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Abstract. Presented are several results on the formation of singularities in
solutions to the three-dimensional Euler equations for a polytropic, ideal fluid
under various assumptions on the initial data. In particular, it is shown that a
localized fluid which is initially compressed and outgoing, on average, will
develop singularities regardless of the size of the initial disturbance.

This article presents a number of results on formation of singularities in solutions to
the three-dimensional compressible Euler equations for a polytropic, ideal fluid. The
results, described precisely in the following section, show that C* solutions to the
equations do not exist for all time, under various restrictions on the initial data.

Theorems one and two, below, deal with the case of “large” data which
essentially means that the initial flow velocity must be supersonic in some region
relative to the sound speed at infinity. (The initial data is constant outside a bounded
set.) Singularity formation is detected as the disturbance overtakes the wave front
(presumably as a shock wave) forcing the front to propagate with supersonic speed.
The method, which is a refinement of [ 10], applies equally well in one and two space
dimensions.

Our main result, Theorem 3, shows that a fluid will develop singularities if, on
average, it is slightly compressed and out-going near the wave front. The proof
borrows some important technical points from an earlier result on nonlinear wave
equations in three space dimensions [9].

Although the extensive one-dimensional theory [2, 5, 7, 8] strongly suggests such
results, the customary method of characteristics has not proved tractable in higher
dimensions. (John [3] has recently used characteristics to prove blow-up for a three-
dimensional scalar wave equation with spherical symmetry.) Our approach involves
the use of averaged quantities, thereby avoiding for the most part, local analysis of
the solution. For classical solutions, these averages satisfy certain differential
inequalities, solutions of which have finite life span.

We do not address the problem of singularity formation in three-dimensional
incompressible fluids. It is possible to approximate a compressible flow with an
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incompressible one by letting the sound speed become large [6]. However, our
upper bound for the life span of a C! compressible flow is not uniform in this
parameter, and so this approximation cannot be used to establish singularity
formation in the incompressible case.

1. Statement of Results

The motion of a polytropic, ideal gas is described by the compressible Euler
equations [1]:

P+ V-pu=0, (1.1a)
pu,+uVu)y+Vp=0, (1.1b)
S;+u'VS=0, (1.1¢)
p=Ap'eS (A>0,y>1). (1.1d)

Here, p, u, S, p represent the density, velocity, specific entropy, and pressure of the
gas, respectively. The state Eq. (1.1d) is that of a polytropic gas, y being the adiabatic
index.

Initial data is assigned which is constant outside the bounded set {|x|= R}:

p(x,0)=p°%x)>0; p°x)=p, |x|=R, (1.2a)
u(x,0)=u’(x); u%x)=u(=0), |x|=R, (1.2b)
S(x,0)=5%%x); S°x)=S, |x|=R. (1.2¢)

By making the change of variables u »u —# and x — x + ti1, we may assume without
further loss of generality that # =0, as indicated in (1.2b).

The Egs. (1.1 a—d) can be written as a positive, symmetric hyperbolic system, and
as such, they possess a unique, local C* solution (p,u, S) with p>0, provided the
initial data (1.2a—c) are sufficiently regular [4].

The maximum speed of propagation of the front of a smooth disturbance is
governed by the sound speed

o =p,(p,5)!? =[Ayp"" 1172, (13)
since # = 0. More precisely, letting
D(t) = {xeR*:|x| Z R + at},
we have the following.

Proposition. If (p,u,S) is a C* solution of (1.1 a—d), (1.2a—c) on D(¢), for 0t =T,
then (p,u,S)=(p,0,5) on D(t),0<t<T.
This is a consequence of local energy estimates; see the proposition in [10].
Our first result on formation of singularities, arising from “large” initial
disturbances, relies on the relationship among the quantities

m(t) = jg (P(x, t) - ﬁ)dxa (143)
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n(t) = [ [p(x, t)exp(S(x,t)/y) — pexp(S/y)1dx, (1.4b)
F(t)= | x-pu(x, t)dx, (1.4c)

which, roughly speaking, measure mass, entropy, and the radial component of
momentum. These integrals converge as long as the solution is C*, by the
proposition.

Theorem 1. Suppose (p,u,S) is a C* solution of (1.1a—d), (1.2 a—c) for 0St< T If

m(0) = 0 (1.52)
n(0)=0 (1.5b)
F(0) = aocR* max p°(x) (oz = 1~§£> (1.5¢)

then the life span T of the C* solution is finite.
To illustrate one way in which (1.5 a—c) can be satisfied, take as initial conditions

p°=p and S°=S.
Then m(0) = n(0) = 0 and (1.5c) holds if
| x-u®(x)dx = ao R*.
R3

Comparing both sides, we find that the initial flow velocity must be supersonic in
some region.

