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Abstract. We study the behavior of solutions of the one-dimensional Broadwell
model of a discrete velocity gas. The particles have velocity + 1 or 0; the total
mass is assumed finite. We show that at large time the interaction is negligible
and the solution tends to a free state in which all the mass travels outward at
speed 1. The limiting behavior is stable with respect to the initial state. No
smallness assumptions are made.

1. Introduction

Broadwell [1] studied the structure of shocks in a model of rarefied gas in which the
particles travel with speed c in either direction along a coordinate axis. If particles
traveling in opposite directions collide, they are equally likely to move in each of the
three coordinate directions after collision, with velocities of opposite sign. Other
collisions can only lead to an exchange of velocities. IfNf(x9 y, z, ί) is the density of
particles with velocity (c, 0, 0), NΪ the density with velocity ( — c, 0, 0), and similarly
for i V f , N$9 the resulting equations are

DtNΪ + cDxN
+, = °- (JV2

+ JV2- + JV3

+ Λ7 - 27V + Λ7),

ZVVΓ - cDxNΓ - (N2

+N2~ + N3

+7V3- - 2JV + JVf),

etc., where σ is the frequency of collision. (Such discrete velocity models of a gas were
introduced by Maxwell; see [5] for a survey.)

Here we consider the special case of one-dimensional motions in which the TV's
are independent of y, z, and furthermore N% = N^ = N^ = N $ . Setting Nf = v(x9 t)9

N~ = vφc, ί), N^ = z(x9 1) and rescaling the variables so that c—\,σ — 3/2, we can
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write the equations as
vt -f υx — z2 — v w,

wt — wx = z2 — t w,

z, = i(ι;w-z2). (1.1)

Suppose in addition that initial data are prescribed:

φc,0) = ι>0(x), vφc,0) = w0(x), z(x,0) = z0(x). (1.2)

If the data are nonnegative, the same is true for the solution. Moreover, for
integrable data, the mass and momentum

00 OO

J (v -f w + 4z)dx, J (v — w)dx,
— oo — oo

are conserved in time. An equivalent statement is that the partial masses

m+= J (v + 2z)dx, m~ = ] (w + 2z)dx, (1.3)
— oo - oo

are conserved. Since the interaction terms are quadratic in the unknowns, it is not
immediately apparent that solutions continue indefinitely. However, it was shown
by Crandall and Tartar [14] that regular solutions of the initial value problem (1.1),
(1.2) exist for all time for suitable initial data, in particular if the data are uniformly
bounded and integrable. This argument relied on an earlier existence result of
Nishida and Mimura [13] for sufficiently small mass. (The properties of solutions
and the existence theory are reviewed in Sect. 2.) The purpose of this paper is to
describe the behavior at large time for solutions of finite mass. We show that the
solution evolves toward a state in which v and w have become waves traveling
outward with velocity ± 1 without interaction, and z is zero. Thus, while the
interactions may produce local growth, the ultimate nature of the solution is
determined by the spatial spreading at different velocities.

The system (1.1) is one of a variety of possible one-dimensional models of a
discrete velocity gas. Mathematical questions for a general class of such systems
were treated in [15]. For the Carleman equations vt + vx = w2 — v2, wt — wx = v2 —
w2, the maximum norm of the solution is nonincreasing. Using this fact Illner and
Reed [6] showed that bounded solutions decay uniformly at large time (see also [15,
Appendix 2]). For other systems such as the Broadwell Eq. (1.1), asymptotic
descriptions have been given only for small data [15]. For (1.1) the maximum norm
may increase, aίnd there do not seem to be any natural norms other than the mass
which are conserved or nonincreasing. Our strategy here is first to obtain a weak
decay statement for υ and w, and then to show using this that a quantity related to
the IP norm is eventually nonincreasing. The nonnegativity of solutions is important
for our method. Other work on the existence and basic properties of (1.1) and related
systems includes [2,3,7-15].

We now summarize the results. We shall say that the initial data vθ9 w0, z0 are
admissible if they are nonnegative, continuously differentiable, uniformly bounded,
and integrable. In the statements below, the data are assumed to satisfy these
conditions. The number p is arbitrary with 1 ̂  p < oo.
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Theorem 1. (Boundedness) For any solution there exists a constant K so that

\ υ ( x 9 t ) \ 9 \ w ( x 9 t ) \ 9 \ z ( x 9 t ) \ ^ K

for xeR, ί^O.

