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Abstract. We compute all possible anomalous terms in quantum gauge theory
in the natural class of polynomials of differential forms. By using the
appropriate cohomological and algebraic methods, we do it for all dimensions
of spacetime and all structure groups with reductive Lie algebras.

1. Introduction

It is known that anomalous terms in quantum gauge theory (e.g. chiral anomalies,
Sch winger terms) verify consistency equations [1, 2] of cohomological nature [3].
The cohomology of interest is the local cohomology of the Becchi-Rouet-Stora
(B.R.S) operator, [4].

An anomalous term A verifies a consistency equation: δA=0. A, (the
anomalous term), is the integral of a polynomial in the fields and their derivatives.
However, solutions of the form Δ=δΔ\ where A' is a similar local expression, are
considered as trivial; indeed, in the case of chiral anomalies or Sch winger terms,
such trivial solutions may be cancelled by finite renormalization or by redefinition
of the local currents respectively.

Setting A = j β leads, for β, to the Eq. [5]

for some β'; d is the exterior differential on space-time. We shall say that Q is a
δ-cocycle modulo d. If A is a trivial solution A = δA\ then Q reads

Q = δL + dL (**)

for some L and L; we say that such a Q is a δ-coboundary modulo d. As pointed out
before, we are interested in solutions of (*) modulo solutions of the form (**), i.e. in
the δ-cohomology modulo d.

More precisely, d and δ act as antiderivations on polynomial functions of the
gauge potential 1-form A, the ghost field χ and their derivatives with values in
differential forms on space- time M. d is the exterior differential on space- time and
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<5, (i.e. the B.R.S. operator), is defined by δA= — dχ — [A,χ]9 δχ = — l/2[χ,χ] and
dδ + δd = 0, (which implies δ2 = Q).

Our purpose is to compute the (5-cohomology modulo d (i.e. possible
anomalous terms). We shall do it in the algebra 0S(M9 g) of forms generated by
exterior (pointwise in M) products of the components, in the Lie algebra g of the
structure group, of A, χ and their d and δ differentials.

We shall proceed as follows:
In Sect. 2, we define a universal algebra j/(g) supporting the action ofd and δ;

this algebra only depends on the Lie algebra g.
In Sect. 3, we compute the d and the d+δ cohomologies of «a/(g).
In Sect. 4, we compute the (5-cohomology of <£/(g).
In Sect. 5, we consider the (5-cohomology modulo d of j^(g) and construct long

exact sequences involving the 5-cohomology and the <5-cohomology modulo d of

In Sect. 6, we use the results of Sect. 5 to construct an exact couple relating the
c)-cohomology and the (S-cohomology modulo d of j/(g) and give a way to evaluate
the δ-cohomology modulo d in terms of the associated spectral sequence.

In Sect. 7, we explicitly compute the <5-cohomology modulo d of «s/(g) in the
case where g is reductive by using the general method of Sect. 6.

In Sect. 8, we define the general notion of B.R.S. algebra; j/(g) and ^(M, g) are
such algebras. Moreover we describe the universal property of <s/(g) in this class.
We finally show that the (5-cohomology modulo d of 08(M9 g) is known from the
one of J2/(g).

The content of Sects. 2-4 is summarized in our paper [6].
Finally, it is worth noticing here that some ideas of Weil are close to some

developments given in this paper [7].

2. The Universal B.R.S. Algebra of a Lie Algebra

Let g be a finite dimensional real Lie algebra and let (£α) be a basis of g. Consider
four copies gj, gf , g*, g* of the dual space g* of g with dual basis respectively
denoted by (Aa), (Fα), (χα) and (φα). Let «s/(g) be the free graded commutative
algebra [8] generated by the A* and f in degree one and the Fa and φa in degree
two. In other words

where AQ* is the exterior algebra 0 Λn§* of multilinear antisymmetric forms on g
w e N

graded by giving the degree n to the elements of /tng*, where Sg* is the algebra

0 SMg* of the polynomials on g evenly graded by giving the degree 2n to the
neJN

element of S"g*, and where (x) is the (Skew) tensor product of graded algebras [9].
On the space g®j^(g), there is a natural bilinear bracket [ , ] defined by [JT(x)P,
Y®Q] = [*, *Ί®P Q, for any X, Ye g and P, Q 6 «s/(g). Let us introduce the
following elements of g(g).s/(g):>l= Σ^α®^ f= ΣEa®Fa, χ= ΣEa®χa and
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<P=Σ£α®<Pα Set, with the above notations dA = F-l/2[A9A], dF = [F,A],
a

dχ = φ, dφ = 0 and δA=-φ-[A,χ]9 δF = [F,χ], δχ= -
and define dA\ ά¥\ df, dφ\ δA\ δF\ δχ\ δφ« in j^(g) by

Then,

and

(AΛ,

extend respectively uniquely as anti-derivations d and 5 of j/(g). One easily checks
that d and 5 are of degree one and satisfy:

d2 = Q, dδ + δd = V and <52 = 0.

