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Abstract. A natural supersymmetric extension (dG)κ is defined of the current
(= affine Kac-Moody Lie) algebra dG; it corresponds to a superconformal and
chiral invariant 2-dimensional quantum field theory (QFT), and hence appears
as an ingredient in superstring models. All unitary irreducible positive energy
representations of (dG)κ are constructed. They extend to unitary representations
of the semidirect sum SK(G) oί(dG)κ with the superconformal algebra of Neveu-
Schwarz, for κ — \, or of Ramond, for K = 0.

0. Introduction
/\

The semidirect sum of the Virasoro algebra Wc and the algebra dG of left (or right)
currents for a compact Lie group G arises naturally in both conformal invariant 2-
dimensional QET models [1-3] and in the general study of infinite dimensional Lie
algebras [4-7] (see also [8,9]). Its supersymmetric extension which is implicit in
recent work on super strings [10-12] also admits a local field interpretation (partly
exploited in [13,14] as a development of the QFT approach of [15]).

The objective of this note is two-fold: (a) to set a mathematical framework in
which the supercurrent and string superalgebras arise naturally; (b) to classify all
hermitian (= unitary) positive energy representations of these algebras. A remark is
also included, concerning the unitarity of the discrete series of representations of the
super Virasoro algebra (with central charge c < f).

In the theory of infinite dimensional Lie algebras a chiral current algebra dG
(called an affine Kac-Moody algebra) arises as a central extension of the loop algebra
dG generated by tensor products of elements of the finite dimensional Lie algebra dG
with Laurent polynomials of a complex variable t. The supersymmetric extensions
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(dG)κ discussed in this paper are obtained by simply adding a Grassmann variable θ
to the argument of the polynomials. We construct a "minimal representation'' of the
arising algebra which allows us to reduce the representation theory of (dG)κ (and
of its super Virasoro extension SK(G)) to the knowirclassification of unitary highest
weight irreducible representations (UHWIRs) of dG.

1. Superconforma! Current Algebras

Let G be a compact Lie group and dG be its Lie algebra equipped with the (negative
definite) Killing form (x, y). The super loop algebra dG is defined as

^O}), Θ2 = Q, (1.1)

regarded as an infinite Lie superalgebra with bracket
1',θ)9 (1.2)

where P and Q are any (linear in θ) polynomials and [x, y~] is the Lie bracket of dG.
We introduce a ^Z-gradatίon on dG setting

= 0, degί-1, άegθ = κe^; (1.3)

the corresponding graded algebra will be denoted by (dG)κ. The general even central
extension (dG)κ of (dG)κ is obtained by adding a cocycle

ψ(x ® P(ί, r *; θ), y ® β(ί, r *; 0)) = (x, )0/((ΛP)β), (1.4a)

to the right-hand side of (1.2), where/is a linear functional on 1-forms that vanishes
on exact and on odd (in θ) forms:

where Pk = Pk(t,t~1) are polynomials and we assume that α and β are positive
numbers1. (The powers are chosen in such a way that deg ψ = 0.)

Proposition 1. The most general graded odd and even differentiations De(ε=l,0)
satisfying

Dεf({d(P0 + ΘPJJβ): =f({dD\PQ + ΘPJJβ) +f({d(P0 + (- l)eΘPJ}D*Q) = 0
(1.5)

(^0,1 =P0,ι(^r lX G = βofcί"1) + 0βι(ί,ί"1)) ̂  multiples of

D1 =ίιy« + K — l

We shall sketch the proof for the odd generators. Setting D1 = R0θ(d/dt)

1 If oίβ < 0, then the energy operator L0, constructed below, would have negative spectrum
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Rtf/dθ) (R0,ι = Ko.iM'1)), we find

(β0 + Q,θ) + {d(P0 - plθ

Since P and Q are arbitrary, it follows that aR1 +βt2κ~~1R0 = 0. A basis of
homogeneous solutions of this equation is given by (1.6a).

Corollary. The differential operators (1.6) play the role of super conformal generators,
since they act on the I -form

(1.7)

as a multiplication by a function:

Dl

n + κωκ = 0, DX = - (2κ + n)t"ωκ. (1.8)

With the change of variables θ^(^fβja}tίκ}θ([κ\ being the integer part of K) we
can normalize the ratio α//J in (1.6a) and (1.7) to 1 and reduce the class of graded
superalgebras under consideration to two cases: K = \ and K = 0. The super Virasoro
algebra SVK is defined as the universal central extension of the algebra of differential
operators (1.6). For K —\ we have the Neveu-Schwarz algebra [16]; for K = 0 we
obtain the Ramond algebra [17]. We denote the semidirect sum of the super algebra,
SVK and (dG)κ by SK(G\ and call it the super conformal current algebra.