Theorem 2. (Lp asymptotics) As t -> oo, z( , t) ->0 in Z/([R); v( + ί, t) converges in U to
a limit i?00; and w( — ί, ί) converges in LP to a limit w°°. In particular, the total mass
inside any finite interval goes to zero as t -> oo. The limiting states are uniformly
bounded by K and satisfy

00 OO

— oo — oo

Theorems. (Lp Stability) Let v, w, z be a solution with initial data ϋ0, w0, z0. Given
ε>0, if (f0,w0,z0) are sufficiently close to (U0,vv0,z0) in LJ((R) and L°°(1R), then the
solution satisfies

uniformly in ί, and consequently

| w ϋ υ - w ϋ υ | r p < ε .LP, 0 0-w°0 |Lp

Theorem 4. (Boundedness in a Neighborhood) For any solution v, w, z, there is α
constant K' so that, for (ι;0,w0,z0) close enough to (£0,w0,z0) in L^

/or

Theorems. (Uniform Asymptotics) Assume that vQ, w0, z0 ίenrf ίo zero as x -> ± oo .
Then z(x, ί) -» 0 uniformly in x as t -> oo, anJ D(X, ί), w(x, ί) -> 0 uniformly for x in any

finite interval The limiting functions ί;00, w°° are continuous and tend to zero as
x-> ± oo. Moreover, the convergence of v(- + ί, ί), w( — ί, £) ίo f00, w°° as £-> oo is
uniform in x.

In Sect. 2 we recall the basic properties of solutions, outline the proof of the
existence theorem, and derive the weak local decay statement for u, w (Lemmas 2.1,
2.2). We prove Theorem 1 in Sect. 3. Introducing weight functions related to the mass
integrals, we show that a weighted IP norm is non-increasing at large time. Letting
p->oo, we have a uniform bound. The same estimate gives a weak decay statement
for z. Theorems 2-4 are proved in Sect. 4. We first show (Lemma 4.2) that the
interaction terms are integrable in space-time. As noted in [15], the asymptotic
description in L1 is a simple consequence of this statement. Theorems 3 and 4 are
obtained by sharpening the proofs of Lemma 4.2 and Theorem 1. In Sect. 5 we first
show that z decays uniformly by comparing with an ordinary differential equation.
We then complete the proof of Theorem 5 following an argument of Tartar [15].

There is a surprising variety in the behavior of the different particle systems. As
observed by Tartar [15], the Carleman model cannot have L1 limits as in Theorem 2;
since the solutions decay in L°°, the limit would have to be zero, but this is impossible
because of conservation of mass. A system similar to (1.1) is obtained by setting
Nγ = v, NΪ = w, 7V^ = NI = z+, N 2 = NΪ =z~. The resulting system, which is
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slightly more general than (1.1) and was treated in [14], is

vt + vx = z* z~ — i w, wf — wx = z + z~ — vw,

z+ = ±(vw-z + z~\ z~ = ̂ (vw-z + z~).

It is not difficult to modify the proof of Theorem 1 to show that solutions of this
system remain bounded. However, the direct analogue of Theorem 2 cannot be true:
since zt

+ = z~, z+ — z~ is constant in time, and both z's cannot approach zero if this
difference is initially nonzero. It will be evident that the techniques introduced here
can be applied to related systems of equations. Applications to a general class of
semilinear systems will be developed in forthcoming work.

2. Background and Weak Decay

We first discuss a few basic properties of solutions. Suppose we have a C1 solution on
the closure of a trapezoidal region S = {(x, ί): 0 < ί < T, a + t < x < b — ί}. If a =
— oo or b = oo, we assume that the solution is uniformly bounded. Three elementary
properties are

(i) (Uniqueness) There is only one solution with prescribed initial data.
(ii) (Domain of Dependence) For (x0,£0)eS, the solution at (x0,t0) depends

only on the initial data on the interval x0 — ί0 ̂  x £Ξ x0 -f ί0.
(iii) (Nonnegativity) If DO, w0, z0 ̂  0, then v9 w, z ̂  0 throughout S.

The solution can be constructed locally in time by a standard argument (e.g., [4,
Chap. V, §6]). The equations are written in integral form along characteristics and
the solution is obtained as the fixed point of a contraction mapping. The domain of
dependence property is evident from this construction. Because the fixed point is
unique, two solutions with the same initial data must agree on a short time interval,
and this local uniqueness statement implies property (i). Finally, to verify (iii), it is
not difficult to modify the contraction mapping argument mentioned above so that
nonnegativity is preserved under the iteration, and thus the solution obtained in the
limit must be nonnegative (e.g., see Theorem 2 of [14] or (4.12) of [15]).

If S = U x (0, T) and the initial data is admissible in the sense of Sect. 1, and in
particular in L^IR), the conservation law

(t; + w + 4z)f + (v - w)x - 0, (2.1)

implies that the solution is in L*([R) for each ί and

00

J (v + w -f 4z)dx = m, (2.2)
- 00

representing the total mass, is constant in time. Similarly

(Ό-w)t + (Ό + w)χ = 09 (2.3)

gives the conservation of momentum. An equivalent pair of conservation laws is

(w + 24 + t>x = 0, (2.4)

(w + 2z)t-w, = 0, (2.5)
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and these lead to (1.3).
The fundamental existence theorem is the following.

Existence Theorem. Given admissible initial data v0, w0, z0 on (R, there exists a unique
C1 solution ofEq. (1.1) defined on IR x (0, oo) which is uniformly bounded on IR x [0, T]
/or each T.

