
automorphisms of the Pauli algebra such that

β>βc.

I. Introduction

We consider the Ising Hamiltonian on a two-dimensional lattice, infinitely extended
in all directions, with nearest neighbour interactions and zero field. Thus the
problem is classically set in the commutative C*-algebra C(^) = (X)C2 of all

2
continuous functions on the configuration space 0>= { ± \γ . The transfer matrix
method allows us to transform the model to a non-commutative algebra jtfp =
(X)M2 in one dimension less. More precisely, for each inverse temperature β,

I
suppose <•>£ is the equilibrium state for the classical system obtained as the
thermodynamic limit of the Gibbs ensembles on the configuration space 2P using free
boundary conditions. Then there is for each β, a map F-+Fβ from the local
observables in C(P) into the Pauli or quantum algebra s4p such that (Fyβ = φβ (Fβ).
Thus any classical correlation or expectation value can be computed using a
knowledge of the Pauli algebra alone. The main result of [3] was the following:
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Theorem 1. The cyclic representation of stfp associated with φβ is irreducible for
Q^β^βC9 whilst it is reducible, with two-dimensional centre (for the weak closure) if
β>βc.

Here βc is the same as the (inverse) critical temperature given by Onsager [14].
We now improve on this, at least for β + βc, to show:

Theorem 2. There exist automorphisms {vβ: β Φ βc} of stfp such that

(1.1) Φβ = Φo°vβ, Q^β<βc

(1.2) Φβ = Φ^vβ, β>βc

In particular, since φ0 and φ^ can be given explicitly, we give a simple proof of
Theorem 1, independent of [3].

We make use of the crossed product C*-algebra a introduced by Araki [2] and
described below. The algebra j& is generated by the Fermi algebra jtfF and a self-
adjoint element T:^ = */*+ + Ts/F

+ +tflL + TWd, where */*, and s/F_ are the
even and odd parts of $#F, respectively. The important facts are that the Pauli
algebra ^p sits in a as ̂ p = s/F+ + Ts/L , the state φβ on stfp extends to a state
$β on stf whose restriction to stfF = sίΈ+ + A¥_ is the Fock state ωβ. As pointed
out in [11,21], the state ωβ is connected to the infinite temperature state
ω0 by a Bogoliubov automorphism yβ: ωβ = ω°yβ. In this paper we remark that
the restriction of y^ to j/+ is the Kramers-Wannier automorphism, and γ^
relates ω0 to the zero-temperature state ω^ ωo = ωQ O°y^1. Our principal result
is that {γβ\^+:Q<^β<βc} and (y^yβ\^^β> βc} extend to automorphisms
[Vβ:β φ βc} of ^/p, such that

Theorem 1 (for β + βc) then follows from an examination of the explicit expressions
for φ0 and φ^.

2. The C*-algebraic Formulation

We consider the two-dimensional Ising model with the Hamiltonian

Σ "ϊ'^yίu-n), (2-1)
i = - L j = - M /

where ξy = ± 1 is the classical spin at the lattice site (i,;)eZ2, and Ji and J2 are
positive constants. Then the Gibbs ensemble average is given by

- βHLM(ξ)), (2.2)

where the sum is over all configurations ξ{j = ± 1, β ̂  0 and F, a local observable, is
a function of ξij9 for |i | :g /, |;| ̂  m, and some / g L, m^M. The transfer matrix
method [10] allows us to compute the expectation values < >LM in terms of a state
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φ^M on the Pauli spin algebra ^P

M generated by the spin matrices σ(ϊ\ σ(j\ σ^ on sites
M

i where \i\ ^ M. Then stfp

M ~ (X) M2, and we adopt the convention that
-M

/1 (

σί? = o -i/ "> - v - / o/ z

We can identify a function of <J = (ξj), ξj= ± 1, ξ' = (ξ'j)9 ξ'j= ± 1 with a 22M+1 x
22M+1 matrjX) and hence with an element of sΰp

u. If we define

lζ M M
2 V (ϊ ϊ 4-f'F }+K Vo Zj Vζys j+i ^ SjSj+i; T- r^i 2^

£ J=-M J = - A

then under the above identifications

TM = (2smh2Kl)
M+1/2V1/2WV1/2, (2.4)

if

(2.5)