Thus d, δ and d+(5 are three differentials on the graded algebra <s/(g); we denote
the corresponding graded algebras of cohomology by H(d), H(δ) and H(d + δ). We
shall compute these algebras in the next sections. Let us now introduce an
underlying bigraduation on j/(g) by giving to the A* the bidegree (1,0), to the Fa

the bidegree (2, 0), to the χa the bidegree (0, 1) and to the φa the bidegree (1, 1). So we
have j/(g)= 0 jT's(g) with ^r's(g) j/k'%)C^+M+<f(g) and the (total)

(r,s)eIN2

degree of an homogeneous element of bidegree (r, 5) is r + s. The differentials d and
δ are respectively of bidegrees (1, 0) and (0, 1), so the cohomology algebras H(d) and
H(δ) are bigraded algebras H(d)= 0 Hr>s(d) and ίf(δ)= 0 Hr>\δ),

(r,s)e]N2 (r,s)eIN2

whereas H(d + δ) is simply a graded algebra; d = (d + <5)(lj0), 5 = (d + δ)(0>1). We
shall refer to the above structure as the universal B.R.S. algebra of g and denote it
by

7J. Remark. Notice that the subalgebra generated by the Aa and the Fa is stable
by d and that, equipped with d, it is just the Weil algebra of g. More generally for
any real number f eR, one has the formula [10, 11]

(d + tδ) (A + tχ) + \β\_A + tχ,A + tχ]=F;

it follows that, for each t G R, the subalgebra Wt(cft of j/(g) generated by the ,4α

+ ίχα and the Fα equipped with the differential dt = d + ί<5 is isomorphic, as graded
differential algebra, to the Weil algebra W(Q) of g [12].

It will be convenient in the following, to extend the graduation of j^(g) to TL and
the bigraduation to Ίί x TL by writing j/fc'^(g) — 0 whenever k or { is negative.

3. The d and the d + δ Cohomologies of

We have the following theorem concerning H(d) and H(d + δ).

3.1. Theorem, (a) The d-cohomology of j/(g) is trivial, i.e. Hk'*(d) = Q for any
positive integers k, I such that k + ̂ ^l and HQ'0(d) = Ήί.
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(b) The (d + δ)-cohomology of ^(cj) is trivial, i.e. Hn(d + δ) = Q for any integer

Proof, (a) It follows from dA = F-l/2[A,A] and dχ = φ that j^(g) is freely
generated by the homogeneous elements Aa, χα, dA*, dχa. Thus (X(g), d) is the
contractible algebra [8] generated by the Aa, χa in degree one and the dAa, dχa in
degree two which has trivial cohomology by standard arguments [8].

(b) It again follows from the definitions that ^(g) is freely generated by the
elements Aα, χα, (d + δϊA* and (d-f<5)χα, which are homogeneous for the total
degree. Thus again (X(g), d + δ) is contractible so we have: H(d + δ) = HQ(d + δ)
= R. D

3.2. Corollary, (a) Let Qk>* e .s/* '(g) be such that there is α ρ*~ ̂  * e ̂ k~l^+ x(g)
such that δQk>* + dQk- 1>'+ 1=0. Then, there is a Qk-2^+2

e jtf
k-2>'+2(o) such that

(b) Let Qk>*ε<5/k>\§) be such that there are ΰ*^1 e ̂ ~\§) and
^Q) with Qk ' = δΰ'*-l+dlί-1''. Then Qk^ satisfies the assumption

Proof, (a) Apply δ to (5ρfcχ + dβk~ ιχ+1-0; it follows
= d(-δβk"1^+1) = 0, so Sff-^+l + dQk'2^+2 = Q for some
Qk-2,t+2 e j3/fe-2^+2(g)5 in view of part (a) of the last theorem.

(b) We have -δβ* '= +dδLk~1^, so any ρ*'1^1 such that δQk <
+ ί/ρ*~1 > l f + 1=0 satisfies </(ρ*-1 '+1-<5L*-1 0 = 0. Thus again, by part (a) of the
last theorem, Qk-i '+ι=δlk--i ' + dϊ!r2 '+* for some
L*-2 ' + 1 e j * * - 2 » ' + 1 . D

3.3. Corollary. Lei P6j/n + 1'°(g) 6e swcft ίftαί dP = Q and δP = 0. Then there are
Qn-p>pee$?n-p>p($) far O^p^n such that we have: P = dQn>°, δζ)n~p>p

+ dQn~p~l'p+l=0 for O^p^n-l and δQQ'n = 0. Furthermore if
Qn~p'pe£/n~p'p(θ) with Q ̂ p^n satisfy the above relations, then there are

- - - - f o r O^p^n-1 such that Q^^Q ' ~
p-1>p for l^p^n-1 and QQ>n =

Proof. We have by assumption (d + δ)P = 0; so part (b) of the last theorem implies
that there is a βej3/(g) of total degree n such that P = (d + δ)Q. Thus writing