Since the solution is in L1 n L°°(1R) for each ί, it is also in LP([R) for every p ̂  1. This
theorem was proved by Crandall and Tartar [14,15] using an existence theorem for
small mass due to Nishida and Mimura [13]. We outline the proof for the sake of
completeness. An argument of Nishida and Mimura shows by an integration along
characteristics that if m < 2 and the initial data are bounded by KQ, the solution
must be bounded by K = 2K0/(2 — m). Thus if m^ 1, we have u,w,z^2K 0 . A
uniform bound on the solution easily leads to an exponential bound on the
derivatives. The contraction mapping argument produces a C1 solution for a short
time, and if m ̂  1, the uniform bounds allow us to construct a solution for all time in
successive steps.

Now, following Crandall and Tartar, we consider the initial value problem with
data of arbitrary mass. Let X0 be the maximum for the initial data. We construct a
solution in S = {(x, t): 0 < £ < T9 \x — x0 | < 2T — t}9 where x0 is an arbitrary point.
Since the solution in this region is independent of the data for | x — x0 \ > 2 T, we may
replace vθ9 w0, z0 by data vanishing outside |x — x0 | <3T without affecting the
solution; this can be done without increasing m or K0. We now consider the initial
value problem for xeίR with this modified data. Since by (ii) the solution has
compact support for each ί, the entropy function

00

J (v log v + w log w + 4z log z)dx,
— oo

is defined, and it is easily seen to be nonincreasing in t. Since u log u ̂  — l/e for u ̂  0,
it follows that

oo

j (ι;log+ v + wlog+ w + 4zlog+ z)dx ^ 36TK0logK0 + 48T/e
— oo

for t ̂  T or as long as the solution is defined. Here log+ u means the positive part of
log u. As a consequence, it can be shown that there exists a number r > 0, depending
only on K0 and T, so that, as long as the solution is defined,

J [φc, t) + w(x, t) + 4z(x, ί)]dx < 1,
/

for every interval/of length r g r w i t h / x {t} eS. (See [15], proof of Theorem 4.) As a
result we can build the solution in S by applying the small mass existence result on
intervals of length r in time steps of fixed size, say r/3. Solutions agree on overlaps by
uniqueness. At each time step the maximum increases at most by a factor of length 2.
By varying x0 we construct a C1 solution on (R x [0, T], the number r remaining
unchanged. Because of conservation of mass, the solution is L1 for each t. Finally,
since T was arbitrary, the theorem is proved.

We now derive two weak decay statements for υ, w at large time. They depend
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only on the conservation laws (2.4), (2.5) and the nonnegativity property.

Lemma 2.1. For each x,

00 00

J v(x, t)dt ̂  m, j w(x, ί)dί ̂  m.
0 0

Proof. We apply the divergence theorem to (2.4) on the region S = {(x'5 ί'): — oo <
x' < x, 0 < t' < t}, obtaining

',ί)dx'= } (w0 + 2z0)dx'. (2.6)
- oo

(Because veLl(S)9 there is no problem in letting x'-> — oo.) Since each term is
nonnegative and the right side is part of the mass, we have

and the conclusion follows. The case of w is similar with (2.6) replaced by the identity

j w(x, t')dt' + J (w + 2z)(x', t)dx' = J (w0 + 2z0)dxf. (2.7)
O x x

Lemma 2.2. For every L and every ε > 0, there exists T(ε) so that for t g: T(ε), we have

oo

j (v + w)(x, ί7)^^ = £5

uniformly for — L^x^L.

Proof. We use the momentum conservation equation (2.3). For | x | gL, the
divergence theorem applied on the rectangle {x < x' < L, t < t' < T} gives

T T
J (t? + w)(x, ί')dί' - f (t?

' - J (» - w)(x', ίMx' (2.8)

Now since

oo L

J (ι; + w}dx'dt' ^
0 -L

by Lemma 2.1, there is a sequence Tw-* oo so that

L

J (ι; + w)(x;, ΓJdx'-^O as n-+co.
-L

Let T = Tn in (2.8) and n-> oo; the third integral goes to zero, and we obtain

J (t? + w)(x, ί'̂ ί' = ί (ϋ -f w)(L, ί7)dί' - J (ϋ - w)(x7, ί)dx'.
ί ί x

Suppose now that we replace t by Tw from the same sequence as above. For large n,
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the last integral is g β/2 in magnitude, uniformly in x for | x \ ̂  L. The middle integral
will also be ^ ε/2 for rc large enough. Thus for some n

for |x ^ L with f = Tπ, and therefore the same is true for t > Tn, since the integral is
nonincreasing in ί.

We will also need the following facts, which are evident from the proof of
Lemma 2.1.

Lemma 2.3. (a) For each x

j w(x, f)dί g J (w0 + 2z0)dx'.
0 x

(b) T/ie integrals

X 00

f (ι> + 2z)(x', ί)dx', j (w + 2z)(x', ί)dx'
- oo x

are nonincreasing in t.

3. Boundedness of Solutions

To show that solutions remain uniformly bounded we estimate Lp norms and
eventually let /?->oo. With this aim, we first multiply the ^-equation by pvp~1

9

obtaining

Dt(υp) + Dx(vp) = pvp~ lz2 - pvpw.