The system (1.1 a—d) may also be described in terms of the energy E, rather than
the specific entropy S. Thus, (1.1c) is replaced by the energy conservation law

E,+V-[u<yE—%plu|2>]=O, (1.1¢)

the new state equation is

p=@—DIE—3$plul’l, (1.1d)
and E must be prescribed initially instead of S
E(x,0)= E°(x)>0; E°%x)=E, |x|=R. (1.2¢)

A C! solution of (1.1 a—d), (1.2a—c) gives rise to a C* solution of (1.1a,b,c’,d’),
(1.2 a, b, ¢’) through the relation

A
E=1plul? +}}T—pyes.

1

Thus, Theorem 1 has an interpretation in this situation, as well. Moreover, defining

e(t) = | (E(x,t) — E)dx, (1.4d)

R3
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we will also prove a slightly different “large data” result:

Theorem 2. Suppose (p,u,E) is a C' solution of (I.1a,b,c,d), (1.2,a,b,c) for
0Zt=TIf

m(0) = 0, (1.6a)
€0) =0, (1.6b)

1<y <5/3% (1.6¢)
F(0) 2 foR* max p°(x) (ﬁ = sz_n—l)> (1.6d)

then the life span T is finite.
Our main result establishes formation of singularities without any condition of
largeness such as (1.5c) or (1.6d). Let us define the functions

q°) = | Ix|7 (x| = *(p°(x) - p)dx,

|x|>r

a')= [ IxI73(x > —r?)x-p%u®(x)dx.

|x|>r

Theorem 3. Suppose that for some 0 < Ry <R

q°(r) >0, (1.7a)

q'(r) 20, (1.7b)
for Ry <r <R, and suppose

S%x)= S. (1.7¢)

Then the life span T of the C! solution of (1.1 a—d), (1.2 a—c) is finite.

The assumptions (1.7 a, b) mean that, in an average sense, the gas must be
slightly compressed and outgoing directly behind the wave front. It is interesting to
observe that both ¢q° and ¢! vanish for incompressible data p° = g, V-u® = 0 (by the
divergence theorem in the case of q'). Thus, singularities due to compression are
being detected, and not those of the underlying incompressible flow, if indeed any are
present.

To indicate the idea of the proof, suppose $°(x) = S and y = 2. Disregarding the
fact that the solution is only assumed to be C*, we derive the second order acoustical
wave equation

5 2A(p— p) = ASA(p— 5P+ 3 o
(0 — Pl —0*Alp — p) = A’ A(p — p)* + i,jzzlm(pu,-uj),
from (1.1 a—d). By performing appropriate averages, the last term may be ignored,
leading to an inequality of the form

v, — Av = Av?,

* The elementary kinetic theory of gases holds in the range 1 <y <5/3
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solutions of which develop singularities for small data [9]. The proof relies on the
specific form of the Riemann function for the wave equation in three dimensions, in
particular, its positivity. This contrasts with the results of theorems one and two
which are dimension independent.

2. Proof of Theorems 1 and 2

Let (p, u, S) be a C! solution of (1.1 a-d), (1.2 a—c) for 0=t < T. Using the proposi-
tion and integration by parts it is easily shown that

m(t) = m(0) (2.1a)
and
n(t) = n(0). (2.1b)
Similarly, we derive
F'(t)= [[plul®>+3(p — p)1dx, (2.1¢)

where p = p(p, S).

The goal is to obtain a differential inequality for F(z).

Define B(t)={x:|x| <R+ ot} =D(t). The proposition says that (p, u, S)=
(9,0, 5) outside B(t). By (1.1d), Jensen’s inequality, (2.1b), and (1.5b) we have

[ pdx=A | p’expSdx

B(t) B(t)
2 A(vol B@)' (| pexp(S/y)dx)y
B(t)
= A(vol B(t))! ~"(n(0) + vol B(t) pexp (S/7))"
= pvol B(t)

= [ pdx.

B(t)

Returning to (2.1c), this gives

F'(t) 2 [plul*dx. (2.2a)
Next, we apply Schwartz’ inequality to obtain
F(ty = ( | x-pudx)? <( { |x|2pdx)( | plul?dx) (2.20)
B(t) B(t) B(t)

With the aid of (2.1a) we have

[ 1x?pdx < (R + 61)* | pdx
B() B(t)

=(R + 01)*(m(0) + | pdx)

B(t)

=(R+0t)*( | (0°—p)dx+ [ pdx)
B(1) B()

< 4?n(R + ot)® max p°(x). (2.20)
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(2.2 a,b,c) combine to give the inequality

Fi(t)= [‘—?(R + ot)> max po(x):l F@)?, 2.3)

F(0)> 0, so (2.3) implies that F(f) remains positive on 0 <t < T. Dividing by F(t)?
and integrating from O to T in (2.3) results in

F(0)"'2 F(0)"! — F(T)" 2 (a0 max p%) " Y(R™*— (R + pT)~%

with « = 16m/3. It is now clear that T cannot become arbitrarily large without
contradicting the assumption (1.5c). This proves Theorem 1. .

