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Abstract. We compute all possible anomalous terms in quantum gauge theory
in the natural class of polynomials of differential forms. By using the
appropriate cohomological and algebraic methods, we do it for all dimensions
of spacetime and all structure groups with reductive Lie algebras.

1. Introduction

It is known that anomalous terms in quantum gauge theory (e.g. chiral anomalies,
Schwinger terms) verify consistency equations [ 1, 2] of cohomological nature [3].
The cohomology of interest is the local cohomology of the Becchi-Rouet-Stora
(B.R.S) operator, [4].

An anomalous term A4 verifies a consistency equation: 64=0. 4, (the
anomalous term), is the integral of a polynomial in the fields and their derivatives.
However, solutions of the form 4 =44’, where A’ is a similar local expression, are
considered as trivial; indeed, in the case of chiral anomalies or Schwinger terms,
such trivial solutions may be cancelled by finite renormalization or by redefinition
of the local currents respectively.

Setting 4= | Q leads, for Q, to the Eq. [5]

Q0 =dQ’ (%)

for some Q’; d is the exterior differential on space-time. We shall say that Q is a
o-cocycle modulo d. If A is a trivial solution 4=494", then Q reads

Q=0L+dL (%)

for some L’ and L; we say that such a Q is a d-coboundary modulo d. As pointed out
before, we are interested in solutions of (*) modulo solutions of the form (*x), i.e. in
the §-cohomology modulo d.

More precisely, d and 6 act as antiderivations on polynomial functions of the
gauge potential 1-form A, the ghost field y and their derivatives with values in
differential forms on space-time M. d is the exterior differential on space-time and
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J, (i.e. the B.R.S. operator), is defined by 64 = —dy—[4, x]1, ox=—1/2[y, x] and
dé+6d =0, (which implies 62 =0).

Our purpose is to compute the J-cohomology modulo d (ie. possible
anomalous terms). We shall do it in the algebra #(M, g) of forms generated by
exterior (pointwise in M) products of the components, in the Lie algebra g of the
structure group, of 4, y and their d and ¢ differentials.

We shall proceed as follows:

In Sect. 2, we define a universal algebra «/(g) supporting the action of d and J;
this algebra only depends on the Lie algebra g.

In Sect. 3, we compute the d and the d+J cohomologies of .7(g).

In Sect. 4, we compute the d-cohomology of </(g).

In Sect. 5, we consider the -cohomology modulo d of .7 (g) and construct long
exact sequences involving the d-cohomology and the 6-cohomology modulo d of
A(g)-

In Sect. 6, we use the results of Sect. 5 to construct an exact couple relating the
d-cohomology and the 6-cohomology modulo d of «/(g) and give a way to evaluate
the d-cohomology modulo d in terms of the associated spectral sequence.

In Sect. 7, we explicitly compute the 5-cohomology modulo d of .«/(g) in the
case where g is reductive by using the general method of Sect. 6.

In Sect. 8, we define the general notion of B.R.S. algebra; «/(g) and #(M, g) are
such algebras. Moreover we describe the universal property of .«/(g) in this class.
We finally show that the §-cohomology modulo d of #(M, g) is known from the
one of </(g).

The content of Sects. 2—4 is summarized in our paper [6].

Finally, it is worth noticing here that some ideas of Weil are close to some
developments given in this paper [7].

2. The Universal B.R.S. Algebra of a Lie Algebra

Let g be a finite dimensional real Lie algebra and let (E,) be a basis of g. Consider
four copies g%, of, g% g7 of the dual space g* of g with dual basis respectively
denoted by (4%, (F%), (x*) and (¢%). Let 2/(g) be the free graded commutative
algebra [8] generated by the A* and y* in degree one and the F* and ¢* in degree
two. In other words

A (9)=(487)®(SeF)®(1g7)®(Sg5) ,

where Ag* is the exterior algebra (P A"g* of multilinear antisymmetric forms on g
nelN

graded by giving the degree n to the elements of A"g*, where Sg* is the algebra
@ S"g* of the polynomials on g evenly graded by giving the degree 2n to the

nelN
element of S"g*, and where ® is the (Skew) tensor product of graded algebras [9].

On the space g® /(g), there is a natural bilinear bracket [-,-] defined by [X® P,
YRQ]=[X,Y]®P-Q, for any X, Yeg and P, Q € &/(g). Let us introduce the
following elements of g®/(g): A=Y E,®A*, F=Y E,QF% y=> E,®y* and
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p=Y E,®¢* Set, with the above notations dA=F—1/2[A, A], dF=[F, A],

dy=¢, dp=0 and 64=—¢—[A4, 1], OF=[F,xl, ox=—1/2[1, 11, do=[0, ],
and define dA%, dF°, dy*, do®, 0A*, OF*, dx*, d¢* in </ (g) by

dA=Y E,®dA% ...,00= Y E,®5¢".

Then,

(A% F*, 5%, ")~ (dA%, dF*, dy*, do*)
and

(A%, F*, 4%, ") (0 A%, 0F*, 5y*, 6%

extend respectively uniquely as anti-derivations d and J of .&/(g). One easily checks
that d and ¢ are of degree one and satisfy:

d?>=0, dé+6d=0 and 6*=0.