P = n

Q= Σ Qn~p'p the Q»-p*p satisfy the statement. If Q is another solution of
P = O

P = (d + δ)Q, then (d + δ)(Q-Q) = 0; so again Q = Q + (d + δ)L for some
n-l

L= Σ E~p~^'p, which proves the last part of the corollary. D

4. The 5 Cohomology of

To compute H(δ) we first proceed to write the free-graded commutative
differential algebra (X(g), δ) as a tensor product of a contractible algebra and a
minimal algebra [8]. To do that we notice that j/(g) is freely generated by the
homogeneous elements A*, δAa, χα, Fα; now the algebra generated by A*, δAa is
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contractible whereas the algebra generated by the χα, Fα is isomorphic to
(Sg$)®(/lg*) as graded algebra and is minimal, (for δ\ in view of δχ = - l/2[χ, χ]
and δF — [F, χ ] . The space Sg* = Sg* is a graded g-module if we equip it with the
representation of g which comes, by symmetric tensor products, from the co-
adjoint representation of g in g*. One may clearly identify [13]

with the space C^(g, Sfeg*) of Acochains on g with values in the g-module S^g*. It
follows from the definitions that, under this identification, (Sg$(x)ylg*, <5) identifies,
as complex, with the complex C*(g, Sg*) of cochains on g with values in the graded
g-module Sg*. Thus we have the following theorem.

4.1. Theorem. The δ-cohomology of j/(g) coincides with the δ-cohomology of the
subalgebra generated by the χα and the Fα; as δ-complex, this subalgebra is
isomorphic to the complex C*(g, Sg*) of cochains on g with values in the ^-module
Sg*. So we have #(<5) = φ#2*''(<5) with H2k '(δ) = H'(β,SkQ*) for all positive
integers k and t. k^

Let ι/s(g) ( C Sg*) be the algebra of invariant polynomials on g. If P e ./Kg)
e j^ + 1 g) , then P(F,..,,F)ej/2/c'°(g) and

are (5-cocycles so the subalgebra J?(F, χ) generated by these <5-cocycles when P and
Q run over «/s(g) consists of (5-cocycles. Let us identify «/(F,χ) with the
corresponding subspace of cocycles in C*(g, Sg*); then the linear span of the
60c> [%>%]>•••> [%>%]) as above identifies with the space of transgressive elements
of ylg* [12]. ΐn the case where g is a reductive Lie algebra, (i.e. g is the direct sum
of a semi-simple Lie algebra and an abelian Lie algebra), it is known that the
transgressive elements are the primitive elements and generate the subalgebra
«/,i(g) of invariant forms in Λg* (for adjoint action). It turns out that for reductive g,
j^(g) is isomorphic to ί/*(g) and that, on the other hand, we have for any semi-
simple graded g-module J(, H*(Q, Jί) = ̂ J(x)#*(g), where Jtl denotes the space
of invariant elements of Jt> [9, 14]. Therefore, by applying all that to Sg* we obtain
the following corollary.

4.2. Corollary. Let §beα reductive Lie algebra. Then the canonical projection from
δ-cocycles of ^/(g) on H(δ) induces an isomorphism of the algebra */(F, χ) on the
algebra H(δ).

J>(F,χ)~H(δ) is an isomorphism of bigraded algebras.

4.3. Remarks. 1. The class of reductive Lie algebras is the appropriate class to
write Yang-Mills lagrangians since it is only for a reductive Lie algebra g that there
exists a finite dimensional faithful representation of g with a non-degenerate trace
form, [9].

2. For any Lie algebra g, e/(F, 0) is the set of all δ-cocycles contained in
® j/"'°(g). Therefore any (5-cocycle in «*/2fc + 1'0(g) vanishes and any <5-cocycle in
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^2/c'°(g) is of Λe form P(F, ...9F) for some invariant polynomial Pe,/|(g). In
particular, any <5-cocycle in j3/n'°(g) is d-closed.

4.4. Corollary. Let β2*'1 ej/^Xg) be such that there is a Q2k~^2

such that δQ2k> 1 +dQ2k~ ̂ 2 = 0. Then, there is a unique Q2k + 1'Qe £/2k+1>°($) such
that δQ2k + 1'° + dQ2k'1^Q, and we have dQ2k + l^ = P(F, ...,F) for a unique

Proof. We have dδQ2k>l = δ(-dQ2k>l) = Q, and, by the Theorem 4.1, £Γ2k + 1>1(δ)
= H2fe+1'°((S) = 0; so there is a unique β2 f e + 1>° for which we have δQ2k+ί>°
+ dQ2k>ί=Q. It follows that (5dQ2k+1'° = 0, and therefore dβ2/c+1'° = P(F, ...,F)
for an invariant polynomial P on g of degree fc + 1 . G

4.5. Corollary. Lei g be a semi-simple Lie algebra and let n and k be two integers such
that 0<;/c^2n+l and such that either k^5 or n<^3. Then, if

p e yπ* l(g)

.^F) = d2n + 1>° and

Proof. A semi-simple Lie algebra has no non-trivial invariant linear form, i.e.
,/s

1(g) = 0, so it follows from the Corollary 4.2, that, if n and k are as above,
H2n + 2~p'p(δ) = 0 for any 1 ̂  p ̂  fe. This implies the result by the same argument as
before. D

5. The <5-Cohomology Modulo d of ^(g)

We now describe a more powerful way to look at the statements of Corollaries 3.2,
3.3, 4.4, and 4.5 and to go further.