In order to prove Theorem 2, suppose that (p,u,E) is a C! solution of
(1.1a,b,¢,d’), (1.2a,b,c¢’) on 0 <t < T. Then (2.1c) is valid with p = p(p, E). Thus,
using (1.1d’) and the fact that e(t) = ¢(0) we obtain

FO="2 [Tpluf? + 36— D)e0)Jdx:

By (1.6b) e(0) = 0, so the remainder of the proof follows Theorem 1, from (2.2a).

3. Proof of Theorem 3

Constants which are independent of the initial data will be denoted by C. They may
depend on the fixed values R, and R, however. For the sake of clarity, we begin with
the case y = 2, and later we will indicate what modifications are necessary in the
general case.
Supposing (p,u,S) is a C* solution, we have by the proposition that p — p is
supported in B(t) = {|x| < R + at}. So, we can define
Pr,0)= [ w(x,r)(p(x,t)—p)dx (r>0), (3.1a)

Ix{>r

where
w(x,r)=x|" (x| =) (3.1b)

By direct computation, we have using (1.1a) that

0 0 _
P = [ olx, )5, (P, 1) — p)dx

|x|>r
=— [ o(x,r)V:pu(x, t)dx
|x{>r

= | Vo(x,r) pu(x,t)dx,

|x|>r
since pu is supported in B(t) and w(x, r) = 0on {| x| =r}. Thus, P(r, t)is C*int,and we
can differentiate again using (1.1 a,b)

o = \Y : 0 t)d
Et_z_P(ra t) = f a)(x, T) a(pu)(x, ) X

|x|>r

=55 2 L tpuay |ox— ] Voo

Ljx|>r Ix|>r
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where p = p(p, S). Now since
VCU(X, r) = lxl— 3(‘X|2 - rZ)x,

which vanishes on {|x|=r}, and since puu; and p — p have compact support, we
may again integrate by parts:

2
o —P(r,t)= ja . pupudx + | Aw-(p— p)dx

atz lJ]x|>r Ix|>r
=Lirn+1 z(r, ). (3.2a)

A simple computation of 9?w/dx,0x; shows that

2r? x |x|? —r? x )2
1(r.1) = _
“”MMWPQI> SoREr Qn dx

|x|? —r?
§

p-lul?dx

|x|>r , I
>0, (3.2b)

since ((x/|x])-u)* < |ul?.
For the second term, we have

Ao(r,x) =2|x| "' = w,(x,7).
Hence,

L= | 2Ix|"'(p~ p)dX—a—z § ol r)(p(x, t) — p)dx, (3-20)

Ix|>r Ix{>r

because w and w, vanish on {|x|=r}. Combination of (3.2 a, b, ¢) gives

0? , 0%
(57 e 2>P(" t) =z G(r, 1), (3.3a)
where
02 ) 0?
Gro=57 | wlenlp—p—oip—pldx=25Grn  (33b)
|x|>r
We may also write
Gr,y= | 2x|"'[p—p—a’(p— p)ldx. (3.30)
|x|>r

Inversion of the one dimensional d’Alembertian [] = 0%/0t> — 6*(0*/0r?) gives
(for r > Ry + at)

t r+o(t—1)

P(r,t) = P°(r, 1) +5- j ) OP(,7)dyds
[ o(t—1)
t r+o(t—1)

= POr, 1) + 2Lj | Gy,1)dydx, (3.4a)

00 r—o(t—1)
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by (3.3a), where

Po(r,t) = %{qo(r +ot)+ q°(r — ot) + é rijdt ql(y)dy}‘ (3.4b)

r

Now let

F(t)= j(t —1) UTR r~1P(r, t)drdr.
0 at+

Ro

F(t) is C?, and from (3.4a),

ot+R
F()= [ r 'P(r0dr
ot+ Ro
ot+R 1 at+R tr+a(t—r1)
> [ r'Prodr+-— [ ') | Gy, 1)dyddr
ot+ Ro 266[+R0 Or—oa(t—1)
=J, +J,. (3.5)

By our hypotheses (1.7a,b), go(r) >0 and ¢,(r) 20 on R, <r < R. Hence, we see
from (3.4b) that

at+R at+R
J12 [ rg%r—otydrz(et+R)™' [ q°%r—ot)dr=By(ot+R)"' >0,
at+ Ro ot+Ro
(3.6)

where x
By = | q°(rar.
Ro
To bound J, below, we note that, as long as u is C*, the particle paths

dx_
"

(et), x(0,8)=¢

exist. Equation (1.1c) expresses the fact that S remains constant along these paths, so
by (1.7c) we have that

S(x,t)=S.
Consequently, p(p, S) = p(p, S), so that
p—p—o*p—p) 2 A’[p* — p* —2p(p — p)] = AeS(p — p). (3.7
It follows from (3.3c) that
G(r,t) =2 0.