(2.6)

and

Kj = βJj, j=l,2, Xf =ilog(cothX1). (2.7)

If

then ZLM = IKTjf^flj, ||2, and <F>LM = φ^M (F,M) for some FίMe^^, if φLM is the
vector state {T^ΩM, T^ΩMyZlM on Λ/J,. If Xί<oo, then by the Perron
Frobenius theorem, TM has a unique unit vector ΩM = ΩM(ξ), ΩM(ξ) > 0 belonging
to the largest eigenvalue. Then as L -» oo :

L-+OO

Then if J/P denotes the Pauli algebra generated by the spin matrices σ^, σ f ,

iεZ, so that J/P= lim j/^, we have

lim lim

where F^= lim F^M and φβ= lim <ί2M, ,ί2M> is a state on .s/p.
Λί-^oo M-^oo

Following [17, 21, 11, 12, 2, 3] the states φ^ on the Pauli algebra stfp are best
studied by introducing a Fermion algebra J/F generated by annihilation and
creation operators ct and cf, ieZ, satisfying the canonical anticommutation
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relations:

fo, cj] + = [cf, c?] + = 0, [Ci, cj ] + = δi}\. (2.8)

We adopt the self dual formalism of [3], so that s$Έ is generated by the range of a
linear map B on 12 Θ 12 given by

Here the convergence of (2.9) is in norm, and B satisfies

where

A unitary U on /2 Θ 1 2 commuting with Γ gives rise to an automorphism τ(U) of J/F

by

τ(U)B(h) = B(Uh\ (2.10)

and is called a Bogoliubov automorphism. A basis projection is a projection E on
/2 0 /2 such that

Γ£Γ = 1 - E.

Any basis projection E gives rise to a unique state ω on stfF such that
ω(β(/)B(/)*) - 0, /e£(I2 θ Ϊ2). We write ω = ω£. Then ω£ is called a Fock state, is
irreducible, and satisfies

ωE(B(f)*B(g)) = </,£,>, f,gel2®l2.

We define a unitary w _ on /2 by

(U-A ={-/; ί^ (in)

and θ _ = w _ φ w _ o n / 2 φ / 2 . The corresponding Bogoliubov automorphism τ(θ _ ) is
denoted by 6>_ so that

; « <2 12)

We construct the crossed product C*-algebra

which is generated by stf¥ and a self adjoint unitary Tin^ satisfying TaT = &-(a\
ae^F. The Pauli spin algebra stfp is identified with a C*-subalgebra of sί generated
by

σ< » = 2c?C.-l (2.13)
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<τ</> = TSj (cj + cj), σW = TSji (Cj - cj), (2. 1 4)

1 i f / = l , (2.15)

We extend the automorphism Θ to s$ by defining 6>(T)= T, so that

) = σ</>, Θ(σ»))=-σ</), Θ(σ</')= -σ</'>. (2.16)

Then Θ gives gradings to both J/F and J/P, so that if j/F

± = {xejtfF: Θ(x) = ± x},
then

and

The state φ^ = φβ° Θ on J/P gives rise to an even state ωβ = ωβ°Θ on stfF by

. (2.17)

Then ωβ is a Fock state, whose basis projection Eβ is described after taking Fourier
series as follows on L2(T)φL2(T). (No confusion should arise when we often
identify, in the sequel, I2 with L2(T) in this way).