Notice first that dδ + δ d = 0 implies that dja/(g) is stable by δ and therefore that
(d,s/(g), δ) is a subcomplex of (^/(g), δ}. The differential δ passes to the quotient
and gives a differential, again denoted by δ, on j3/(g)/d,β/(g). We call δ-cochains
modulo d the elements of j2/(g)/dj/(g); we write

Cfe'U mod(d)) - j*k '

and define

(̂(S, mod(d)) = #(δ, mod(d)) ,

the δ-cohomology modulo d of J#(Q), as the cohomology of C(c), mod(<i))
= (j/(g)/dj/(g),(5). Let p: j/(g)-+C(c),mod(d)) be the canonical projection, we
denote by p* :H(δ)-*H(δ,mod(d)) the corresponding linear mapping in coho-
mology. A cocycle of C((5, mod(d)) will be called a δ-cocycle modulo d and a
coboundary of C(<5, mod(d)) will be called a δ-coboundary modulo d.

Qk'*£ J/kχ(g) represents a (5-cocycle modulo d, (i.e. δp(Qk^} = 0), if and only if
there is a β^"1'^1 ej/^^^Xg) such that έβ^ + dβ*'1'^1 =0; β*^ represents
a (5-coboundary modulo d if and only if there are I?^"1 e tβ/fe)^~1(g) and
ύ-^e^-^Q) such that ρ^^-^'^^rfL^1^. Now, Corollary 3.2(a) means
that if β7"'^ represents a (5-cocycle modulo rf then gk~1^+1 as above represents a
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(5-cocycle modulo d and Corollary 3.2 (b) implies that the class of Qk~^^+ί in
Hk~ί''+1(δ,mod(dy) is unique and does only depend on the class of Qki* in
#*•'(<$, mod(d)). We denote by

d : Hk>\δ, mod(d))-+Hk- ^+ l(δ, mod(d))

the corresponding linear mappings in H(δ,mod(d)). In the same way,
Corollary 3.3 means that we have linear mappings

^π, where Zn+^°(d + δ) is the space of
d-closed <5-cocycle in j/"+1'°(g). In view of Remark 4.3-2, Z2k + 1>°(d + δ) = Q and
Z2fe'°(d + (5) is the set of P(F, ...,F), where P runs over the space of invariant
polynomials of degree fc on g, so we identify Z2/c' °(d -f δ} with |̂(g) which we also
identify with

Summarizing, we have the commutative diagram:

H°'2k+ \δ, mod(d))H2k + l'°(δ,

5.7. Remark. We have

and one sees that

is induced by the Car tan map [9, 12] o/ J |̂ + 1(g) on ί/ze transgressive elements of
ylg*; it follows that j2 k + 1»2 f c + 1 vanishes on the elements of ̂ | + 1(δ) which are
decomposable [12]. In the case where g is reductive the linear hull of the
decomposable elements is exactly the kernel of j<2k+1 2fc + 1.

Corollary 4.4 tells us that the mappings

and

d : ' \δ, mod(d))

are all bijections. Finally, Corollary 4.5 means that, when g is semi-simple, the
maps

and

are surjections whenever 0^fe^2n+ 1 and either fc^5 or n^3.
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5.2. Lemma. The mappings Qk>*\-*(-l)kdQk^ from j/fey(g) in j^* + 1''(g) induce,
for k 4- £ §; 1 , isomorphisms of

C*»'(δ, mod(d)) = s/k '(Q)/d*/k-1 '(Q)

on dstfk'f(o) and permute with δ; so we have

Hk '(δ, mod(d)) = Hk+i '(ds/(Q)9 δ)

for any integers k, f with k + f^l.

Proof. This is an immediate consequence of Theorem 3.1 (a) and δd = —dδ. D

We have dj/fc'^(g)CJ/fe+1' lf(g), so, by the above lemma, we have injections

ΐ : C* %5,mod(έO)-*.s*k+1»'(g),

for fc + /^l, which induce homomorphisms

in cohomology for fc + / Ξg 1 .

5.3. Proposition. We have H°'*(δ, mod(d)) = H°'*(δ), for any positive integer f and
we have, for fe^l, long exact sequences,

.•'^Hk^(δ)^Hk>\δ,

starting with

Q^Hi>\δ)^

for k = 1 , and with

for k^2.

Proof. (d^(g))0'^0,sowehaveH0'^,mod(rf))-//0'^). On the other hand, for
any k^ 1, we have the short exact sequence of ^-complexes,

0— •> (dj3/(g))fe'*-^-> j2/fe'*(g)-^ Cfe'*((5,mod(d))— > 0;

the corresponding long exact sequence of (5-cohomologies just coincides wi
by writing

Hk> l(δ, mod (d)) - tf fe + 1 ' ̂ (dj^(g), δ)

for fc + ̂  ̂  1, and by using (^(g))1' ° - d^°' °(g) - 0. One verifies that d as defined
above is the connecting homomorphism of the long sequence (<9 )̂. D

By using H2k+1>\δ) = Q and H2fc '(<$) = H'(g,S*g*), (see Theorem 4.1), one
obtains the following theorem.

