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Abstract. The incompressible limit in nonlinear elasticity is shown to fall under
the theory of singular limits of quasilinear symmetric hyperbolic systems
developed by Klainerman and Majda. Specifically, initial-value problems for a
family of hyperelastic materials with stored energy functions

are considered, where X and x are reference and deformed coordinates
respectively. Under the assumption that the elasticity tensor

is positive definite near the identity matrix and that w"(l) > 0, the following
results are proven for appropriate initial data:

i) existence of solutions of the corresponding evolution equations on a time
interval independent of λ as λ -> oo, and ii) convergence as λ -> oo of the solutions
to a solution of the incompressible elastodynamics equations.

1. Introduction

The incompressible limit in fluid dynamics has received considerable attention
in the last few years [2,6,7,11,15]. The basic result, which has been proven in
various contexts, is that slightly compressible fluid flow is close to incompressible
flow, even though the equations for the latter are related to those for the former
via a singular limit. This justifies the use of the incompressible flow equations for
certain real fluids that are actually slightly compressible.

A similar situation occurs in elasticity: certain types of rubber strongly resist
changes in volume, and so are often modelled as incompressible solids. This
procedure has been justified for elastostatics by Rostamian [10]; our goal here is
to justify it, at least in certain contexts, for hyperelastic dynamics by applying the
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theory of singular limits of quasilinear symmetric hyperbolic systems developed
by Klainerman and Majda [6,7] for the fluid dynamics case.

The elastodynamic equations for a compressible hyperelastic material are (see
[3,13])

AV = D ;̂ (1.1)

where x(t,X) is the position of time t of the particle whose reference position
is X,

X fixed 'dxk
fix1

t f ixed

and W(F) is stored energy function of the material. For convenience it has
been assumed that the density is identically one in the reference state and that
there are no body forces. We will be considering initial-value problems for a family
of hyperelastic materials in Rn characterized by stored energy functions

Wλ(F)=Wao(F) + λ2w(J)9 (1.3)
where

and where w will be assumed to satisfy

w"(l)>0. (1.4)

Since a term affine-linear in J can be added to Wλ without affecting the
dynamics (see (2.4-2.5) below), one might as well assume also that w(l) = 0 = w'(l),
so that in a formal sense λ = oo clearly imposes the incompressibility constraint
J = l .

W^ could be allowed to depend also on (ί, X, x) without changing the results
to be presented.

Previous proofs of existence for the initial-value problem of elastodynamics
([4,5]), when applied to hyperelastic materials with stored energy functions Wλ,
yield solutions for times T(λ) that might go to zero as λ-> oo. We will show, under
conditions specified later, that the solutions actually exist on a fixed time interval,
[0, T], and converge, as λ-+ oo, to a solution of the elastodynamic equations for
an incompressible material with stored energy function W^. Thus, slightly
compressible elastodynamics is close to incompressible elastodynamics. Note also
that in particular this proves existence of solutions to the initial-value problem
for incompressible elasticity.

These results are obtained by converting the elasticity equations (1.1) to a first
order system and noticing that this system satisfies the structural conditions from
[6,7],

In order to do this, it is necessary to assume that the elasticity tensor A^
defined by

^= (i 5)



Incompressible Limit in Nonlinear Elasticity 209

is positive definite in a neighborhood of the identity, i.e. that

Aft(F)zίkzjl^C\z\2, (1.6)

for all zeR"2 and all F in a neighborhood of the identity matrix. For general
symmetric Aft, assumption (1.6) is stronger than the more commonly assumed
Legendre-Hadamard condition

^C\z\2\y\2. (1.7)

(See [1 and 14] and the references there.) However, given a stored-energy
function W for which (1.7) holds, it often happens that a WNL can be found such
that (i) the equations of motion do not change when W in (1.1) is replaced by
W+ WNL (i.e. WNL is a null-Lagrangian), and (ii) the Aft for W + WNL satisfy (1.6).
For a planar material this is always true ([9, 12]). In three dimensions it has been
shown true when Aft at the identity has the classical form

[(CJ2 - 2(C2)
2lδikδjl

where C1 > C2 > 0, with WNL being the sum of 2 x 2 subdeterminants

ΣFr

rF
s

s-Fr

sF
s

r ([5]). Assumption (1.6) (or (1.7)) is what distinguishes elasticity
r<s

from fluid dynamics, for which, as will become evident later, Wλ = λ2w( J); i.e. the
Aft, as defined here, vanish identically.