Remark. We have derived the superalgebra SK(G) starting with the superaffme Lie
algebra (aG)κ and looking for the most general (super-) differentiations that
annihilate the cocycle (1.4). Alternatively, we could obtain SK(G) starting with the
super Virasoro algebra SVK coupled to an extension of the ordinary (Bose) current
algebra, determined from the super Jacobi identities.

2. A Graded Basis of Physical Generators of SK(G)

Let dG be a simple compact Lie algebra of dimension dG with a basis xa satisfying

(xa>Xb)= -QA&, [xa>Xb]=fabcXc, a,b,c=l,...9dG'9 (2.1)

here C2 is the eigenvalue of the Casίmir operator for the adjoint representation of G:

Σ Σ )/sat/.bt = C2θab(a, & = ! , . . . , dG); (2.2)
G

C
s = l ί = l

if X 1 ? x 2 ? x 3 span an su(2) subalgebra, then/123 = 1. We define a graded "physical"
basis of the super-extended Kac-Moody Lie algebra (dG)κ by

β; = ϊX®ίπ, (2.3a)

ha

n + κ = ixa®t"θ. (2.3b)
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At the price of a possible rescaling of θ as indicated above, we can now write down
the following commutation relations for the superalgebra SK(G):

[Λ + oΛ'-J-f =^m+A*(<^<U (2.4a)

LQan,hb

m + κ] = ifabch
c

n + m + κ, (2.4b)

LQl 2m] = ifabcffn + m + ̂ δn+mδab (2.4c)

(the coefficients α and /? in (1.4b) are related to the central charge λ by α = β = λ/2C2)l

(2.5b)

(2-5c)

(2.5d)

[LΛ, LJ = (n - m)Ln + m + φ2 - 1)<5Λ + M, (2.6a)

(2.6b)

[Gm + κ ,G n _ κ ] + ^2L m + n + {(κ + m)2-i}(5m^, (2.6c)

?n,n = 0, ±1, ±2,...; κ; = 0 or £.

We notice that only for K = \ does the algebra (2.6) contain the 5-dimensional
super conformal algebra of the circle, generated by L0,L±1 and G± 1 / 2.

The superconformal current algebra can be defined in a similar way for an
abelian symmetry group G = U(l). In general, it is the direct sum of various G-
superalgebras with identified centres.

3. Field Theoretic Interpretation. Hermitian, Positive Energy Representations

Two-dimensional (conformally) compactified Minkowski space is the torus
S1 x S1(/Z2). The variables (z,w)e5'1 x S1 are related to the light-cone variables
ξ = xl —x°,η = x1 +x° by the inverse stereo-graphic projection

|z| = l). (3.1)f1 + iξ \ ί-iz

The two independent components of the (conserved, symmetric, traceless) con-
formal stress-energy tensor,

) = i {Γ10(z, w) - Γ00(z, w)}, (3.2a)

) = i {T10(z, w) + Γ00(z, w)}, (3.2b)
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are related to the generators Ln and Ln of two (commuting) copies of the Virasoro
algebra by [18,3]

Similarly, the left conserved current has a Laurent expansion with coefficients Q"n

(2.3a):

J&) = i(Λ°(z, w) + Jl.(z, w)) = £ -ίττ (3-4)
neZ^

The corresponding Fermi fields

(3 5a)

(3 5b)

are single-valued on Sl in the Neveu-Schwarz case only. In the Ramond case (in
which K = 0, and hence G(e2πiz) = — G(z) etc.) they can be regarded as (operator
valued) functions on the double cover of the circle.

Introducing the odd (Fermi) superfield

Fβ(z,fl) = Hβ(z) + 0Jβ(z)z1-2κ, (3.6)

We can now write down the superconformal (SVK-) transformation law (2.5) in the
following compact form:

[Fβ(z, 0), LJ = - Zn{^ + \ + K + (̂  + fc^JFfl(z, 0), (3.7a)

[Fβ(z, 0), Gn + κ] + = Az2κ- ~ θ(z + n + 2ιc Ffl(z, 0). (3.7b)

The hermiticity of the fields implies that for a hermίtian (unitary) representation of
S^G) we should have

LΠ* = L_ Π , G* = G_,, Q* = Q-m, h°* = ha_p. (3.8)

Energy positivity means that the spectrum of L0 should be non-negative. It follows
that there exists a "highest2 weight" vector |/zw> such that, as a consequence of the
commutation relations (2.5) and (2.6),

>, G p | f ιw> = 0 = f ιJ | fcw> forn,p>0. (3.9)

4. Minimal Unitary Highest Weight Representation of SK(G)

The classification of UHWIRs of (αG)κ, outlined below, uses in an essential way the
"minimal respresentation" of the superconformal current algebra.