First γ(θ) ^ 0 is determined by

cosh 2Xf cosh 2K2 - sinh 2Xf sinh 2K2 cos Θ = cosh y(θ), (2. 1 8)

and ί(θ) = 0(0) - Θ is determined by

cos (5(0) - (sinh γ(θ)Γ Hcosh 2X? sinh 2X2 - sinh 2K* cosh 2K2 cos 0) (2.19)

sin δ(θ) = (sinh y(θ)) " 1 sinh 2K* sin 0. (2.20)

Then if Vβ is the self adjoint unitary

cosβ(fl) -ίsinβ(fl)

in6>(0) -cos (9(

E^ is the multiplication operator (1 — Vβ)/2.
The states φ0 and φ^ correspond to infinite and zero temperatures (β = 0, β = oo

respectively) as follows. The region β > βc corresponds to K% < K2, and β < βc to
Kf > X2 As in [3], we will regard Xf an<i ^2 as independent parameters. Then
K2 = 0, JKf > 0 corresponds to β = 0, and Kf - 0, K2 > 0 to β = oo .

Case (A). K2 = 0, K* > 0, (]8 = 0). Here y(θ) = 2Kf , δ(θ) = π-θ, Θ(θ) = π,

Then the even state φ0 on ̂ p corresponding to the quasi-free state ω0 = ωEo on
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as in (2.17) is the product state,

00

Φo= (8)ω + ,
— 00

where ω+ = <z+, z+> is the vector state on M2 given by z+ =2~ 1 / 2I J. Note that

σz = I J has eigenvectors z + and z_ =2~1 / 2( 1 with eigenvalues 1 and — 1

respectively. Thus the eigenspace of W = exp < Kf Ϋ σ(

z

j) > corresponding to the
I J=-M

M

largest eigenvalue is non-degenerate, and spanned by (X) z +. The transfer matrix TM
-M

in the case when K2 = 0 is a scalar multiple of W (see (2.4)) and so the same applies
toTM.

Case (B). Kf = 0, K2 > 0, (β = oo). Here y(Θ) = 2K2, δ(θ) = 0, Θ(θ) = θ,

The even state 0 ̂  on J/P corresponding to the quasi-free state ωaΰ = ωE on J/F as in
(2.17) is the state

where μ+ are the vector states <x+, x + > onM 2 , i fx+ = ( . ) , x _ = ( ). Note that
- - \OJ \IJ

σx = I J has eigenvectors x+ and x_ with eigenvalues 1 and — 1 respectively.

f M-! . . 1
Thus the eigenspace of V = exp < K2 £ σ^ σξ/+ υ > corresponding to the largest

( J=-M J
M M

eigenvalue is doubly degenerate and spanned by (X)x+ and (X)x_ (corresponding
-M -M

to all spins up and all spins down respectively). The transfer matrix TM in the case
when K^ = 0 is a scalar multiple of V, and so the same applies to this TM.

Note that φ0 is clearly pure, whilst φ^ is clearly not. Moreover the cyclic
representation of the state φ^ is a direct sum of two disjoint irreducible
representations, and so has a two dimensional centre.

For more details on the C*-formulation of the two-dimensional Ising model, we
refer to [17,21, 11, 12, 5, 3].

3. The Kramers-Wannier Automorphism Revisited

The even algebra jtf+ is generated by

σ^ = 2cfCj-l (3.1)
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and

= (cj - cj}(cj+ , + cjV 1) (3.2)

Define an automorphism K of stf + by

(3.3)

This automorphism relates high and low temperatures (cf. (2.4-6)) and is essentially
the mechanism by which Kramers and Wannier [10] located the critical point of the
classical two-dimensional Ising model, assuming only one critical point existed. See

00
P _also [14, p. 123].) Note that κ2 is the restriction of the shift on J/P= (X)M2 to

- oo

j/+ , but we will see in Corollary 4.3 that K does not extend to an automorphism of
stfp . However K does extend to an automorphism of jtfF:

Let U be the shift on /2:

Λ+ι, /=(Λ)e/2, (3.5)

identified with multiplication by e~iθ on L2(T). Let

-
Note that

I U*.

so that τ(W)2 = τ(W2} is the Bogoliubov automorphism on the CAR algebra
induced by the shift, or τ2(Cj) = cj+l.