Thus d, 6 and d+ ¢ are three differentials on the graded algebra </(g); we denote
the corresponding graded algebras of cohomology by H(d), H(6) and H(d + ). We
shall compute these algebras in the next sections. Let us now introduce an
underlying bigraduation on /(@) by giving to the 4* the bidegree (1,0), to the F*
the bidegree (2,0), to the y* the bidegree (0, 1) and to the ¢* the bidegree (1, 1). So we
have «/(g)= C—D ") with /™5(g) - % (g)Cf" *5%(g) and the (total)

I‘SE

degree of an homogeneous element of bidegree (r, s) is ¥ + s. The differentials d and
d are respectively of bidegrees (1, 0) and (0, 1), so the cohomology algebras H(d) and
H(S) are bigraded algebras H(d)= P H"%(d) and H(0)= P H"%0),

(r,s)e N2 (r,s)eN2

whereas H(d +6) is simply a graded algebra; d=(d+06) o), 6=(d+0)¢,1) We
shall refer to the above structure as the universal B.R.S. algebra of g and denote it

by #(g).

1.1. Remark. Notice that the subalgebra generated by the A* and the F* is stable
by d and that, equipped with d, it is just the Weil algebra of g. More generally for
any real number ¢ €IR, one has the formula [10, 11]

(d+18) (A+1y)+1/2[A+1ty, A+ty] =F;

it follows that, for each t € IR, the subalgebra W,(g) of </(g) generated by the 4*
+ty* and the F* equipped with the differential d, =d +td is isomorphic, as graded
differential algebra, to the Weil algebra W(g) of g [12].

It will be convenient in the following, to extend the graduation of .«7(g) to Z and
the bigraduation to Z x Z by writing </*%(g) =0 whenever k or £ is negative.

3. The d and the d+ 6 Cohomologies of .<7(g)
We have the following theorem concerning H(d) and H(d +9).

3.1. Theorem. (a) The d-cohomology of <#(g) is trivial, i.e. H*/(d)=0 for any
positive integers k, £ such that k+¢ =1 and H*°(d)=R.
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(b) The (d+ 6)-cohomology of <(g) is trivial, i.e. H'(d+ 6)=0 for any integer
n=1and H°(d+6)=NR.

Proof. (a) It follows from dA=F—1/2[A, A] and dy=¢ that /(g) is freely
generated by the homogeneous elements 4%, y*, dA% dy*. Thus (#/(g),d) is the
contractible algebra [8] generated by the A% y* in degree one and the dA4°%, dy* in
degree two which has trivial cohomology by standard arguments [8].

(b) It again follows from the definitions that .&/(g) is freely generated by the
elements A%, y*, (d+9)A4A* and (d+J)y*, which are homogeneous for the total
degree. Thus again (#/(g), d+ 9) is contractible so we have: H(d+6) = H%(d + )
=R. O

3.2. Corollary. (a) Let Q%7 € o/*%(g) be such that thereis a Q¥ ¢+ e /¥~ 147 1(q)
such that 6Q% ¢ +dQ* ‘"1 =0, Then, thereis a Q* *** 2 e o/*~2**2(q) such that
5Qk—1,l+1+ko—2,t’+2=0.

(b) Let Q%’e.of*(g) be such that there are I[¥‘"'e.o/*’"(g) and
I bl e of* V4 (g) with QF/ =615~ +dI*~*?. Then Q% satisfies the assumption
of (a) and any Q*~V**! as in (a) is of the form Q" LIRS 10 QI 20 for
some [F~ 2% 1 g ofk=2.0%1(q),

Proof. (a) Apply & to dQF‘4dQF 1/*1=0; it follows ddQ* 17*!
___d(_éQk—-l,t’+1)=0’ SO 5Qk——1,6’+1+ko~2,(+2=0 for some
QF~2:0%2 ¢ o7k~ 2:4%2(q), in view of part (a) of the last theorem.

(b) We have —0QF‘=4+dSI¥ %, so any Q* '/*! such that 6Q%‘
+dQF~ 141 =0 satisfies d(Q¥ /"1 — 15~ 1Y) =0. Thus again, by part (a) of the
last theorem, [0 ALY LA NY) bl for some
Ec—2,/+1 e,,efk_z’“l(g). 0

3.3. Corollary. Let Pe.o/"*1:(g) be such that dP =0 and 6P =0. Then there are
Q" Preg" PPg) for 0<p<n such that we have: P=dQ"°, Q" PP
+dQ" PP =0 for 0Zp=n—1 and 0Q""=0. Furthermore if
QP Pre /" PP(g) with 0<p=<n satisfy the above relations, then there are
Pp-bre gnrolr(g) for 0<p<n—1 such that 0™°=Q"°+d[~*° Q" Py
=Qr P4 o Pl it LP for I<p<n—1 and QO"—Q°"+6L°"

Proof. We have by assumption (d+ 6)P =0; so part (b) of the last theorem implies
that there is a Qe /(g) of total degree n such that P=(d+9)Q. Thus writing

0= Z Q" PP the Q" PP satisfy the statement. If ( is another solution of
P= (d+5)Q then (d+6)(0—Q)=0; so again §=Q+(d+J)L for some

n—1

L= Y I['"?~1? which proves the last part of the corollary. [
p=0

4. The 6 Cohomology of .</(g)

To compute H(5) we first proceed to write the free-graded commutative
differential algebra (<7(g), ) as a tensor product of a contractible algebra and a
minimal algebra [8]. To do that we notice that /(g) is freely generated by the
homogenecous elements A% dA4% x* F*; now the algebra generated by A% 6A4%is
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contractible whereas the algebra generated by the x* F* is isomorphic to
(Sg#)®(Ag¥) as graded algebra and is minimal, (for d), in view of éy = —1/2[, x]
and 0F =[F, x]. The space Sgf = Sg* is a graded g-module if we equip it with the
representation of g which comes, by symmetric tensor products, from the co-
adjoint representation of g in g*. One may clearly identify [13]

S‘g*@A‘g* ~S'gf @A q)
with the space C’(g, S*g*) of /-cochains on g with values in the g-module S*g*. It
follows from the definitions that, under this identification, (Sg} ® Ag¥, 6) identifies,

as complex, with the complex C*(g, Sg*) of cochains on g with values in the graded
g-module Sg*. Thus we have the following theorem.