2 We stick to the common mathematical terminology. The term "lowest weight" was used in [3]
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The minimal representation of the Lie superalgebra SK(G) is constructed in terms
of a Fock space (J*) realization of the infinite dimensional Clifford algebra (2.4a) (the
algebra of the free Fermi field Ha(z) for K = %) as follows. Let the central charge λ of
dGbe

~trT2, where (TJt = ifsat] (4.1)

-*
( f 2 = ]Γ T2 standing for the Casimir invariant in the adjoint representation of

dG— cf. (2.2).) We set

2α _ __ f ^ . ijS IΛ
n π J sat t_j 'Lκ — mrin + m — κ

^2 meZ

= ̂ Γ-/»tf Σ + Σ Vκ-«ΛU«-κ-Λκ-mΛ; + m-J (4.2)

(the last equation serving as the definition of the normal product in the first line),

l-mhm+n + κ + hκ-mQm+n) (4.3)
J C 2\mTl m^-nj

— fe(Qkhp= Σ Qίhsp is the AdG-invariant inner product). Finally, Ln is evaluated

from (2.6):

Σ + Σ }Q-mQm + n

m + Σ (m + n-2κ)\hκ-mhn + m-κ}; fo rπ^O, (4.4a)

(4.4b)

Proposition 2. T/ίe canonical antίcommutation relations (CARs) (2.4a) (with λ — C2)
and Eqs. (4.2-4) imply the super commutation relations (2.4-6) with central charges

(4.5)
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The proof oϊ this statement is straightforward. For instance, having verified (2.4),
we find:

m 2,i m

LQam,Gpl = -h°m+p + ~fabc £ [<2^fe,^+J
3 3C2 fc=ι

— "m + p+fabcfbcshm

The minimal UHWIR of SK(G) is thus defined by the corresponding CAR
representation, which has different characteristics for K = 0 and κ = %. For K = \ we
have the standard Fock representation of (2.4a) with vacuum vector |0> satisfying

ftj|0> = 0 forp^i so that β*|0> = 0 f o r π ^ O ,

LJO> = 0 f o r n ^ - 1 . (4.6)

For K = 0 we define a Ramond-type highest weight vector | JR(G)> satisfying

fc;|R(G)> = 0 f o r π ^ l , τ7z0 |#(G)>=0 f o r z e Z _ , (4.7)

where Z_ is a fixed maximal ([dG/2]-dimensional) isotropic subspace of Cd° that
is closed under the skew vector multiplication fzΊ Λ T2)c — /flf,c

zίz2 and gives rise to
a subalgebra of dG of elements {T^0, zeZ_} which contains all "raising operators"
(for a given Cartan basis). The linear span of the vectors ha

0

l . . . ha

0

n | R(G) > (0 ̂  n g dG)
is the representation space for the 2[dc/2]-dimensional irreducible representation of
the Clifford algebra of O(dG). It carries a representation of G of highest weight
[!,...,!] (see, e.g. [6]) and multiplicity mR = 2[1/2dG]~n+, where n+ is the number
of positive roots of dG (n+=^N(N-\) for G = SU(JV); the representation of G
is irreducible, i.e., mR = 1, for G = SU(2) only). Unlike the vacuum, the vector | R(G) >
is neither G-nor SL(2, (R)-invariant, its conformal weight being

A C'zL.l j j l J "G "G ί ί τ Λ \\n/r \\ m //ι Q\
ΔR(G} = - jc - 48 = 16' ^ ° ~ R(G) =

where we have used the identity C2[l, ...,!] = C2dGβ.

Remark. Whenever the vectors Qa

0 1 /ιw > span irreducible representation of G (i.e. for
K = i, or for K: = 0 and G = SU(2)) the following identity holds for the generators
(4.4) of the Virasoro subalgebra:

Σ + Σ

-Λ^-K + - - (4.9b)
U2

We notice that Eq. (4.9a) is a graded (discrete-) basis counterpart of the Sugawara
formula [19] T(z) = l/2C2:J

2(z):

5. Arbitrary UHWIRs of (Λ7)κ and SK(G)

We shall distinguish in this section the generators (4.2-4) of the minimal
representation of SK(G) by a superscript °. The following observation is similar to
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one made by Goddard and Olive [8] (in the context of the Suga\yara realization of

Ln) _ ^

Lemma 3. Let Qa

n and na

p be the operators of an arbitrary representation of(dG)κ. Then
the differences

qa

n = Qn- Ql where Qa

n = -^-fsai £ :%_„,/£,+_:, (5.1)
U2 meZ

commute with fijj and satisfy the Kac-Moody commutation relations (2.4c):

lqa

n, Pp] = 0, M, <ά] = ίfabcq
c

n+m + ̂ (^n+Λ. (5.2)

The proof is an immediate consequence of (2.4) and of the commutation relations

[a,̂  = [&^=i/«*£+P. (5.3)
The classification of UHWIRs of both (dG)κ and SK(G) is given by the following

result.