Lemma 3.1. The restriction of the Bogoliubov automorphism τ(W) from J/F to j/ +
is K.

Proof. We have if τ - τ(W)

Then

τ(Cj H- cj) = i(cj - Cj

Hence τ((Cj - cf)(cj+ 1 + cj

rLj -f 1
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Since τ2(Cj) = cj+ί, we see

We now extend the Kramers-Wannier automorphism K to stf¥ by putting
κ = τ(W\ Also note that

l Q l-(u + u*ϊ U*-U
U-U* 17+17*

This means that K takes the infinite temperature state ω0 to the zero temperature
state ω^:

(3.8)

as one would expect from (3.1-2) and (2.4-6).
We now define

Vβ = e-iθ (3.9)

where & is as defined in (2.18-20), and

-
Then

ut-uf

This means that iΐγβ = τ(Wβ\ the Bogoliubov automorphism induced by Wβ, then

ωo°yβ = ωβ, (3.11)

and

ωao°δβ = ωβ9 (3.12)

if sp = κ-ίyβ = τ(W*Wβ). We will show that {yβ\J/+:0^β<βc} and
{δβltf '-β> βc} extend to automorphisms {vβ:β Φ βc} of stfp such that

Φ»°vβ = φβ9 β>βc.

Remark 3.2. The Kramers-Wannier transformation on the even subalgebra of the
Pauli algebra also has an analogue on a certain subalgebra of the UHF algebra

00

^q = (χ)M q which is relevant for the high temperature-low temperature duality in
00

the g-state Potts model, and has also recently appeared in work on the index of
subfactors and entropy [8,9, 16].

To describe this, let {£0: /, j = l,...,g} be matrix units for Mq, and then let

/= Σ £ ί Λ^=Σ
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be rank one and rank ^-projections in Mq and Mq®Mq respectively. Then define a
doubly infinite sequence {£,-}_ <*> of projections in 3F q by

e2 . _ 1 = 1 (x) 1 (x) /(x) 1 (x) 1 . . . . , Ith position

e2 . = - - - - 1 (g) 1 (g) g (g) 1 (x) 1 . . . . , i-(i + 1) positions

and let j/q be the C*-algebra generated by {βjΐ^. Thus if q = 2,

and so j^2 is the even part of the Pauli algebra. The projections {et} satisfy the
relations

et—efr | i-7l^2, (3.14)

eA±i*i = -*i> (3.15)

trxe, = -trx, if xeC*-algebra generated by [e^Ξ^, (3.16)

where tr is the trace on ̂  q.
The local transfer matrix in the g-state Potts model can be written [4, 22], up to a

scalar, as Xl/2YX1/2, where X = exp2K2Σe2h Y = exp2K? Σe2i-l9 and Kj =
βJj9j=l,2,(eίκt-l)(e2K*-l) = q.

As in the Ising model, where q = 2, the automorphism κq\ et -> eί+ L of J% can be
used to locate the critical temperature (see e.g. [4] ). Families of projections satisfying
(3.14-16) and the automorphisms κq have recently occurred in the work of Jones
[8, 9] on index of subfactors and braid groups, and Pimsner and Popa [16] on index
and entropy of subfactors.

4. Extendibility of Automorphisms

We consider the problem of deciding when an automorphism of the even algebra
,£/+ extends to an automorphism of the Pauli algebra J3/P.

Let ̂  be a graded unital C*-algebra, i.e. # is equipped with an automorphism Θ
such that Θ2 = 1, and we define the even and odd parts of # by

%± = {xe%:Θ(x)= ±x},

respectively. We say that an automorphism v of # is graded if v^± c #± . An inner
automorphism of # is said to be even (respectively odd) if it is implemented by an
even (respectively odd) unitary.