5.4. Theorem, (a) We have the following isomorphisms:
1) H0'^,mod(rf))-^(g), WeN, (induced by p*);

2) H2r+1'°((5?mod(rf))-H0(g,Sr+1g*)-^+1(g) and H2r+2>°(δ,
VreN, (induced by ί* ) ;
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3) H2r+1 e(δ,mod(d))~H2r'e+ί(δ,mod(d)), V r e N and V/eN, (induced by
8).
(b) For any reN, we have the long exact sequence (Sr):

0— > HZr+ l' \δ, mod(d)) -̂  HXs, Sr+ V)-^* H2r+2 *(£, mod(d))

Notice that (apart from the isomorphism 1 which is trivial) the isomorphisms 2
and 3 are easy to prove directly.

5.5. Corollary. Let g be a semi-simple Lie algebra. Then, we have the isomorphisms:

~H2r+1> 2(δ, mod (d)) ~ H2r> 3(δ, mod (d)) ,

/or reN. Furthermore, H2r+2<°(δ,mod(d)\ H2r + lΛ(δ9mod(d)) and
H2r>2(δ,mod(d)) vanish.

Proof. This follows immediately from Theorem 5.4 by using ίί1(g,Sfcg*) = 0 and
#2(g, S*g*) - 0 (see in the proof of Corollary 4.5). D

5.6. Corollary. Hk*'(δ, mod(d)) = 0 for £ > dim(g).

Proo/. We have Λ V = 0 for ̂  > dim(g). It follows that we also have £Γ'(g, Srg*) - 0
for / > dim(g), so that by Theorem 5.4 (part a. 3 and part b) d induces isomorphisms

for any ^>dim(g). This implies Hk'*(δ,mod(d)} = Q for *f>dim(g), since
= 0. D

6. The Exact Couple Relating H(δ, mod(d)) and ff*(g, 5g*)

6.7. Let us recall that an exact couple of vector spaces, [15], is an exact triangle of
linear mappings α, b, c

involving two vector spaces £ and F. Given such an exact couple, one can
construct another one,

f_J?Uf"

\ /fl\ /c

Ef

called the derived exact couple by the following procedure: One takes F' = b(F) and
: F'-^F'. From exactness at E, it follows that d = c°aisa differential on
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£, (i.e. d2=0), so the homology H(E,d) is well defined; one takes E' = H(E,d).
From exactness at F, it follows that a maps the d-closed elements of E into b(F)
= Ff and the d-exact elements of E on 0 e F; a' is the induced map of E' in f". Again
by exactness, c maps F into <i-closed elements of E and the class [c(/)] e £' does
only depend on fc(/) e F\ for / e F; c' is the corresponding map of F' in E7. One
verifies that the triangle of linear mappings 0', b\ c' so defined is again exact.

By induction, one defines, for any integer r, the rth derived exact couple

writing EQ = E, FQ = F, α0 = α, b0 = b, c0 = c and Er+ί=E'r, Fr+ί=F'r, ar+l = a'r,
br+i = b'n cr+l=c'r. Setting άγ — cr^aγ, we have Er+l=H(Er,dj, so (Er,dr)reN is a
spectral sequence associated to the exact couple. We have, in view of kerb,, = ar(Er)
and Imbr = Fr+l9 the following isomorphisms:

Fr = b\F) - αr(£,)ΘF,+ x - αr(Er)Θ^+ ̂ F) , r e N .

It follows that we also have:

b" + 1(F), V n e N .

Let us now come back to our original problem. It is clear from (a).3 in
Theorem 5.4 that one may replace in the long sequences (Sr) of 5.4 the
H2r+1 '(δ,mod(d)) by the H2rX+1((5,mod(d)). Thus we surely have an exact
couple involving /ίev'*(^,mod(rf)) and JΪ*(g,Sg*)5 (ev. stands for even here); one
must however carefully check what is going on for the lowest degrees in (r, /) by
using the results 5.4.(a)-l and 5.4.(a)-2. It is easy to see that, in order that it works,
one has to replace H°'°(δ, mod(d)) and £Γ°(g) by 0; so we define Z2-graded spaces
ff? »*(δ,mod(d)) and H*(g,Sg*) by

and

for r^O, 5^0 and r + 5^ 1 and

(HT> *(δ, mod(d))Γ s = (Ht (8, S9*)Γ5 = 0

otherwise. Let

Po : H* (g, Sg*)^Ke

+

v"*((5, mod(d))

be defined by

for r^O, s^O, r + s^l and by p0:0->0 otherwise; let
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be the canonical extension to (r, s) e TL2 of

for r^O and s^O. Finally d2 extends canonically as

<92 :He

+

v-'*((5,mod(d))->/ie

+

v--*(5,m

With these notations, we may formulate a part of 5.4 as follows.