We will need to multiply further by a weight function μ+ depending on the
unknowns. The equation then becomes

D+(μ + vp) = (D+μ + )vp + pμ + vp~lz2 - pμ + vpw, (3.1)

where D + = Dt + Dx , with μ + to be chosen. In a similar way we have for w and z, with
D-=Dt-Dx,

D~(μ~wp) = (D~μ~)wp + pμ~ wp~ lz2 - pμ'v\vp, (3.2)

Dt(4μ°zp) = 4(Dtμ°)zp + 2pμ°zp-1vw - 2pμ°zp + 1. (3.3)

Thus

Dt(μ + vp + μ~wp -f 4μV) + Dx(μ + vp - μ~wp) = R(x9 1)9 (3.4)

with R the sum of terms on the right in (3.1)-(3.3). We will see that choices can be
made so that R ̂  0 at large time, and thus
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is nonincreasing.
We want to choose μ + , for example, so that D + μ + includes a term like — pzμ + , in

order to control the growth terms. This can be accomplished by taking the μ's to be
exponentials of mass integrals. Let

X

w + 4z)(x\t)dx'.

Obviously Dxf~ = v -h w + 4z. On the other hand, integrating the mass conservation
Eq. (2.1) over { - oo < x' < x, 0 < t' < t] gives

X

(ι>-w)(x,ί')df' = J (vQ + w0 + 4z0)dx'9
- oo

so that D/~ =w — v. Now let

/+(x, t) = m- Γ(x, t) = ](v + w + 4z)dxf.
X

Then £>V+ = -4z-2w, D~^~ = -4z-2v. We define μ+=expp/ + , μ~ =
expp*f~, so that

D + μ + = -p(4z + 2w)μ + , D"μ~ = -p(4z + 2φ~. (3.5)

The z-multiplier will be chosen later. We note for future use that 0 ̂  ̂ ± ̂  m and
therefore l^μ±^emp = Mp, where M = em.

In the estimates below we use Young's inequality:

AB ̂  -Ap + -Bq, - + -=1.
p q p q

For the growth term in the i -equation we set A = z, B = vp~l to obtain

υp- !z

2 - (vp~ lz)z ^-zp+l 4- ̂ — Upz. (3.6)
P P

Substituting (3.5), (3.6) in (3.1), we find

D+(μ+vp) £ - pμ + (4z + 2w)υp -f (p - \)μ+υpz + μ + zp+1 - pμ + tΛv,

and thus

Dt(μ + vp) + Dx(μ + ι;p) ̂  μ + zp+1 - 3pμ + vpw. (3.7)

In the same way

Dt(μ ~ wp) - Dx(μ ~wp)^ μ~ zp+l -3pμ~ vwp. (3.8)

In constructing μ° we take advantage of Lemma 2.2. We will choose the length L
so that

Here ε0 is a number depending only on m, to be determined below (see (3.21)), and L



Large-Time Behavior of the Broadwell Model 225

will be fixed. Now define

00 OO

k+(x, ί) = J v(x, t'W, k~(x,t)=l w(x, t')dt',
t t

and

fMpexpαp(fc + +k~), |x ^L,

μ° = <Mpexpp(b2k++k-l x < - L, (3.10)
(jVPexpp(/c + + b2k~) x>L.

Here a and b are constants to be chosen. Since Dtk
+ = —v, Dtk~ = — w, we have

Dtμ° = - αpμ°(v + w), x |^L. (3.11)

Inserting this in (3.3) we find for x| ^ L,

Dt(4μ°zp) = - 4αpμ°(v + w)zp + 2pμ°zp ~lvw- 2pμ°zp +l. (3.12)

Since μ± ^ Mp g μ°, the last term will dominate the positive terms in (3.7), (3.8) in the
sum (3.4). To handle the growth term in the z-equation, let r2 = t w. We could use
Young's inequality as above to write

zp~1v\v - (zp~ V) r ̂  -rp+1 + ̂ — U^r,
P P

but it will be better to avoid a factor of μ° on the rp+1 term so that it can be controlled
by the last terms in (3.7), (3.8). Thus

μV~ V ^ -rp + ̂ —

and

2pμV" ^w = 2pr μ0zp~lr ^ 2rp+ 1 + (p - l)(2r)(μ°f/(p- ̂  (3.13)

For the first term we have

2rp+ 1 = 2rp~1r2 = 2(vp~1\vp~1)1/2(v\v) ^ (vp~ 1 + wp~ ̂ w - Λv + ι^wp.