Theorem 4. Gz'u en an UHWIR of the affine Kac-Moody algebra dG generated by the
operators cfn acting in a Hubert space V[μ] of highest weight vector \ μ ) , [μ] =
[μj , . . . ,μr] (r = rank G) and central charge λ(q\ such that

(5.4)

operators

ii e rise ίo an UHWIR of(dG)κ on ^κ®V{μ}, which extends to SK(G) by

+ Σ ίie + ^-mΛm + n + K+^.Jiρ+^U,,},

rn^-n/

(5.6)

forn^O, L0 =i[L1,L_J. (5.7)

The central charges are

2 C2 + λ(q) 2 C2 + λ(qY v '

the highest weights depend on κ\

(μ0 + C2),μ1,...,μr;4[μ]( = minL0)= c

 2 μ toΐκ = %, (5.9a)

(μ0 + l),μι + l,...,μr+l;4[μ] = τf + τί̂ -τ for K = 0. (5.9b)
16 C2 + AW)

All the UHWIRs of (</G)K and SK(G) are constructed in this way.

Proof. The fact that the operators (5.5) generate an UHWIR of dG follows from
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Proposition 2 and Lemma 3. The commutation relations (2.5d) are implied by the
following corollaries of (2.4):

(5.10a)

Σ "
•(<£**£+«+*+* + hc

m+κ.kq
b

n+k\ (5.10b)

which are also used in deriving (5.9). The properties of the Virasoro generators (5.7)
are a consequence of (2.5c, d) and of the super Jacobi identities. The fact that we get
all the UHWIRs of (d&)κ follows from Lemma 3.

Remarks. A. If an integrable UHWIR of the afflne Kac-Moody algebra (with
generators q°) is given by its (generalized) highest weight [5,20] (μ) = (μ0 , . . . , μr),
where all μv are non-negative integers, then its central charge is

(λ(q) = )A(μ) = μ0 + a\μ^ + "" + av

rμr, (5.1 1)

where the positive integers a\ are the coefficients of the expansion of the highest short
root into simple roots (for SU(ΛΓ), a\ = 1, i = 1, . . . , N — 1; for E8, a\ = i + 1 for
ί = 1, . . . , 5, av

6 = 4, av

Ί = 2, av

8 = 3 see [5], Chapters 4, 6). The dual Coxeter number C2

of Eqs. (2.2) (4.1) is given by

C2 - 1 + a\ + - + av

r9 so that C2[SU(N)] - N, C2[£8] - 30 (5.12)

(see Exercise 6.2 of [5] where the label g is used instead of C2 ).
B. For G = SU(2) Eq. (4.5) gives the lower limit of the continuous spectrum

(c ^f) of UHWIRs of the Neveu-Schwarz super-algebra found in [21].

6. Discrete series of UHWIRs of SVK

As a further application of Theorem 4 we shall prove the unitarity of the discrete
series of positive energy representations of the super Virasoro algebra with central
charge [14]

using a construction of Goddard-Kent-Olive [9]. We take G = SU(2) x SU(2) and
consider the UHWIR

(μ0 = m-2J, μ1 = 2/)Θ(2,0) (21 = 0,1,...,m-2; w^2) if κ=i (6.2)

of the super-algebras

(̂ G)κ - (su(2))κ 0(su(2))κ and SK(G) = .SK(SU(2)) 0 5K(SU(2)). (6.3)

According to (5.8) and (5.11) the values of the central charges for this representation
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are

On the other hand, for the diagonal SU(2)-subgroup, H — SU(2)diag, we have

)- (6.5)

An analogue of Lemma 3, established in [8], says that the differences

ln = Ln(G)-Ln(H) (6.6)

satisfy the commutation relations (2.6a) with

Since Ln(G) and Ln(H) correspond to hermitian representations of the Virasoro
algebra realized in the same Hubert space, then the same is true for /„. This completes
the proof of the above statement.

There also exist unitary representations of SVK with central charge C I = J Q , but
the proof of this fact requires a different argument.
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Note added in proof. In a recent paper by Di Vecchia et al, "A supersymmetric Wess-Zumino
Lagrangian in two dimensions", Nucl. Phys. B253, 701-726 (1985) (which appeared after our paper has
been accepted for publication) it is shown that a supersymmetric Wess-Zumino Lagrangian in 1 + 1
dimensions gives rise to the superalgebra Sυ2(G).