4.1. Theorem. The 6-cohomology of </(g) coincides with the d-cohomology of the
subalgebra generated by the y* and the F*; as o-complex, this subalgebra is
isomorphic to the complex C*(g, Sg*) of cochains on g with values in the g-module
Sg*. So we have H(8)= (P H**’(8) with H***(6)=H’(g, S*¢*) for all positive
integers k and £ . k.¢

Let #4(g) (C Sg*) be the algebra of invariant polynomials on g. If P € .#§(g) and
Qe JJ51(g), then P(F, ..., F)e.o/*°(g) and

0 [t 1> - [ xD € %2 H(g)

are -cocycles so the subalgebra #(F, y) generated by these d-cocycles when P and
Q run over .f4(g) consists of J-cocycles. Let us identify #(F,y) with the
corresponding subspace of cocycles in C*(g, Sg*); then the linear span of the
00, L 11, ...» Ly x]) as above identifies with the space of transgressive elements
of Ag* [12]. In the case where g is a reductive Lie algebra, (i.e. g is the direct sum
of a semi-simple Lie algebra and an abelian Lie algebra), it is known that the
transgressive elements are the primitive elements and generate the subalgebra
J (g) ofinvariant forms in Ag* (for adjoint action). It turns out that for reductive g,
# ,(g) is isomorphic to H*(g) and that, on the other hand, we have for any semi-
simple graded g-module .4, H*(g, .4) = .4 @ H*(g), where .4" denotes the space
of invariant elements of ./Z, [9, 14]. Therefore, by applying all that to Sg* we obtain
the following corollary.

4.2. Corollary. Let g be a reductive Lie algebra. Then the canonical projection from
o-cocycles of A(g) on H(J) induces an isomorphism of the algebra J(F, y) on the
algebra H(J).

J(F, y)~H(J) is an isomorphism of bigraded algebras.

4.3. Remarks. 1. The class of reductive Lie algebras is the appropriate class to
write Yang-Mills lagrangians since it is only for a reductive Lie algebra g that there
exists a finite dimensional faithful representation of g with a non-degenerate trace
form, [9].

2. For any Lie algebra g, #(F,0) is the set of all §-cocycles contained in
@ ™ (g). Therefore any d-cocycle in .o7***1:%(q) vanishes and any d-cocycle in
nelN
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/%% 9(g) is of the form P(F, ..., F) for some invariant polynomial P € #&(g). In
particular, any §-cocycle in 27™(g) is d-closed.

4.4. Corollary. Let Q%% e .o/?*1(g) be such that there is a Q* 12 e o/?*~1:2(qg)
such that §Q** +dQ*~12=0. Then, there is a unique Q*** 1% € o/?**1-%(q) such
that 6Q**1:°44Q%**1 =0, and we have dQ***°=P(F,...,F) for a unique
Pe skt (g).

Proof. We have déQ*! =5(—dQ*')=0, and, by the Theorem 4.1, H**1:1(§)
=H?**19§)=0; so there is a unique Q**"% for which we have §Q%**1:°
+dQ**1=0. It follows that §dQ***-°=0, and therefore dQ***:°=P(F, ..., F)
for an invariant polynomial P on g of degree k+1. [J

4.5. Corollary. Let g be a semi-simple Lie algebra and let n and k be two integers such
that 0=<k=<2n+1 and such that either kZ5 or n<3. Then, if
Q2 -kt ke o=kt Lk(q) is such that there is a Q*" ***1le o2 Rk 1(q) with
oQ* kT Lk 4O Rkt 1=0, there is a Pegi Yg) and there are
Qnrtlre oyt Lr(qy  for p<k such that P(F,...,F)=dQ**%° and
5Q2n—p+1,p+dQ2n—p,p+1:0 forpgk

Proof. A semi-simple Lie algebra has no non-trivial invariant linear form, i.c.
F4(g)=0, so it follows from the Corollary 4.2, that, if n and k are as above,
H*"*27PP(§)=0 for any 1 < p<k. This implies the result by the same argument as
before. [J

5. The §-Cohomology Modulo d of </(g)

We now describe a more powerful way to look at the statements of Corollaries 3.2,
3.3, 4.4, and 4.5 and to go further.

Notice first that dd 4 0d =0 implies that d.o/(g) is stable by J and therefore that
(ds/(g), d) is a subcomplex of (</(g), §). The differential § passes to the quotient
and gives a differential, again denoted by d, on .<7(g)/d.<Z(g). We call §-cochains
~ modulo d the elements of </(g)/d</(g); we write

CH%(6, mod(d)) = .o#*“(g)/dot*~"/(g) ,
and define
P H*(6, mod(d)) = H(6, mod (d)),
k,¢

the d-cohomology modulo d of </(g), as the cohomology of C(d,mod(d))
=(of(g)/d=4(g), ). Let p: o (g)— C(5, mod(d)) be the canonical projection, we
denote by p*: H(6)—H(6,mod(d)) the corresponding linear mapping in coho-
mology. A cocycle of C{d, mod(d)) will be called a o-cocycle modulo d and a
coboundary of C(6, mod(d)) will be called a §-coboundary modulo d.