Since μ1*1 ̂  1, this term is bounded by the corresponding terms in (3.7), (3.8).
We now will have shown that R ̂  0 in (3.4) for | x | ̂  L provided the second term

in (3.13) is controlled by the (D^0)-term, i.e., if

(p - l)(2r)(μQ)pl(p- ί}zp ^ 4αpμ°(v + w)zp. (3.14)

Since 2r 5Ξ v -h w, this holds if

or

MP/(P- i) eχp J _L_ α(fc+ -f fc-) ί g α.
IP" 1 J

According to Lemma 2.2, for given ε 1 ? there is a time ί0 so that

/ c + - h / c - ^ 8 i f o r | x | ^ L , ί^ί0. (3.15)
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We choose εi below in terms of the mass m.
Assume that p ̂  2, so that p/(p - 1) ̂  2. To verify (3.14), it will be sufficient to

satisfy

M2e2aει^4a. (3.16)

Take a = eM2/4, so that the inequality becomes Q\p(2aε1) ^ e. We are thus led to
choose ε1 so that 2aεl = 1, or

ε1 = l/2a = 2e-1M~2. (3.17)

With this choice of εί9 (3.16), and therefore (3.14), is satisfied. We have therefore
established that

^0 for |x |^L, ί^ί0. (3.18)

Here ί0 depends on L and our choice of εί.
We now show that we can also ensure R ̂  0 for x < — L if ε0 and b are

chosen properly. Recalling (3.10), we have in place of (3.11), for x < — L, Dtμ° —
— pμ°(b2v + w). We estimate as before, except that (3.14) is replaced by

(p - l)(2r)(μ°)pl(p~l)zp ^ 4pμQ(b2v + \v)zp. (3.19)

To establish this inequality, we first write 2r^bv + w/b = (b2v + w)/b. Thus (3.19)
will hold provided (μ°)ll(p'l] ^ 4b. Now (3.9) and Lemma 2.3(a) imply that

k+^ε0 f o r x < - L , k~ ̂ ε0 forx>L, (3.20)

and k~ ̂  m always. Therefore

thus (3.19) will be implied by

and for p ̂  2 by M4exp(262ε0) ̂  4ft. Thus if we choose b = eM4/4 and

8e-2M-8, (3.21)

then (3.19) is satisfied. We have shown that R g 0 for x < — L and t Ξ> 0. In just the
same way, R ̂  0 for x > L, t ̂  0.

We have now established that R ̂  0 for t ̂  ί0, — oo < x < oo . In fact, with p ̂  2
our estimates show that R ̂  — 2μ°zp+1, and integrating (3.4) in x gives

— J (μ + vp + μ-\vp + 4μ°zp}dx + 2 J
UL — oo — oo

Define 7(ί), ]V(ί) by

= (vp + wp + 4zp)dz.
— oo
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Our differential inequality yields

Ύ(tγ + 2 } J μ°zp+1 dxdt ^ Y(t0)
p. (3.22)

ίo — oo

Now μ°, μ± ^ 1, so that N(t) ̂  y(ί) for each t. Also μ± ̂  Mp. We choose α, εx so that
fl(/c + H - f c ' J ^ f l β i ^ 1/2 and thus μ0^Mpepl2 for x | ̂  L, t ̂  ί0. Similarly for | x ^L,
b2ε0 ̂  1/2 and μ° ̂  Mpexpp(m + 1/2) = M2pep/2. In any case we have

1 ̂  μ±, μ° ̂  M?, M! = M V/ 2 - exp(2m 4- 1/2),

and therefore Y(t)^M1N(t). Let

K! = sup {v9 w, z: — oo < x < oo, t = ί0}.

Then

Y(toγ ^ MfKξ-1 J (ϋ + w + 4z)ώc - mM?K?~1.

One consequence of (3.22), which we note for later use, is

CO OO

J J zp+1dxdt<ao, p^2. (3.23)
O - o o

Also

N(t) ^ y(ί) ̂  y(ί0) ̂  MίK1(m/K1)
llp.

Finally we let p -> oo. N(t) converges to the supremum of v, w, z at time ί, and we
obtain

v(x, t), w(x, ί), z(x, f) ^ MlKl, ί^ίo (3-24)

According to the Existence Theorem, v, w, z are bounded for 0 ̂  ί ̂  ί0, and it follows
that they are bounded uniformly for 0 ̂  t < oo, xeR.

4. Asymptotics and Stability in Lp

In this section we show that the interaction terms are integrable in space-time and
prove Theorem 2 as a consequence. We then prove Theorems 3 and 4. We first show
that the i -mass decays on the left, and w-mass on the right, and the z-mass
everywhere.

Lemma4.1. For any xeR,

X

J φc', t)dxr -> 0 as f->oo,
- 00

oo

j w(x', t)dx' -> 0 as ί -> oo.

Also
oo

J z(x;, t)dx' -> 0 as t -+ oo.
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Proof. As remarked in Lemma 2.3(b),

/Γ(x,ί) = J (v + 2z)(x',t)dx' (4.1)
— 00

is nonincreasing in ί. Therefore it has a limit as t -> oo. We show that the limit must
be zero. Given ε, we choose a ̂  x so that

a

J (ϋ0 + 2z0)dxf < ε/2.
— oo

Then
a

j (ϋ + 2z)(x', f)dx' < ε/2,

for all ί ̂  0. By Lemma 2.1,

J J φc', t)dx'dt < oo.
0 α

Also from (3.23),

OO 00

J J z3(x', ήdx'dt < oo,
O - o o

so that by Holder's inequality

oo Γx Ί3

J $z(x',t)dx' at < oo.
0 Lα J

Consequently there is a time ί so that

and h~(t}< ε. Therefore limh~(t) = 0. A similar argument shows that

,t)dxf, (4.2)

goes to zero. The conclusions follow from these two statements.
We note one consequence of Lemma 4.1. If we apply the divergence theorem

once again to (2.4), we have

/Γ(x, ί) = f u(x, t')dt' + Λ~(x, T).
t

Letting T -> oo , we find

h-(x,t) = ]v(x,t')dt'. (4.3)
ί

Similarly

A+(x,ί) = ?w(x,ί/)Λ/. (4.4)
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Lemma 4.2.