System (1.1) will be expressed more explicitly as a second order system, and
then converted to a first order one, in Sect. 2; the uniform existence and convergence
theorems will be proven in Sect. 3.

2. Coordinate Systems and Equations of Motion

Let X denote the reference coordinate system of Rn, and x(t,X) the position
at time t of the particle with reference position X. The function x(Q,X) will be C1

and invertible, and the equations of motion will guarantee that the same is true for
x(t,X) on some interval [0, T]. Its inverse X = X(t,x) is also C1 by the inverse
function theorem, and dX/dx is the inverse of dx/dX. It will be convenient to define

dx*

since u, and not x, will be square integrable.
The Lagrangian derivative operators defined in (1.2) and the Eulerian ones

defined by

δ'=ί
are related by

. ^k

t f ixed•'-I fixed
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where
v = Dtx. (2.1)

Plugging W—Wλ defined by (1.3) into the elastodynamic equations (1.1)
and writing the result in terms of u and G gives

H
The first term on the right of (2.2) can be written as

, (2.3)

where the Aft are defined in (1.5). In order to simplify the second term in
the right of (2.2), it is useful to have the formulas

(2.4)

and
/??V°' (2 5)ox1 J

the first of which is just Cramer's rule and the second of which is an easy
exercise in linear algebra. It is also convenient to define

ρ = J~^ P(p) = - w'(l/p). (2.6)

The quantity p, which represents the density of the deformed material,
satisfies the conservation-of-mass equation

Dtp + pdp* = 0. (2.7)

as can be seen by calculating DtJ~* using the chain rule and (2.4). Since
given x(t,X\p = J'1 is the unique solution of (2.7) with initial data

(2.8)

p can be viewed as being defined by (2.7-2.8) rather than (2.6). Similarly,
the incompressibility constraint J = 1 can equally well be imposed by the condition
d tf = 0 and initial condition J(t = 0) = 1.

Using (2.4-2.5), the second term on the right of (2.2) can be written as

dXk

which in turn can be expressed either as

8Xk dXk

(2.10)
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or as
dXk P'(o]

J-^rDkW'(J) = JdiW'(J)= -- ^diP. (2.11)
(7.X fJ

Combining (2.2-2.3) and (2.9-2.10) produces the system of wave equations

dX

with which are associated the initial conditions

u(0, X, λ) = u°(X9 λ\ Dtu(09 X, λ) = υ°(X, λ). (2. 1 3)

System (2.12-2.13) is the initial- value problem for which it is desired to
prove the uniform existence and convergence results mentioned in the introduction.
In order to be able to do this by applying theorems from [6 and 7], (2.10) must
be converted to a first-order symmetric hyperbolic system. Because the term that
λ2 multiplies can be expressed most conveniently with Eulerian derivatives, we
will also convert to Eulerian derivatives throughout. As a first step, using (2.1),
(2.7), and (2.9-2.11), system (2.12) can be written as

Dtvί = v\ (2.14)

Dtυ
l = Aft(I + 0)0^0^ - λ2 P-^- dffl, (2. 1 5)

P

Dtp=-pdiv
ί. (2.16)

Next, taking Dk of (2.14) and multiplying the result by Aft gives

(2.17)

Defining r = λ $(P'(s)/s)ds and rewriting (2.19) and (2.16) in terms of r gives,
i

(2.18)

Converting the Lagrangian derivatives in (2.17-2.19) to Eulerian ones
now gives

+ GfldmV1 = 0, (2.20)

,G/ + ̂ r = 0, (2.21)

F(p(r/λ))3'Γ + Pf(p(r/Xf)Vrdnr + λ^ = °' (122)

Note that although system (2.20-2.22) is considered in a Eulerian coordinate
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system, its variables are Lagrangian derivatives of the original variables
u. This system has the form

A°(V9 V/λ)dtV + , V/λ)djV + λBjdjV = 0, (2.23)

where A°, the Aj, and the Bj are symmetric matrices, and the Bj are constant.
Assumptions (1.4) and (1.6) will guarantee that ,4° is positive definite, so (2.23) is
a symmetric hyperbolic system. The initial data for the unknown V = (G, v9 r) are

du°(X9λ)

dX = X ( O t x , λ )