Q"% e o/**(g) represents a d-cocycle modulo d, (i.e. 5p(Q**)=0), if and only if
thereisa Q¥ 1/ *1 e o7k~ 1-*1(g) such that 6Q* 7 +dQ* 1+ 1 =0; Q" represents
a d-coboundary modulo d if and only if there are I¥/~!'e./*’"1(g) and
IE~ Ll e of* = 1(g) such that Q7 =S/~ +-dI¥~ /. Now, Corollary 3.2 (a) means
that if Q% represents a d-cocycle modulo d then Q¥ */*1 as above represents a
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d-cocycle modulo d and Corollary 3.2(b) implies that the class of Q" 1:4*1 in
H*1:4*1(5, mod(d)) is unique and does only depend on the class of Q%7 in
H*%(5, mod(d)). We denote by

a0 HA(8, mod (d))— H* 14+ 1(8, mod(d))

the corresponding linear mappings in H(d,mod(d)). In the same way,
Corollary 3.3 means that we have linear mappings

2 2104+ 8) > H' P2(5, mod (d))

for0<p<nwithj*?*'=00"?for 1 <p+1=<n,where Z"*°(d+ ) is the space of
d-closed d-cocycle in .o/"*1:%(g). In view of Remark 4.32, Z%**1:%(d 4 §)=0 and
Z*9%(d+9) is the set of P(F,...,F), where P runs over the space of invariant
polynomials of degree k on g, so we identify Z2*°(d 4 §) with .#&(g) which we also
identify with

HZk’O(é)."’_HO(g, Skg*) .

Summarizing, we have the commutative diagram:

k+1
js (g) JEARIESE

22k+1,0 2k+1,1

J J
H?¥1-0(5, mod(d))~%> H* (8, mod(d)) - - %> H2**1(5, mod (d))
5.1. Remark. We have
H®2%1(6, mod(d))=H"*"1(6)=H*"(g)
and one sees that
JHTREETL I (g) > H  (g)

is induced by the Cartan map [9, 12] of FE*1(g) on the transgressive elements of
Ag*; it follows that j?**1-2¢*1 yanishes on the elements of .#&*!(g) which are
decomposable [12]. In the case where g is reductive the linear hull of the
decomposable elements is exactly the kernel of j2¢* 1 2k*1,

Corollary 4.4 tells us that the mappings

jARELL: gkt (gy— H?% (5, mod(d)) ,
JRELO. gkt L0y (2R 1.0(5 mod (d))
and
01 H***1:9(8, mod(d))» H? (5, mod (d))

are all bijections. Finally, Corollary 4.5 means that, when g is semi-simple, the
maps

j2n+1,k . jrst-k 1(9)_>H2n—k+ 1’k(5, mod(d))
and
01 HAn~*+ 2k~ 1(§ mod(d))—H* %+ V45, mod(d))

are surjections whenever 0 <k <2n+1 and either k<5 or n<3.
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5.2. Lemma. The mappings Q% ‘r(—1)*dQ*’ from o/**(g) in o/**1-%(q) induce,
for k+¢ =1, isomorphisms of
C*(3, mod (d)) = o/*“(g)/dst*~+*(g)
on d=/*%(g) and permute with §; so we have
H*%(5, mod(d))=H*"***(d=/(g), 5)
for any integers k, £ with k+/<1.
Proof. This is an immediate consequence of Theorem 3.1(a) and dd= —dé. [J
We have do/*/(g)Co/**1%(g), so, by the above lemma, we have injections

i:C*%(6,mod(d)—#* 1 4(g),
for k+7 =1, which induce homomorphisms

i*: H*(5, mod(d))—H**1-%(9)
in cohomology for k+/=1.

5.3. Proposition. We have H®?(5, mod(d))= H®%(5), for any positive integer ¢ and
we have, for k=1, long exact sequences, (%),

s HO4(5) s HY(5, mod ()2 HE 14 A(S, mod (d)) s HECT1(8) L -
starting with

0—> HO(8)25 H' (8, mod(d)) 2> H® (8, mod (d)) -~ ---
for k=1, and with

0~ H*~1:0(5, mod (d)) > H*°(8) 2% H*°(5, mod (d)) L -+-
Sfor k=2,

Proof. (ds/(g))*? =0, sowe have H>%(5, mod (d)) = H®“(5). On the other hand, for
any k=1, we have the short exact sequence of j-complexes,

0— (A (@) a2**(g) 2> C*(0, mod (d)) — O;

the corresponding long exact sequence of d-cohomologies just coincides with (%)
by writing

>

H*'(5, mod (d)) = H** 1-%(d.</(g), 9)

for k+/ =1, and by using (d.o(g))"° = d.o¢* °(g) = 0. One verifies that 0 as defined
above is the connecting homomorphism of the long sequence (¥,). [

By using H**%/(8)=0 and H?*/(§)=H’(g, S*g*), (see Theorem 4.1), one
obtains the following theorem.