00 OO

J J (z2 + vw)dxdt < oo .
O - o o

Proof. We estimate with multipliers as in the previous section, this time separately
for x ^ 0 and x ^ 0. In the first case we multiply the w-equation by μ~ = exp 2h ~ and
the z-equation by 8, with h~ as in (4.1). Using (4.3), we have Dxh~ = v + 2z, Dth~ =
— v, D~h~ = —2(υ + z), and D~μ~ = —4(v + z)μ~. At large time, say ί ̂  ί0, we
have 1 ̂  μ~ ^ 2 for x ̂  0 by Lemma 4.1. The equations are

Dtv + Dxυ = z2 — i w,

D,(μ~w) — Dx(μ~w) = μ~z2 — 5μ~ι?w — 4μ~zw,

- 4z2.

Integrating over — oo < x ̂  0, we have

o
Dt J (ϋ

— 00

0

— oo

0

^ - j (z2 + vw)dx9
— oo

for t ̂  ί0. We now integrate in t to obtain for t1 ^ ί0,

0 ίi 0

J (t; + μ~ w + 8z)(x, ί^dx + J J (z2 + vw)dxdt
— oo ΓQ - oo

0 ίi

^ J (ϋ- fμ 'w-f 8z)(x,ί0)dx + f(μ w)(0,ί)dί^4m, (4.5)
ίo

using Lemma 2. 1 . This shows z2 -f i; w is integrable on — oo<x:gO, 0^ί<oo. For,
x^O the argument is similar; we multiply the t -equation by μ+ =exp2/z + , h+ as in
(4.2), and the z-equation by 8, and then use the fact that D + μ+ = — 4(w + z)μ + .

Proof of Theorem 2. (Limiting Behavior in Lp). The asymptotic description of the
solution in Ll(R) is an easy consequence of the last two lemmas. We have already
seen in Lemma 4.1 that z( , ί) -> 0 in L^IR) as t -> oo . As observed in [15], the limiting
behavior of the other components follows directly from the integrability of the
interaction terms: Let F(x, t) = z2 — i w, and define t>*(x, t) = v(x + t, ί). Then
D fu*(x,t) = D + ι;(χ + f,t) = F(x + t,t) = F*(x, t). Regarding F* as an element of
1 (̂0, oo L^R)), we can write

o

and it is clear that u*( ,ί) converges in Ll(U) to a limit i;00. Since

m

+ = J (t;H-2z)(x,ί)dx,
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is conserved and z( ,f)->0 in L1,

J u°°(x)dx = m + .
- 00

Similar remarks apply to w. Convergence in Lp, p < oo , follows from convergence in
L1 and uniform boundedness. Finally,

\v*( ,t)\LP^K(p-ί}/pmί/p,

for each ί, and therefore the same holds for ι;°°. Letting p -> oo , we have | v™ |Loo ̂  X.

We now consider solutions v, w, z near a fixed solution tJ, w, z. We first show that
solutions which are initially close in L1 nL°°([R) remain close for finite time.

Lemma 4.3. Given T, ε, αrcd α solution v, w, z, f/iere exists δ so that if

bo - tfolL" + I w0 - WO |L» 4- 4|z0 - ZO|L«> < δ,

and the same for L1 norms, then for 0 ̂  £ ̂  Γ,

similarly for w, z.

Proo/ We first bound the difference in L°°. Let y(t) be the maximum of \υ — ϋ
|w — w|, |z — z| up to time t. Also let K be the maximum of ϋ, w, z for Ogί^ T.
Integrating the equations for the differences along characteristics we find easily that

As long as 2y(s)^K, we have y(t)^y(0)e5KT by GronwalΓs inequality. If
Ke~5KT/4 = (50, this argument holds for 0 :g t ̂  T. We obtain the conclusion by
taking δ ?g εe~5KT as well as δ ̂  δ0.

Next we estimate the difference in L1. By the above, the maximum of υ, w, z for
ί ̂  T is ^ 2X for v0, w0, z0 in some L°° -neighborhood of ϋ0, w0, z0. Let

r(ί) - |ι;(ί) - v(t)\Lί + I w(ί) - w(ί)|L1 + |z(ί) - f(ί)|L1.

A straightforward estimate gives

& - v)\Ll + |A(w - w)|Ll + \Dt(z - z)|Ll ̂

and this differential inequality implies that r(ί) ̂  r(0) exp (15XT). (E.g., see [16], Sect.
1.6; the arguments given there apply to Banach-space-valued functions.)