Note that if ̂  is simple, then a graded inner automorphism v on ̂  is always
either even or odd. For then, if v = Ad(w), we^7, we have v = Θ v<9, since v is graded,
and so Ad Θ(ι ) = Ad(u) on C6. Since # is simple, this implies Θ(υ) = λv for some ΛeT.
Letting v = a + b, where α, b are even and odd respectively, we see that a — b =
λ(a + b\ or a(\ — λ) = b(l +λ) = Q. Hence either b = 0, λ=\ and v is even, or
a = 0, λ = — 1, and v is odd.

We need something stronger than this:
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Lemma 4.1. Let u be a self adjoint unitary in a graded C* -algebra such that Ή + is
simple and

Then u is either odd or even.

Proof. Let w = α 4- b, where α, b are even and odd respectively. We have to show that
either α or b is zero. Now α, b are self adjoint and (a 4 b)x(a 4 b)e^ + , for all
This means

= Q, for all xe<ί?+. (4.1)

In particular ab 4 ba = 0, and since u is unitary we have

a2 + b2 = l. (4.2)

From (4.1) with x = a we get

a2b + ba2 = 0. (4.3)

Then using (4.2) we have (1 + b2)b 4 6(1 - b2) = 0, or

b = b3. (4.4)

Then (ab)*ab = ba2b = b(l-b2)b = Q, using (4.4), hence ab = Q = ba. But then
using (4.1), b(axb + bxa) = 0, for all xe^+ implies that b2xa = 0 for all xe^+j or
(1 — a2)xa= 0 for all xe^ + . But %> + is simple and so either α2 = 1 or a = 0, i.e. by
(3.2) either b = 0 or a = 0.

We now consider the following general situation. Let jtf be a unital C*-algebra,
with α, β two commuting automorphisms such that α2 = /J2 = 1, and a unitary
element (7 satisfying α(ί/) = - [/, I/2 = 1, β(U) = U.

Let j^ be the crossed product of ̂  by the β-action of Z2 which is generated by stf
and a Tej/ satisfying T2 = 1, Γ* = T, Tα - β(α)T, αej?. We grade j^ by α so that
j/± = {χej2/:α(x)= ±x}, and let J* = j/+ + 7W_, which is a C*-subalgebra of j/.
Extend α, β to stf by

ά(α + Γb) - φ) 4- Γα(b),

jί(α 4 Tb) - j8(fl) 4 Tβ(b\ a,

We grade j?, ̂  by ά and α = ά|Λ respectively, so that ^+=j/ + ,^_ _ .
If v is a graded automorphism of j/, we now give a criterion when v | jtf + extends

to an automorphism of ̂ . We will then apply these criteria to the case stf = J/F,
« = (9, β = Θ_ , g& = s^p, U = ct 4 cf for any i ̂  1, and v a quasi-free automorphism
of^F.

Theorem 4.2. Let v be a graded automorphism ofjtf, where stf + is simple. Ifv\^
extends to an automorphism v of $, then v must be graded.

Proof. Let σ = T l / e 7 W _ , so that σ is a self adjoint unitary in ,̂ and & =
<£/+ 4 σj/+. If vl^ extend to an automorphism v of ̂ , then v, Ad(σ) leave j/ +

invariant and

vAd(σ)v ~ 1 = Ad(v(σ)) on #/+.
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Hence by Lemma 4.1, v(σ) is either odd or even. If v(σ) is odd, then v is graded, but if
v(σ) is even, then v(&) c 38 + which is impossible as v is an automorphism.

Corollary 4.3. The Kramer s-Wannier automorphism κ:<$tf + -+<$# + does not extend
to an automorphism of stfp .

Proof. Suppose K extends to a graded automorphism K of j/p. Then φ0°κ = φ00on
£/+ means that φ0°κ = φao on <$/p, since φ0 and φ^ are even states. But this is
impossible as φ0 and φ^ are pure, impure respectively by Sect. 2 or [3].