= X ( Q , x , λ )

l/J°(x,λ)p>(s

f -
Ί c

(2.24)

(2.25)

(2.26)

which can be abbreviated as
V(09x9λ)=V°(x9λ). (2.27)

3. Uniform Existence and the Incompressible Limit

Theorem 1. System (2.12-2.13) has, for A 0 g A < o o , a solution u in
C2([0, T] x Rn)for some T independent of λ provided that for some m ̂  [ft/2] -h 3,

i) weCm + 1 and there exists W00eCm+i such that Ai^l(F) = d2WJdFi

kdF{\
ii) w"(l) > 0 and {det(/ + (du°/dX))\XεRn,λe[λθ9 oo)} c c {5 w"(s) > 0};
iii) A[{(F)ZikZjl ^ cJZ|2 wiί/i cί>09for F ina neighborhood N of the identity

matrix, and {/ + (3M°/3X)|xeRΛ,λe[λ0, oo)} c= c JV;

iv) N^^L+ii^x^L^ + A i i d e t α + ̂ V^W-M
where c2 is any constant and \\ \\k is the usual Sobolev space norm of order /c;
and

v) the map X -»x(0, X 9 λ ) = X + u°(X, λ) is inυertible for λ0 ^ λ < oo.
Also, the function x(X) — X + u(X) is an acceptable deformed position function, i.e.
the map X -»x is 1 — 1. T/ie solution u satisfies the estimate

detN -1

where here and later c denotes a constant whose value may be different in different
occurrences. Furthermore, if the initial data satisfies the additional condition

vi) λ
m - 2 m-1

c4 is any constant, then the solution satisfies the additional estimate

m-2
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Remark. Let J°(X, λ) be the Jacobian determinant of the map in condition v), and let
x -> X(Q, x, λ) be the map's inverse. Condition vi) says that

This condition would be met, for example by initial data independent of λ such that
d^v0)1 = 0 and J° = 1, which, following [6], may be termed incompressible initial
data.

Theorem 2. Assume that conditions i)-vi) of Theorem 1 hold and that in addition
vii) there exist u°(X), v°(X), such that

\\uQ(X9λ)-u»(Xnm+\\v^X9λ)-υ^X)\\n-ί^O as λ^co.

Then there exist w°° in C°([0, T]; Hm)n C^CO, T]; Hm~ x)n C2([0, T]; Hm~2\ and r°°
in L°°([0,T];/ίm~1), such that as A-»oo,

ut,X,λ^u*(t,X) in C°([0,T]; HZ

Dkr
x weak* in L^EO, T},Hm~2),

for any ε > 0. Also, u°° and rx satisfy the initial-value problem of incompressible
elastodynamics

δuc°\^, _,. /Γ. aM°° Ί " l x

dx dx

wiί/z initial condition

u™(0, X) = uQ(X), Dtu°°(Q9 X) = υ°(X).

Proof of Theorem L Assumption v) of Theorem 1 allows system (2.12-2.13) to be
converted into system (2.20-2.22, 2.24-2.26), where X(0,x9λ) in (2.24-2.25) and
J°(X9 λ) in 2.26 are defined in the remark above. Apply the following theorem, slight
variations of which appear in [6,7, and 8]:

Theorem 3. System (2.23,2.27) has, for λQ^λ<co9 a unique solution in
Cl([Q, T] x Rn)9 where T is independent of λ, provided that for some q ̂  [n/2] + 2

a) A°, the AJ, and the Bj are symmetric,
b) A° and the Aj are in Cq and the Bj are constant matrices;
c) A° ^ c1 > 0 in a neighborhood of the initial data,

i.e. {(V°(x,λ),V°(x,λ)/λ)\xeRn,λelλ0oo)}cι ^{(a,b)\AQ(a,b)^Cί>0}.
d) \\V°(x9λ)\\q£c2 for some c2 9

e) \_A\V, V/λ)Yl Bj are functions of V/λ only, not of V;
and either

f) ((d/dz)A°(z,V/λ)\t,v)(A0)-1Bi = 0, j= !,...,«;
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or

g) λ I I B J d j V (x,λ)\\ q-ι ^c3for some c3.
If a)-e) and f) hold, then the solution V satisfies

while if a)-e) and g) hold, then

|| V\\q+ \\dtV\\q-ί + λ\\BjdjV\\q-ί ^c.