Proof of Theorem 3. (II Stability). Given 0, to be determined later in terms of ε, there
exists a time ί0, according to Lemma 4.1, so that

J (t; + 2z)dx<0, j (w + 2z)ώc < 0.

For initial data sufficiently close to ϋ0, w0, z0 in L1 nL°° the solutions are within 0 of
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v, w, z in Lx(ίR) for 0 ̂  t <; ί0 Then

J (v + 2z)dx<2θ, ](w + 2z)dx<2θ, (4.6)
-oo 0

at t = ί0, and therefore for all later time, since the integrals are nonincreasing. In
particular

J zdx<2θ, ί^ί0. (4.7)
- 00

If μ± are defined as in Lemma 4.2 and θ g (log 2)/4, then μ~ ^ 2 for x ̂  0, μ+ g 2 for
x ̂  0, and the argument of the lemma applies. The time ί0 depends on θ but is the
same for all solutions under consideration. Rearranging (4.5), we have for t1 ^ t0,

The analogous estimate for x ̂  0 is

ίl 00 00 ~Jίl t\

J J (z2 + vw)dxdt ^- $(μ + v + w + 8z)(x, ί)^x + J (μ + ̂ )(0, O^
ίo 0 0 Jί0 ί0

We now add these two expressions and use the conservation of mass to obtain

ίl 00 0

J J (z2 + vw)dxdt^ J
0

f i

+ 4 j φc,ί0)Λc
- oo to

with ρ± = μ± — 1^0. We check that each term on the right is of order ft First, for
θ ^ (log 2)/4 as above, p± ^ 80, so that each of the first two terms is bounded by Wm.
Here m is an upper bound for the mass in the set of solutions considered. According
to (4.7), the z-term is bounded by 8ft Finally,

f μ ~ w(0, t)dt ^ 2 J w(0, t)dt = 2h+(0, ί0) ̂  40,
ίo ίo

recalling (4.4), and similarly for μ + υ. In summary,

j J (z2 + vw)dxdt ^ (16m +16)0 for ί^ίo.
ίθ - oo

As a consequence, with F = z2 — υw again,

OO 00

J J \F\dxdt ^δ = (ί6m+l6)θ.
to - oo

Recalling from the proof of Theorem 2 that

V*(;t)-V*(;t0) = \F*(;t)dt,
to

we see that |υ*( , ί) — t;*( , ί0)|Lι ̂  δ for t ̂  ί0. Then for t ̂  ί0 we have, with all norms
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inL1,

\v(t) - v(t)\ = \v*(t) - ϋ*(t)\

£ |ι?*(ί0) - i>*(fo)| + \v*(t) - υ*(t0)\ -f \ϋ*(t) - ϋ*(ί0)|

This is < ε if we take θ = ε/(33(m H-1)). The same works for w, and the result is
verified for p = 1. For p > 1, it will follow from the L1 case and Theorem 4.

Proof of Theorem 4. (Boundedness in a Neighborhood). We check that the argument of
Sect. 3 can be applied to solutions with initial data close enough to ϋ0, w0, z0. Let m
be the mass of the fixed solution v, w, z. In the earlier argument m will now denote an
upper bound for the mass in a neighborhood of ϋ, w, z, e.g., m + 1. Choose ε0, ε1 as in
(3.21), (3.17); then choose L so that

J (t;0 + w0 + 4z0)dx<ε0/2, (4.8)
|x |>L

and ί0 so that

f (ΰ + 2z)d;x, J (w -f 2z)dx < Ci/2 for ί = ί0, (4.9)
-oo -L

using Lemma 4.1. Assume vθ9 vv0, z0 close enough to ϋ0, vP0, z0, so that

ϊ (\v0-ϋQ +|w 0-w 0 |-f-4|z 0-z 0 | )^<ε 0/2, (4.10)
— oo

and
00

- oo

using Lemma 4.3. By (4.8), (4.10)

-L oo

j (ι>0 + 2z0)<ε0, J(w 0 + 2z0)<ε0,

and since the integrals are nonincreasing,

j (υ + 2z)dx<ε0, J(w + 2z)<ε0, ί^O. (4.12)
— oo L

By (4.9), (4.11), we have for x| ^L, ί = ί0,

X OO

J (ι; + 2z)dx<ε1, J (w4-2z) ί/x<ε l 9 (4.13)
- oo x

for |x | g L, ί = ί0. In view of (4.3), (4.4), conditions (4.12) and (4.13) imply (3.20),
(3.15), and the argument proceeds without change.

5. Uniform Asymptotics

Throughout this section we assume that v0, w0, z0 ->0 as x -> ± oo in addition to the
earlier admissibility conditions. K will denote an upper bound for the solution, and



Large-Time Behavior of the Broadwell Model 233

F(x, ί) = Z2 — t w.