Note that since K extends to an automorphism of J/F, it follows from Corollary
4.3 that the Jordan- Wigner transformation which identifies stfp+ with jtfF

+ in (3.1)
and (3.2) cannot be extended to an isomorphism between stfp and J/F (although stfp

and s$Έ are isomorphic C*-algebras).
If v is a graded automorphism of j?/, which extends to an automorphism v of j/,

then

βvβv-1(x)=Tv(T)xv(T)T for all xej/.

In particular, if v is graded, then Tv(T) is in j&+. Note that by the argument of
Theorem 4.2, if $ + is simple, then v must be graded. In the converse direction we
have:

Theorem 4.4. Let vbea graded automorphism ofjtf, where jtf + is simple, and βvβv~^
is an inner even automorphism of<ς/. Then v extends to a graded automorphism of stf,
leaving & invariant, and given by

v(a + Tb) = v(a) + Tvv(b\ α, foe^. (4.5)

where v is a unitary in jtf + such that

vβ(v) = 1, βvβv ~ 1 - Ad(t ) on ̂

Proof. Suppose βvβv~l = Ad(y), for some v unitary in j/+ . If y = βvβv'1, we have
yβyβ = 1. Therefore for xE^tf:

x = yβyβ(x) = υβ(υ)xβ(υ)*v*.

But s# + is simple and so we must have vβ(v)eC. By rotating v we may assume
vβ(υ)=l. Define v:^->^ by (4.5). We use vβ(x)=Tυv(x)υ*T, XE^, and
TvT = v* to check that v is an automorphism: For a,

Moreover

Tfo)*] = v[α* + Tβb*] = v(α*) -h Tvvβ(b*)

= v(α)* + v(b*)v*T = [_v(a + Tb)γ.

Tb2) = v(a,a2 + β(bl}b2 + Tb,a2 + Tβ(a,)b2)
= v(a,a2) + v(β(b1)b2) + Tvv(b,a2) + Tvv(β(a1)b2)

Tb,}v(a2
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Thus v is an automorphism, and if v is in stf + , it is clear that v is graded and leaves £&
invariant.

5. The Main Results

We now apply the criterion of the previous section for extending automorphisms
from the even algebra jtfp

+ to the Pauli algebra $$p to deduce:

Theorem 5.1. The (Bogolίubov) automorphisms {τ(W*Wβ)\^ :β>βc} and
{τ(Wβ)\^ :0 ^ β < βc} extend to graded automorphisms {vβ:β^βc} of the Pauli
algebra stfp such that

Φo°vβ = Φβ, 0£β<βc, (5.1)

φ00°vβ = φβ, ΐoτβ>βc. (5.2)

The (Bogoliubov) automorphisms

{τ(W*Wp)\J/+:0£β<βe} and [τ(Wp)\J/+:β> βc}

do not extend to automorphisms of the Pauli algebra.
First we need some lemmas.

Lemma 5.2. The operators

δ-u.δu-, for β>βc, (5.3)
and

Θ-u.Θu-, for Q^β<βc, (5.4)

are trace class.

Proof. If zt. = tanh Kt = e-2Kt, and zf = tanh Kf = e~2Ki, then (2.18), (2.19) and
(2.20) can be solved (see e.g. [13]) to get

= (l-z2z*0(l-z^-' "/z2)

^

Then for β > βc (i.e. zf < z2 < 1), the Fourier coefficients {kn} of iδ are given by

([13,Eq.(75)]).Letp ± =(l±M_)/2,thenδ-u_δw_=2(p + δp_ -f p-δp+ ). Since δ is
real, it is enough to show that p+<5p_ is trace class if β > βc. Let {e~ikω:k = Q, 1,2,...}
and {eikω:k = l, . . .} be complete orthonormal bases for p_/ 2 and p + l2 respectively,
Then the matrix of ip+δp_ with respect to these bases is

{fc r + s + 1:r,s = 0, 1,2,....}.