6.2. Theorem. PFβ /zαi e the following exact triangle (<ί0)

Thus ((f0) is an exact couple of vector spaces relating the δ cohomology modulo d of
j/(g) to the cohomology of g with values in the polynomials on g. Let (£,., d rX6 N be
the associated spectral sequence starting with E0 = H*± (g, Sg*) and d0 = i0 o pQ the
rth derived exact couple (/r) may be written as

(<5, mod(d))

It follows, as above, that we have the isomorphisms

(Vn e N), and since d2n(x) = ΰϊorn greater than some finite n0(x) for each x, we have
the isomorphism:

Therefore, in order to compute the δ cohomology mod(rf), it is sufficient to
compute the Er, the kernels of pr and, eventually, to give a procedure to construct
(5-cocycles modulo d corresponding to elements of φ£r; we shall do that in the

relN
case where g is a reductive Lie algebra in the next section.

7. The Case of a Reductive Lie Algebra g

In this section, g denotes a reductive Lie algebra. Let us recall that, in this case,
#*(g) identifies with the algebra ^Λ(Q) of invariant forms on g and that this algebra
is freely generated, as graded commutative algebra, by any basis of homogeneous
primitive invariant forms, [9, 16]; furthermore, any homogeneous primitive
invariant form is of odd degree so J^(g) coincides with the exterior algebra over
the space P of primitive invariant forms on g, i.e. <fA(o) = ΛP. Let P2/C+1 be the
space of primitive invariant forms of degree 2/c+l; P= φP2k+1, and since
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dim(P) is the rank of g, the spaces P2k+ ί all vanish when k is greater than some
finite integer rM(g). As pointed out in Remark 5.1, the Cartan map ρ:^f+1(g)

) is induced byy 2*+ 1 ' 2 k + 1 via the identifications

its image coincides with P2k + 1, as is well known, [9, 12], i.e. we have #G/s(g)) = P
and ρ(,/|+1(g)) = P2/c + 1. We choose once and for all a transgression τ, i.e. a linear
mapping τ:P^t/s(g), such that τ(P2/c+1)CJ^ + 1(g) and such that ρ°τ is the
identity mapping of P on itself. Then τ induces isomorphisms P2fc+1 ~τ(P2k + 1)
and, as is well known [9, 17], the image by τ of a homogeneous basis of P is a free
system of generators of the commutative algebra J^s(g) which therefore coincides
with the symmetric algebra over τ(P); i.e. we have ,/s(g) = Sτ(P) ~ SP. Remember-
ing that H*(g,Sg*) identifies with ^S(Q)®^Λ(Q\ we write:

H*(g, Sg*) = (Sτ(P))® (ΛP) ~ (SP)®(ΛP) .

Let us introduce the subspaces Pr= ff)P2k+1 of P( = P0), and define the
fc^r

subalgebras ,/r and Er = ̂ r

+ of

by

and

E,=

We have:

+ n ̂  1

(i.e. Er

r involves at least one primitive element of degree 2r+ 1). The identification

leads to Hί.(g?5g*) = £0J furthermore we have £r = 0 for r>rM(g). Let dr be the
unique antiderivation of $r such that

and

dr(l<8)α) = τ(α)®lL for αeP 2 r + 1 .

Then we have d? = Q, dr(Er)cEr, so the homology H(Er,dr) is well defined.

7.1. Lemma. FPfe /zαi β £"r+1 =H(Er,dr) for reN, i.e. ί/ze sequence (Er,dr\el^ is a
spectral sequence.

Proof. We have dr(Er+1) = Q and dr(Er

r)ζ_Er

r, so all we have to prove is that the
homology H(Er

n dr) vanishes. Define d'r to be the unique antiderivation of Jr such
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that

d;(i®pr)=o, d;(τ(pr+1)®i)=o
and

d;(τ(α)®H) = lL®α for αeP 2 r + 1 .

Then df

r(Er^) C Er

r, and the derivation drd
f

r + d r̂ coincides on

with the multiplication by the number n + m so, since

£;=/ 0
w + m ̂  1

any dr-closed element of E\ is dr-exact, which achieves the proof. D

We shall show that (Er,dr)re^ is the spectral sequence associated to the exact
couple ($0) of Sect. 6, and this is why we use this notation; for that, we need the
following lemma.

7.2. Lemma. (Generalised "transgression" lemma). Let XzEY, then, there are
Qkz j/(g) for k= 1, 2, ..., 2r + 2 such that we have: dX + δQί -0, dQk + δQk + ί=0,
for l^k^2r, and dQ2r+ι Js~δQ2r+2 ~drX. In other words, there is an element a of
#e

+

v" *(<5, mod(<0) such that drX = i0(α) ( - i* o 3" ̂ α)) αndδ2rα-
α ίo &^ ί/ie c/αss o/ β2ι

 α5 above in He+ '*(δ,mod(d))).