Lemma 5.1. Gii en ε ί/iere exists Λ so that

φ;,f)^ε for | x - f | ^ Λ
w(x,ί)^ε for \x + t\^A,

z(x,f)^ε for | x | ^A

Proof. Integrating D + v = z2 — vw along a characteristic, we have

ί
φc, ί) ̂  t;0(x - ί) -f K J z(x - ί 4- s, s)ds,

o

and to derive the statement for υ we will check that

c«

J(y) == J z(y + s, s)ds < ί
o

when \y\ is large. Since FeLl(R x (0, oo)), for X large enough,

If y <Ξ - A, we integrate zf = - F/2 over 5 = {(x, t): - oo < x < y + ί, 0 < t < T} to
obtain

r y
fφ + ί,ί)A+ 1 z0(x)dx= I
0 — oo — oo £-

Since the z-mass decays, the first integral on the right tends to zero as T -> oo . Thus
J(y)^δ/2. If y^A, we integrate over S+ = {(x,t): y + ί < x < o o , 0<ί<T),
obtaining

j z(y + ί, t)dt + ] z(x, T)dx = J z0(x)rfx - if j F.
0 y + r y s+

lϊA is large enough so that the z0-integral is ^ δ/2, we have J(y) ^ 5. The treatment
of w is of course similar.

To estimate z(x, t) for x large and positive we write

t
z(x, t) ̂  z0(x) 4- K J w(x, s)ds9

o

bounding t; by K. By Lemma 2.3(a) the integral is small for large enough x. For x
negative we reverse the roles of v and w.

Lemma 5.2. (ιnv)(x, £)->0 as £-> oo, uniformly in xe(R.

Froo/. Given ε, υ(x, t) g ε for x — t ̂  — A and thus for x ̂  0 when ί ̂  A. Therefore
vw ̂  Xε for x ̂  0, ί ̂  A. Similarly for x ̂  0, ί ̂  A, w ̂  ε and vw ̂  Xε.

We are now ready to prove Theorem 5. We first show that z(x, ί)-»0 as £-> oo,
uniformly in xeIR, using the last lemma. Given ε, there is a time ί0 so that
(ι;w)(x, ί)^ε2 for all t ̂  ί0 and all x. By the comparison theorem for ordinary
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differential equations, for each x, z(x, t) ̂  y(t) for t ̂  tθ9 where y is the solution of

/ = ε2 - y2, Xί0) - z(x, ί0).

If z(f0) g ε, then y(£) ̂  ε for all ί ̂  ί0; otherwise

y(ί) = ε coth {ε(f -t0) + θ}9 θ = coth ~ HX* o)/e)

If ί ̂  ί o + ε ~ 1 , then >>(£) ̂  ε co th 1 . Since ί 0 was independent of x, it follows that z -» 0
uniformly.

We now show that v9 w converge uniformly in the characteristic directions,
following an argument of Tartar [15, Theorem 5]. Integrating the equation D + v = F
along characteristics, we have

ί
t>(x, t) = V0(X - ί) + J F(X - f + 5, 5),

0

so that v(x, i)^g+(x — ί), where

o

Since FeL1, gf+(j;) is finite a.e. and g + eL1(U). Similarly w(x, t) ̂  gf~(x + t) with

00

0~(jO = w0GO+ ί \F(y-s,s)\ds9

both g~ and °̂ are also L1.
These upper bounds will allow us to show that {v( , t ) } is uniformly Cauchy.

Let v*(x, t) = v(x 4- ί, t) as before; let T be a large time to be chosen. Since Dtv* =
F(x + ί, ί), we have for t *> T.

t;*(x, ί) - ι;*(x, T) = f F(x + 5, s)ώ,
r

and

/i = f z(x + s, s)ds, 1 2 = J w(x 4- s, s)ds.
T T

By the above,

I^]g°(x + s)ds= f ^)ds^ J g*(s)ds9 (5.1)
Γ Γ+x Γ-^

provided x^—A.ln the same way, also for x ̂  — A,

00 00

/ 2 ^J<T(x + 2S)rf5^ j g-(s)ds. (5.2)
Γ 2Γ-A

Now given ε, suppose we choose A as in Lemma 5.1. Then v*(x, t) ̂  ε for x ^ — A,
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t ^ 0; thus

|ι>*(x, ί) - v*(x9 T)\ ̂  ε, x ̂  - A, ί ̂  0.

On the other hand, for x ̂  — ,4, (5.1) and (5.2) apply. Since g°, g~Gl}(U), we can
choose T large enough so that 7 l 5 72 ^ε/2K, and therefore

This shows that (u*( , ί)} is Cauchy in the L°° norm and converges, necessarily to the
same limit i;00 as before. An analogous argument shows that w( , f) converges
uniformly to w°°.

We have seen in Lemma 5.1 that ϋ( ,ί)» w( ,f)eC0(IR), the subspace of L°°([R)
consisting of continuous functions which tend to zero as x -> ± oo . Since this
subspace is closed, υ°°, w°° eC0(R) as well. The statement that φc, ί), w(x, t) go to zero
uniformly for x in a finite interval follows from this fact and the uniform
convergence.
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