5.4. Theorem. (a) We have the following isomorphisms:

1) H>%(8, mod(d))~H’(g), ¥/ e N, (induced by p*);

2) H*1:9(5, mod(d)) ~ H%(g, S" " 1g*) = #5"1(g) and H***°(5, mod(d)) =0,
VreN, (induced by i¥);
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3) H* 16, mod(d)) ~H?*"’*1(5,mod(d)), Vre N and Y/ €N, (induced by
d).
(b)) For any re N, we have the long exact sequence (S,):
0—> H¥*11(5, mod(d))i» H'(g, " 1g”‘)ﬁl H?>* 215, mod(d))
25 B8, mod (d) - - L HY(g, 87 1g¥)
P, g2 245 mod(d)) -2 H2 14+ 1(8, mod(d))
RA H”l(g,S’Hg*)L: o

Notice that (apart from the isomorphism 1 which is trivial) the isomorphisms 2
and 3 are easy to prove directly.

5.5. Corollary. Let g be a semi-simple Lie algebra. Then, we have the isomorphisms:
L2 (g)~ H* 73:°(5, mod (d)) ~ H* *2:1(5, mod (d))
~H**12(5, mod(d)) ~ H*"3(5, mod(d)),

for reN. Furthermore, H?**2°(5,mod(d)), H**'!(5,mod(d)) and
H?"2(8, mod (d)) vanish.

Proof. This follows immediately from Theorem 5.4 by using H'(g, S¥g*)=0 and
H?(g, S¥g*) =0 (see in the proof of Corollary 4.5). [J

5.6. Corollary. H*?(5, mod(d))=0 for /> dim(g).

Proof. We have A’g* =0 for /> dim(g). It follows that we also have H(g, S"g*) =0
for £ >dim(g), so that by Theorem 5.4 (part a.3 and part b) d induces isomorphisms

H*(8, mod (d))~H*'+/*1(5, mod(d))

for any ¢>dim(g). This implies H*‘(6,mod(d))=0 for ¢>dim(g), since
P+ UHR(5, mod(d)=0. [J

6. The Exact Couple Relating H(J, mod(d)) and H*(g, Sg*)

6.1. Letus recall that an exact couple of vector spaces, [15], is an exact triangle of
linear mappings a, b, ¢

F-b, F
N/
E

involving two vector spaces E and F. Given such an exact couple, one can
construct another one,

F/ b F/

NVE
g

called the derived exact couple by the following procedure: One takes F'=b(F) and
b’=b1b(F): F'-F'. From exactness at E, it follows that d = ¢ - a is a differential on
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E, (ie. d*=0), so the homology H(E,d) is well defined; one takes E'=H(E, d).

From exactness at F, it follows that ¢ maps the d-closed elements of E into b(F)

= F’ and the d-exact elements of E on 0 € F’; a’is the induced map of E’ in F'. Again

by exactness, ¢ maps F into d-closed elements of E and the class [¢(f)] € E” does

only depend on b(f)e F’, for feF; ¢ is the corresponding map of F"in E’. One

verifies that the triangle of linear mappings a’, b’, ¢’ so defined is again exact.
By induction, one defines, for any integer r, the r™ derived exact couple

F,~">F,

DN
E

writing Eq=E, Fo=F, ay=a, by=b, co=c and E, ,=E,, F, . =F,, a,.,=a,,
b,.1=b], ¢, =c,. Setting d,=c,a,, we have E, ,; =H(E,,d,), so (E,,d,),.n1s a
spectral sequence associated to the exact couple. We have, in view of kerb,=a,(E,)
and Imb,=F,, , the following isomorphisms:

F,=b'(F)~a(E)®F,.,=a(E)®b"'(F), reN.

It follows that we also have:

F~ (EB" ar(Er)> @b Y (F), VYneN.
r=0

Let us now come back to our original problem. It is clear from (a).3 in
Theorem 5.4 that one may replace in the long sequences (S,) of 5.4 the
H¥**14(5, mod(d)) by the H*>"‘*(5,mod(d)). Thus we surely have an exact
couple involving H*" *(5, mod(d)) and H*(g, Sg*), (ev. stands for even here); one
must however carefully check what is going on for the lowest degrees in (r, ) by
using the results 5.4.(a)-1 and 5.4.(a)-2. It is easy to see that, in order that it works,
one has to replace H °(5, mod(d)) and H°(g) by 0; so we define Z>-graded spaces
H¢*(0,mod(d)) and H% (g, Sg*) by

(HY~*(8, mod (d)))"* = H*"*(5, mod (d))

and
(H?% (3, Sg%))"* = H(g, $"3*)
for r=0,s=0 and r+s=1 and
(H%*(0, mod (d))"* = (H*% (g, Sg*))"*=0
otherwise. Let
po: HY(g, Sg*)—HE*(6, mod(d))

be defined by

po=p" 1 H'(g, 5'¢*)—~H*"*(3, mod (d))
for r20, s20, r+s=1 and by p,:0—0 otherwise; let

ip: HY*(9, mod(d))—H% (g, Sg*)
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be the canonical extension to (r,s) € Z* of
ig=i* o0 " 1: H?>"**1(§, mod(d))—H(g, S"*'g*)
for =0 and 5s>0. Finally 0% extends canonically as
0% : HY*(6, mod (d))— H%*(5, mod (d)) .
With these notations, we may formulate a part of 5.4 as follows.
6.2. Theorem. We have the following exact triangle (&)
HY*(8, mod(d)) - HY-*(5, mod(d))

po io

H% (g, Sg*)

Thus (&,) is an exact couple of vector spaces relating the d cohomology modulo d of
/(g) to the cohomology of g with values in the polynomials on g. Let (E,, d,),. be
the associated spectral sequence starting with Eg=H?* (g, Sg*) and d, =i, © p,; the
™ derived exact couple (£,) may be written as

02 HeY-*(8, mod (d)) L 0¥ He*(5, mod (d))

P i

E

¥

It follows, as above, that we have the isomorphisms

HY+*(5, mod (d)) = <€a pr<Er>> @320 VH*(9, mod (d)),
r=0

(Vn e N), and since 9*"(x) =0 for n greater than some finite ny(x) for each x, we have
the isomorphism:

Hev (8, mod(d)) ~ @% pE,).