Proof. It is clearly sufficient to consider monomials

χ= m

ί=l

where the ζ and the ω are homogeneous primitive forms of degrees greater than or
equal to 2r+ 1. Introduce g-invariant Lp satisfying [12]

τ(ωp) (F) = dLp(A ;F) = (d + δ)Lp(A + χ F)

we have: L^(χ, 0) - ω^(χ),

(d+δ) Π
i = l

" l F).p.Ln(A + χ; F)

(where .?. stands for omission of Lp). Expanding in decreasing "(5-degree" yields a
number of equations. The first 2r + 3 equations give δX = 0 and the equations of
the lemma with explicit Qk; as expected, the last equation (the 2r + 3th) gives drX as
defined before, i.e.

i = m

«= Σ (-l)p Π
{p such that ωp<=P2r+ J) ί=l

= d rX. D
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7.3. Remarks. 1. In this proof, one explicitly sees that the image of the Cartan
map ρ is the space P of primitive elements of J^(g). By similar arguments, one easily
sees that the decomposable elements of */s(g) are in the kernel of ρ.

2. Notice that if ζ e P2s+1 with s < r, we may apply the same trick to τ(Q (F)X
as we did to X in the proof of the lemma, but the point is that p0(τ(ζ) (F)X) = 0, i.e.
τ(Q (F)X = dA + δB for some elements A and B of J3

We are now ready to identify (Er, dr)re^ with the spectral sequence associated
with (<ί0).

7.4. Theorem. We have the following exact triangles (β^

v"*((5,mod(d))

where pr is induced, by restriction to Er, by pQ and where ir(d2ra) is the component of
s = r - 1

i0(α) on Er in the direct sum decomposition E0=H^(Q,SQ*) = Er® φ JE*.

thermore we have dr = ir° pr, so (<?r) identifies with the rth derived exact couple of
and (£r, rfr)reIN is the associated spectral sequence.

Proof. Let X be in Er. Choose α as in 7.2; so

zr o pr(Jf ) - ir(32rα) - proj£rz0(α) -

Thus we have dr = ir o pr. Then, by 7.1, Er+ v = H(Er, dr) so, by induction on r, (<fr)
identifies with the rth derived exact couple of (< 0̂). D

Together with the results of Sect. 6, this theorem implies the following result.

7.5. Corollary. We have the isomorphism:

) r — rM(θ)

pr(E,)= 0 p*(£r).

Moreover, we have: d2Ήe+"*(δ,mod(d)) = Q for r>rM(g).

Proof. The first part is clear. For the last part we remark that if r > rM(g), Er = 0
so

is an isomorphism, and therefore

S2rjffe

+

v » *(<5, mod(d)) - 82(r+k}HT' *(δ, mod(d))

for any fe^O; the result then follows from the fact that for any

XEH*!"*(δ,mod(d))9 there is an integer n such that d2nx = 0. D

k = rM(

7.6. Proposition. We have: ker(pr)= 0

Proo/ Let JΓ 6 Er satisfying pr(X) = 0; then drX = 0. Since Er+1= H(Er, dr), we have
X = drY+Z with Ze£ r+1. Thus we have pr+i(Z) = pr(Z) =
so ^elm(iir)©ker(pr+1). The result follows by induction. D
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In the above result, (and in the proof), we explicitly use Im(dr+k)cEr

r+* and Er

As a consequence of the last proposition and Lemma 7.1, we have the following
isomorphisms:

with

Λς= 0 Swτ(P2s

m + «^l

7.7. Remark. The isomorphism in 7.5 may now be realized by the following
procedure. Given a homogeneous basis (ωp) of P, choose g-invariant Lp(4; F)
such that

; F);

then, using the construction given in the proof of 7.2 one obtains a linear mapping

ψ: 0 £,->#?•• *(5,
r = 0

Choose, for each r, a supplementary JΓr in £,. to ker(pr); ψ restricted to

gives, when combined with

a realization of the isomorphism of 7.5.

8. B.R.S. Algebras

8.1. Definition. Let g be a Lie algebra. We define a B.R.S. algebra over g to be a pair
(β> ω), where J* is a bigraded differential algebra, i.e. 38 = 0 ffi's is equipped
with two anti-derivations d and (5 satisfying o ,s)eiN2

-0 and dδ + δd = 0, and where ω is an element of gtx^J*1'0® J*0'1) satisfying

0'1) will be called ί/xe algebraic connection, or simply f/ie
connection, of the B.R.S. algebra. When there is no ambiguity on the connection,
we shall speak of the B.R.S. algebra .̂ In the relation (̂ ), [ , ] is the natural
bracket on g(x)^ and d + δ is defined on g® J* by (d + δ)X®P = X®(d + δ)P for
any AT e g and P e 0S.
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Given two B.R.S. algebras ( J>, ω) and (β\ α/) over g, a homomorphίsm of B.R.S.
algebras of(0&, ω) in (J*x, α/) is a homomorphism / : ̂ -> J" of bigraded differential
algebras satisfying J(ω) = ω', where /: g(x)^-*g(χ) J" is defined by

and

If we equip j2/(g) with the connection 4 + χ, it is clear that it is a B.R.S. algebra
over g. The name of universal B.R.S. algebra of g comes from the following obvious
lemma.