Thus with this identification of p _ / 2 and p+l2 with /2(M) = / 2 5 and if χλ =
}Γ=oe/2

+ , for 0 ̂  A < 1, we have

1 2* A2

ip+δp. = {kr+s+1\r,s}=- J \χλXχλ\dλ, (5.6)
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which is trace class for 0 ̂  z\ < z2 We have from (5.5) that

a2iθ(ω) = (l-z2z?e ίω)(l-z2e
i7z*)

so that iθ has Fourier coefficients {hn} given by

fcπ = ~[(z2/zΐ)n + (^m =
Thus

o.

(5.7)
° J

which is trace class for 0 :g z2 < z* or 0 ̂  β < βc.

Lemma 5.4. The operators

W*Wβ-Θ.W*Wβθ- (5.8)

and

W — Θ_W θ- (5.9)

are trace class for β Φ βc.

Proof. We have

UUί l-UU*Λ (5.10)

Thus W*Wβ — θ-W*Wβθ^ being trace class is equivalent to
being trace class. But l/ϊ/jf = eiδ as 0(0) - θ = δ(θ), and

i

Thus by (5.3) in Lemma 5.2 we see that

are trace class. Since l/jf = elθ, we see in a similar manner using (5.4) of Lemma 5.2
that

Wβ-Θ_WβΘ-, Q^β<βc (5.13)

are trace class. Now W^ = W, and a direct computation shows that

W* — Θ_W*Θ_ (^]ά}w 1 v

is trace class. The lemma now follows from the identity:

(5.15)

and the operators in (5.12), (5.13) and (5.14) being trace class.
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Remark 5.5. It follows from [3, Sect. 6] that the operators in (5.9) (and hence in (5.8)
using (5.15)) are Hubert-Schmidt, but this is not enough for our approach here.
Note that it also follows from [3, Sect. 6] that W*Wβe-θ-W*Wβθ, and
Wβc-θ_ Wβθ- are not Hubert Schmidt.

By [1], a Bogoliubov automorphism φ) on s$F is inner if and only if one of the
following conditions hold:

1 — v is trace class and det v = 1, (5.16)

1 + v is trace class and det ( — υ) = — 1. (5.17)

An inspection of the proofs in [1] shows that if (5.16) holds then φ) is even, and if
(5.17) holds then φ) is odd.

Also note that if a unitary v commutes with Γ, and 1 — v is trace class, then
det(ϋ)= ± 1 [1, p. 414]. Moreover the map w-κiet(l — w) is continuous on the
trace class operators [20].

We apply these considerations to the unitaries

θ-W*Wβθ_W$W, (5.18)

Θ^Wβθ_W*β (5.19)

Lemma 5.6.

. (5.21)

Proof. By Lemma 5.4, we see that

Θ_W*Wβθ^)W:jlW (5.22)

and

1 - θ_Wβθ-W* = (Wβ - θ-Wβθ-)W$ (5.23)

are trace class if β φ βc.
As in [3] we now treat Xf and K2 (or z x and zf) as independent parameters.

From [3, p. 500] we see that Wβ is norm continuous in the region z? ^z2. Then we
have from (5. 10), (5. 1 1) (5.6), (5.7), (5.22), (5.23) and (5.15) that \-Θ^W*WβΘ^W*W
and 1 — θ-Wβθ-WΊί are continuous in zf and z2 in the trace class norm when
zf /z2. Hence using continuity of the determinant, it is enough to compute the
determinants in the cases zj = 0, z2 > 0, (β = oo) and z2 = 0, zf > 0, (β = 0), which
is an easy exercise.

Proof of Theorem 5.1. We now apply Theorem 4.4 to the automorphisms

τ(W*Wp), β>βc

τ(Wβ\ V^β<β;
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using Lemmas 5.5 and 5.6 and (5.16) to see that vβ\^ extend to graded
automorphisms of J/P also denoted by vβ. Then (5.1) and (5.2) follow from (2.17),
(3.11) and (3.12).

Finally, it is now clear using Corollary 4.3 that the automorphisms

{«W*Wβ)\^:0£β<βe} and {τ(Wβ)\J/+:β> βc}

do not extend to stfp.
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