Assumptions i)-iv) of Theorem 1 for system (2.12-2.13) imply conditions a)-d) of

Theorem 3 for system (2.20-2.22, 2.24-2.26) with q = m - 1. It is straightforward to
check the key point that system (2.20-2.22) obeys the structural conditions e) and f)
of Theorem 3. And if additional assumption vi) of Theorem 1 holds, then condition
g) of Theorem 3 will hold.

Hence a solution (G, υ9 r) of system (2.20-2.22,2.24-2.26) exists on a uniform time
interval. The proposed solution u of (2.12-2.13) is now obtained as the solution of
the ODE, Dtu(t9 X, λ) = v(t, X + u, λ\ w(0, X, λ) = u°(X, λ). Since v is bounded in C°
uniformly in λ by the Sobolev inequalities, u exists for as long as υ is defined, i.e. on an
interval [0, T] independent of λ.

Define x ( t 9 X 9 λ ) = X+ u(t9X9λ)9 and define u(t9x9λ) by dtu(t9x,λ) +
vk(t, x, λ)dku(t9 x, λ) = v(t9 x, λ\ w(0, x, λ) = M°(X(0, x, λ)9 λ); this is a linear symmetric
hyperbolic system, so u is well-defined for t in [0, T]. Define X(t9 x, λ) = x — u(t9 x, λ).
It is easy to check that 1(0, x(0, X, λ\ λ) = X and DtX(t9 x(ί, X9 λ)λ) = 0, so that X is
the inverse of x for each ί and λ. In particular, x(ί, X9 λ\ which represents the position
of time t of the particle whose reference position is X, is 1 — 1.

Next, for any function /(ί, x, λ\ D t f ( t 9 x ( t 9 X 9 λ ) 9 λ ) = dtf+vfcdkf9 so that (2.20,
2.22) become the ODEs,

DtG\(t9 x(t9 X, λ\ λ) = (δf + G?)dmv\

Dtr(t, x(f, X9 λ\ λ) = - λP'(ρ(r/λ))diV\

where dktf = dkυ
l(t, x, λ)\x=x(tίXtλ) is considered known.

Defining G\ = DiVl and f=λ j (P'(s)/s)ds9 it is easy to show that G and
i

r satisfy the same equations as G and r, respectively; since they also have the same
initial conditions, G = G and r = r by the uniqueness theorem for ODEs. Hence Dl9

which equals (δy + G™)dm by construction, also equals (δT + G")dm. Thus, convert-
ing (2.21) into Lagrangian coordinates and substituting G = G,r = f produces (2.12).
Clearly (2.13) holds, so u solves (2.12-2.13) as claimed, and the estimates for u follow
from those for (G, v9 r).

Proof of Theorem 2. Convert to system (2.20-2.22), (2.24-2.26). The analogous
result for this system is just a slight variation of Theorem 1 of [6] or Theorem 2.4 of
[8]. Since there are no large terms in the equations for the additional unknowns G
that are present here, G actually converges in C1, and so the proof of convergence oft;
is not affected by their presence. In order for the proof to show convergence as λ -> oo
rather than convergence of a subsequence, uniqueness must hold for the limiting
system; this uniqueness holds by a standard L2 energy-estimate argument. The result
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is then pulled back to the original system exactly as for Theorem 1.

Remarks on Theorem 3. The point of structural conditions e) and f) is that they
prevent terms of size 0(λ) from occurring in energy estimates for the system, so that
the energy estimates will be uniform in λ. Also, either of f) or g) guarantees that dtA°
is O(l) not 0(λ\ so that A° remains positive definite on a uniform time interval. The
proof when g) is assumed is given in [6 and 7]; the proof when f) is assumed is given in
[7 and 8]. Note in this regard that although [7 and 8] have instead of e) and f) the
stronger hypotheses A° = AQ(v/λ\ the proof they give requires only assumptions e)
and f). This trivial strengthening of the theorem is important because it is only with
the hypotheses used here that the theorem applies to the elasticity equations (2.20-
2.22).
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