8.2. Lemma. For any B.R.S. algebra & over g, there is a unique homomorphism
of B.R.S. algebras.

In other words, there is a unique homomorphism of bigraded differential
algebras, fm : j3/(g)-» J>, mapping A -f χ on the connection ω of $ (J&(A + χ) = ω).
We call fm the canonical homomorphism of j/(g) in $.

8.3. Example. The algebra J*(M, g) of Sect. 1. Let G be a Lie group with Lie algebra
g and consider the gauge theory over space-time M with structure group G. Let d
be the exterior differential of forms on space-time and δ be the usual B.R.S.
operator. We consider the components in g of generic gauge potential as 1 -forms
on M which anticommute with the components in g of the ghost field and denote
by J*(M, g) the algebra generated, (by pointwise exterior product on space-time),
by these 1 -forms, the components on g of the ghost field and their d and δ
differentials. This is a bigraded algebra J*(M, g)= ffi f̂ )S(M, g), where r is the

r.slO

degree in form on M, (d-degree), and where s is the degree in the ghost field
((5-degree). Thus J*(M, g) is a bigraded differential algebra and, if we define ω to be
the sum of the gauge potential and the ghost field, then (3K) is satisfied so J*(M, g) is
a B.R.S. algebra over g. The canonical homomorphism of £#(Q) in ^(M; g) is
described by the following procedure: The value at x e M for gauge potential A(x)
and ghost field χ(x) of the element of Jf(M, g) corresponding to an element
P(A, F, χ, φ) of js/(g) is obtained by replacing in P the generators Aa, Fα, χα, φα of
j/(g) by the (components in g) A«(x\ F«(x) = (dA(x)+l/2[A(x\ A(x)])a, χα(x),
dχ«(x).

8.4. Remark. As far as we are concerned with anomalous terms and consistency
equations, the ghost field may be identified with the identity mapping of g on itself
considered as an element of £®y!1g* c_g®Λ._g*, where j} denotes the Lie algebra of
the gauge group (i.e. here the smooth functions of M in g).

8.5. Proposition. The canonical homomorphism of <s/(g) in 3$(M, g) is surjective and
induces, by restriction, an isomorphism of vector spaces of j3/r's(g) on ̂ 'S(M, g) for
r^dim(M).

Proof. It is clear, from the definition of ̂ (M, g), that the canonical homomorphism
is surjective from j/(g) on J*(M, g). A basis of ^fr's(g) consists of the

y4^..Λαβ(F*Omι ^
i = b j = d j = d

a + 2 Σ mt+ Σ nf = r 9 c+ Σ w / = s,
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and where

α 1<α 2<...<α a, j81<j82< <βb>

and δ1 < . . . < δd with αfl, βb, yc and δd smaller than dim(g). Thus all we have to show
is that, if r^dim(M), the functionals of the gauge potential and the ghost field
corresponding to the above basis are linearly independent. To show that, it is
sufficient to construct, for αμ, βv, yλ, δσ, mi9 n^ as above with r^dim(M), a gauge
potential A(x) and a ghost field χ(x) such that at point x0 e M we have

and all the other products vanish. To construct such a configuration, we notice
that given a g- valued 1-form A0 at x0 and a g- valued two form F0 at x0 there is a
g-valued 1-form 4(x) on M such that .4(x0) = ,40 and dA(xQ)+l/2[A(xQ)9 A(x0)~]
= FQ, and that similar consideration applies to χ(x), dχ(x). Thus, there is a A(x)
and a χ(x), such that Aαι(xQ) = dx1, ...,Aαα(xo) = dxα the other components of
^4(x0) vanish,

1 k = α + mi I fc = a + i ? i 2 « l + mb

m\...,Fβb(x0)= — Σ dxkΛdxk+mb,

the other components of F(x0) vanish, χyι(x0) — X7S •••?Z7c(-x:o) — Xy c the other
components of χ(x0) vanish,

1 α + 2 Σ m j + nι 1

=-r Σ dxkχδ

k\ . . ., dχΛ-(xo) = ~

the other components of dχ(x0) vanish, where the xk are coordinates around x0 in
M and where the χ^, χ%σ are linearly independent. Such a configuration satisfies
the above conditions. D

8.6. Corollary. The canonical homomorphίsm of j/(g) in $(M, g) induces isomor-
phisms of their δ-cohomology and of their δ-cohomology modulo d in bidegrees (r, s)
for r-^dim(M).

Thus the computation of the (5-cohomology modulo d of j/(g) done in the
preceding sections applies directly to the computation of anomalous terms in

9. Conclusion

We have computed all possible anomalous terms which are (exterior) products of
gauge potential 1-forms, ghost field and their d and δ differentials. It would be
desirable to extend these results to more general expressions containing arbitrary
derivatives of the fields since, in principle, such expressions could occur in some
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models (although no non-trivial examples are known up to now). We shall apply
our results to specific examples in a forthcoming publication.
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