Therefore, in order to compute the § cohomology mod(d), it is sufficient to
compute the E,, the kernels of p, and, eventually, to give a procedure to construct

d-cocycles modulo d corresponding to elements of @ E,; we shall do that in the
relN

case where g is a reductive Lie algebra in the next section.

7. The Case of a Reductive Lie Algebra g

In this section, g denotes a reductive Lie algebra. Let us recall that, in this case,
H*(g) identifies with the algebra .# ,(g) of invariant forms on g and that this algebra
is freely generated, as graded commutative algebra, by any basis of homogeneous
primitive invariant forms, [9, 16]; furthermore, any homogeneous primitive
invariant form is of odd degree so .#,(g) coincides with the exterior algebra over
the space P of primitive invariant forms on g, i.e. .#,(g)=AP. Let P?**! be the

space of primitive invariant forms of degree 2k+1; P= P P***!, and since
k=0
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dim(P) is the rank of g, the spaces P***1 all vanish when k is greater than some
finite integer r,,(g). As pointed out in Remark 5.1, the Cartan map ¢:.#5*(g)
—.#2¥71(g) is induced by j***1-2k*1 yia the identifications

HO241(3, mod () = H?**1(g) = #3+* 1(g);

its image coincides with P?**1, as is well known, [9, 12], i.e. we have g(.#5(g)) =P
and o(FE* 1(g)) =P ™. We choose once and for all a transgression t, i.e. a linear
mapping ©: P—.#4(g), such that t(P**')C.#£*(g) and such that got is the
identity mapping of P on itself. Then 7 induces isomorphisms P?**! ~¢(P2k+1)
and, as is well known [9, 17], the image by © of a homogeneous basis of P is a free
system of generators of the commutative algebra .#¢(g) which therefore coincides
with the symmetric algebra over t(P); i.e. we have £g(g) = St(P) ~SP. Remember-
ing that H*(g, Sg*) identifies with f4(q)® .7 ,(g), we write:

H*(g, Sg%) =(St(P))®(AP)~ (SP)®(AP).

Let us introduce the subspaces P,= P P**! of P(=P,), and define the
k=r
subalgebras ., and E,=.#" of
I(@)®I4(8), (reN),

by
#,=(St(P,)®(AP,)
and
E,= erC-'iI-)Zl (S"2(P) (A" P) (= 5.").
We have: =

E,=E,;® <m++Q> ) ("t (P )@ (A"PT 1)) ®S1=E,+ OF;

(i.e. E involves at least one primitive element of degree 2r + 1). The identification
H*(g,5¢%)=45(0)® I 4(8) =5

leads to H* (g, Sg*)=E,; furthermore we have E,=0 for r >r,(g). Let d, be the
unique antiderivation of .#, such that

d(1®P,,)=0, d((P)®1)=0
and
d(1l®w)=1()®M1 for «eP>*!,
Then we have d?=0, d.(E,)CE,, so the homology H(E,, d,) is well defined.

7.1. Lemma. We have E,, ,=H(E,,d,) for reN, ie. the sequence (E,,d,),.n is a
spectral sequence.

Proof. We have d(E,,,)=0 and d,(E)CE], so all we have to prove is that the
homology H(E], d,) vanishes. Define d; to be the unique antiderivation of .#, such
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that
dA®P)=0, d(x(P,,,)@M1)=0
and
dt()@M)=1®« for aeP>*!.
Then d/(E]) CE;, and the derivation d,d,+d,d, coincides on
S" (PN PR S,

with the multiplication by the number n+m so, since

E;= ( @ 1 (SmT(P2r+1))®(AnP2r+1)> ®jr+l ,

nt+mz=
any d,-closed element of E] is d,-exact, which achieves the proof. [

We shall show that (E,, d,), . is the spectral sequence associated to the exact
couple (&) of Sect. 6, and this is why we use this notation; for that, we need the
following lemma.

7.2. Lemma. (Generalised “transgression” lemma). Let X € E,, then, there are
0,e4(g) for k=1,2,...,2r +2 such that we have: dX +6Q,=0, dQ,+6Q; =0,
for 1<kZ2r, and dQ,, . ; +60,,.,=d,X. In other words, there is an element o of
H»*(5, mod (d)) such that d, X =iy(o) (=i* o 0~ () and 6" a.=po(X) (=p* (X));
(Take o to be the class of Q,, as above in HY»*(6,mod(d))).

Proof. It is clearly sufficient to consider monomials

X="T1 4Q) (Fon..0,0),

where the { and the @ are homogeneous primitive forms of degrees greater than or
equal to 2r+ 1. Introduce g-invariant L, satisfying [12]

Hw,) (F)=dL,(A; F)=(d+0)L,(A+y; F);
we have: L,(x, 0)=w,(x),

(@+9) TT €@ (LA +73 ). LA+ F)

i=m

p=n i

= ZO (=nr H1 1(C) (F)v(w,) (F)Lo(A+1; F).".L(A+y; F)
p= i=

(where 2. stands for omission of L,). Expanding in decreasing “J-degree” yields a

number of equations. The first 2r + 3 equations give §X =0 and the equations of

the lemma with explicit 0, ; as expected, the last equation (the 2r + 3') gives d,X as

defined before, i.e.

i=m

Qs+ 1 +0Qs 42 = > L T )Py, 2.0,

{p such that wpe P?r+1

—dX. O
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7.3. Remarks. 1. In this proof, one explicitly sees that the image of the Cartan
map g is the space P of primitive elements of .#,(g). By similar arguments, one casily
sees that the decomposable elements of F¢(g) are in the kernel of g.

2. Notice that if { € P***! with s <r, we may apply the same trick to 7({) (F)X
as we did to X in the proof of the lemma, but the point is that py(t({) (F)X)=0, i.e.
1({)(F)X =dA+ 6B for some elements 4 and B of 2/(g).

We are now ready to identify (E,, d,),., With the spectral sequence associated
with (&,).

7.4. Theorem. We have the following exact triangles (&,)
¥ H; *(8, mod (d)) ~2— 0¥ H»*(8, mod (d))

D 1y
r

where p, is induced, by restrictionto E , b and where i,(0*"®) is the component of
y r Y Po v p
s 1

io(®) on E, in the direct sum decomposition E,=H%*(g,S¢*)=E,® @ E;. Fur-
s=0

thermore we have d, =i, p,, so (&,) identifies with the r'® derived exact couple of (&)
and (E,, d,),.x is the associated spectral sequence.
Proof. Let X be in E,. Choose « as in 7.2; so

ir ° pr(X) = ir(azra) = prOjEriO(O() = prOjErer = er .
Thus we have d, =i, p,. Then, by 7.1, E,, , = H(E,, d,) so, by induction on r, (&,)
identifies with the »™ derived exact couple of (&,). [J

Together with the results of Sect. 6, this theorem implies the following result.

7.5. Corollary. We have the isomorphism:

=rar(

r=rnp(g) r=rnr(g)
HY @ mod@)~ B p(E)= @ p*(E).

Moreover, we have: 0* H%*(5, mod(d)) =0 for r>ry(g).
Proof. The first part is clear. For the last part we remark that if » > r,(g), E,=0

o)

0%: 0*"H*(5, mod (d))— 0*"H% > *(6, mod (d))
is an isomorphism, and therefore

0* H»*(6, mod (d)) = 0** R H - *(5, mod(d))

for any k=0; the result then follows from the fact that for any
x € H%*(5, mod(d)), there is an integer n such that 6*"x=0. [

k=rn(a)
7.6. Proposition. We have: ker(p,)= P Im(dy).

k=r

Proof. Let X € E, satisfying p,(X)=0; then d,X =0. Since E, , ;, = H(E,, d,), we have
X=d,Y+Z with Z€E, . . Thus we have p,, (Z)=p(Z)=p(X)—p,d(Y)=0,
so X € Im(d,)®ker(p, .. ;). The result follows by induction. [J
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In the above result, (and in the proof), we explicitly use Im(d,, ) CE. ¥ and E,
— Er+k .
k@o r+k

As a consequence of the last proposition and Lemma 7.1, we have the following
isomorphisms:

s=ra(g)
pr(Er) ~ Er/ker(pr) = sC=—B (/Vs/ds('/Vs))® fs +1

s=rp(g)
= E_D d(N DRI 14
with

'/VS___ @ Sm‘E(P25+1)®A"P2s+1.

m+nz1

7.7. Remark. The isomorphism in 7.5 may now be rcalized by the following
procedure. Given a homogeneous basis (w,) of P, choose g-invariant L,(4; F)
such that

(w,) (F)=dL,(A; F)=(d+6)L,(A+y; F);
then, using the construction given in the proof of 7.2 one obtains a linear mapping

r=rn(g)

v: @ E—~HY*6,mod(d)).
r=0
r=rn(g)
Choose, for each r, a supplementary #, in E, to ker(p,); y restricted to A,
r=0

gives, when combined with
DA~ DrE),

a realization of the isomorphism of 7.5.

8. B.R.S. Algebras

8.1. Definition. Let g be a Lie algebra. We define a B.R.S. algebra over g to be a pair
(8, w), where 4 is a bigraded differential algebra, i.c. = @ "% is equipped
with two anti-derivations d and ¢ satisfying (r.s)eN?

dgr,scgr+1,s’ 5£r,scgr,s+1’ d2=0,
62=0 and dé+6d =0, and where w is an element of g® (%' °®#°!) satisfying
@d+0w+12[w,w]eB*° (R).

weg®(B°®#%Y) will be called the algebraic connection, or simply the
connection, of the B.R.S. algebra. When there is no ambiguity on the connection,
we shall speak of the B.R.S. algebra 4. In the relation (%), [-,-] is the natural
bracket on g® % and d + 0 is defined on g® % by (d+ )X QP =X®(d+ )P for
any X eg and Pe 4.
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Given two B.R.S. algebras (%, w) and (%', w’) over g, a homomorphism of B.R.S.
algebras of (B, w) in (#’, ') is a homomorphism [ : B— %’ of bigraded differential
algebras satisfying f(w)=0w’, where f:g®%—g®% is defined by

F(X®@P)=X®f(P), VXeg and VYPecaA.

If we equip «7(g) with the connection 4 + , it is clear that it is a B.R.S. algebra
over g. The name of universal B.R.S. algebra of g comes from the following obvious
lemma.

8.2. Lemma. For any B.R.S. algebra # over g, there is a unique homomorphism
Ja:4(g)—~% of B.R.S. algebras.

In other words, there is a unique homomorphism of bigraded differential
algebras, fj: o/(g)— %, mapping A+ y on the connection w of Z (fz(A+ ) = w).
We call fj the canonical homomorphism of </(g) in 4.

8.3. Example. The algebra #(M, g) of Sect. 1. Let G be a Lie group with Lie algebra
g and consider the gauge theory over space-time M with structure group G. Let d
be the exterior differential of forms on space-time and 6 be the usual B.R.S.
operator. We consider the components in g of generic gauge potential as 1-forms
on M which anticommute with the components in g of the ghost field and denote
by #(M, g) the algebra generated, (by pointwise exterior product on space-time),
by these 1-forms, the components on g of the ghost field and their d and ¢
differentials. This is a bigraded algebra #(M, g) = @ A% (M, g), where r is the

)‘S_

degree in form on M, (d-degree), and where s is the degree in the ghost field
(6-degree). Thus #(M, g) is a bigraded differential algebra and, if we define w to be
the sum of the gauge potential and the ghost field, then () is satisfied so Z(M, g) is
a B.R.S. algebra over g. The canonical homomorphism of </(g) in #(M; g) is
described by the following procedure: The value at x € M for gauge potential A(x)
and ghost field y(x) of the element of #(M,q) corresponding to an element
P(A, F,y, @) of «/(g) is obtained by replacing in P the generators 4%, F%, %, ¢* of
(g) by the (components in g) 4%(x), F*(x)=(dA(x)+ 1/2[A(x), A(x)])*, y*(x),
dy*(x).

8.4. Remark. As far as we are concerned with anomalous terms and consistency
equations, the ghost field may be identified with the identity mapping of g on itself
considered as an element of g® 4'g* Cg® Ag*, where g denotes the Lie algebra of
the gauge group (i.e. here the smooth functlons of M in g).

8.5. Proposition. The canonical homomorphism of o/(g) in B(M, g) is surjective and
induces, by restriction, an isomorphism of vector spaces of 4" *(g) on #"5(M, g) for
r<dim(M).

Proof. It is clear, from the definition of #(M, g), that the canonical homomorphism
is surjective from 7(g) on #(M, g). A basis of .2/"*(g) consists of the

A% Aaa(Fﬂl)ml (Fﬂb)mbxn ch(dXM)n;m(dXéd)nd’
i=b j=d

a+22m+2n—r c+ X nj=s,

=1 j= ji=1
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and where
U <Oy <.o. <y, L1<fr<.. <Py, 71<y2<...<Y,

and 6, <...<d, with a,, f,, y. and J, smaller than dim(g). Thus all we have to show
is that, if r<dim(M), the functionals of the gauge potential and the ghost field
corresponding to the above basis are linearly independent. To show that, it is
sufficient to construct, for a,, f,, y;, 6,, m;, n; as above with r <dim(M), a gauge
potential A(x) and a ghost field y(x) such that at point x, € M we have

A*(xg)... A%(x0) (FP1(xo))™ ... (FP(x0))™
“A(X0). - 1 7o(x0) (di (X)) (dy (% 0))" £ 0,

and all the other products vanish. To construct such a configuration, we notice
that given a g-valued 1-form A4, at x, and a g-valued two form F at x, there is a
g-valued 1-form A(x) on M such that A(x,)=A, and dA(xq)+ 1/2[ A(x,), A(xo)]
=F,, and that similar consideration applies to y(x), dy(x). Thus, there is a A(x)
and a y(x), such that A% (x,)=dx!, ..., A%(x,)=dx" the other components of
A(x,) vanish,

k=a+m; -
Ffy(x,)= % > dxkAdxk L FPr(xo) = - > dx* Adxk*m
1+ k=a+1 !

bt b
k=a+ E‘2ml+1
1=

the other components of F(x,) vanish, y"'(xq)=yx"", ..., x’(xo)=x" the other
components of y(x,) vanish,
1 at+2Xm;+ny a+2Xm;+Zn;

A (xo)=—— X gL d (o) = — p) dx* g
My’ k=at+2rmi+1 4 g 2mm+ 5 41
the other components of dy(x,) vanish, where the x* are coordinates around x, in
M and where the 37, yi= are linearly independent. Such a configuration satisfies
the above conditions. [

8.6. Corollary. The canonical homomorphism of o/(g) in (M, g) induces isomor-
phisms of their 6-cohomology and of their §-cohomology modulo d in bidegrees (r, s)
Sor r=dim(M).

Thus the computation of the é-cohomology modulo d of 2/(g) done in the
preceding sections applies directly to the computation of anomalous terms in
AM, ).

9. Conclusion

We have computed all possible anomalous terms which are (exterior) products of
gauge potential 1-forms, ghost field and their d and ¢ differentials. It would be
desirable to extend these results to more general expressions containing arbitrary
derivatives of the fields since, in principle, such expressions could occur in some



122 M. Dubois-Violette, M. Talon, and C. M. Viallet

models (although no non-trivial examples are known up to now). We shall apply
our results to specific examples in a forthcoming publication.
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