Inverting the order of integration in J, (cf. (39a) in [9]) using the fact that G(y, t) is
supported in {y < ot + R}, we find

t at+R yto(t—r1)
J,==—f | G | r~ldrdydr,
20 Oat+Ro max[at + Rq,y —~a(t —1)]

provided t 2 R; = 4(R — R,). The innermost integral is bounded below by

Ca(at + R)™ 3t —1)(y — o1 > R,)~
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Since G(y, 1) > 0, we have that

t gt+R
J,ZClet+ R | (t—1)(y — 01— Ro)*G(y, t)dydx,
06t +Ro
for t 2 R,. Returning to (3.3b), and noting that G(y, t) vanishes for y > o7 + R, we
can integrate by parts and then use (3.7) to obtain

t ot+R
J,2Clt+R)2[ | (t—1)G(y,7)dyds
0 ot+Ro

at+R

2
> Clot + R)-Zf’pT Je=9 | [ olp—p duyd. (3.82)

ot+Ro|x|>y

Denoting this last integral by J; and using Schwartz’s inequality, we find

gt+R

F(t)2§J3<i(t——t) fy2 w(x,y)dxdydr)- (3.8b)

at+Ro y<lIx|<or+R
Letting J, denote the integral in (3.7b) above, we estimate as follows

t agt+R at+R
J4=(f)(t—f) [y~ 24n [ |x|(1x| - y)*d|x|dydt

agt+ Ro y

ot+

R
[ y X ot +R)(ot + R —y)dydt
+Ro
ot+R

Cjt'(t —17)(et+R) | y 2dyde
0

ot+Ro

<cft-9)

at

IIA

< Cf(t—1)(ot+R) 'de
0
< Co~ (ot + R)log(st + R). (3.8¢)
Combining (3.8 a, b, c) and (3.5) we obtain

4

F't)= C%[(at + R)*log(ot + R)]'F(1)*0, 20, (3.92)

since J, > 0. On the other hand, since J, = 0, (3.5), (3.6) yield the auxiliary estimates

ot+ R

F'(t) 2 Boot +R)™Y, t>0, F(t)=0 'B, 1og< ) t>0, (3.9b)

F(t)= Co~2By(ot + R)log(st + R), t>R,, (3.9¢)

since F(0) = F'(0) = 0. Equations (3.9 a, b, c) are sufficient to prove blow-up. Indeed,
if we let s =gt and F(s) = 62/pF(t) we have

F"(s) = C[(s + R)*log(s + R)] ™ 1F(s)?,
F'(s)2 Cp~'B,log(s + R),
F(s) = Cp~'By(s + R)log(s + R),
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for s > (R — R,)/2. In [9], we showed that any C? function F(s) which satisfies the
above inequalities has a finite life span bounded above by C exp [Cp?/B3] (cf. 42 a—d
and the conclusion of the proof of Theorem 3 in [9]).

Hence, the life span of the C! solution is bounded above by

C
;exp(C&z/Bg).

For the general case, y > 1, the adjustment occurs in (3.7) where now
p—b—0*p—p)z A"~ 5"~ 95" (p— p)]1= A ¥(p,p).  (3.10)

By convexity of p?, ¥(p, p) is positive for p # p. Using Taylor’s theorem, we have
the lower bound

Y(p,p) 2 C,(p)D,(p — p),
where @,(-) is nonnegative, convex and

@,(a) = {

Jensen’s inequality is used in (3.8b). The resulting differential inequality still has a
finite life span, although the upper bound will differ.

a’?, —p<a<p

a, 2p<a.

4. Isentropic Flow and Weak Solutions

The following corollary to Theorem 3 holds for weak solutions when the fluid is
isentropic, that is, entropy is constant. Thus, the state equation becomes

p=AeéSp’ (A>0, y>1). (1.1d")

Corollary. A global weak solution (p,u) of (1.1 a, b, d") (written in conservation form)
with initial data (1.2 a,b) which satisfies (1.7 a,b) cannot be C* on the set

Dr={(xt):x=Ry+0t,05t<T},
for all T > 0. (Singularities come arbitrarily close to the wave front.)

Proof. Since S =S is constant, inequality (3.10) holds without reference to the
particle paths x’ = u. Therefore, the analysis of Theorem 3 is valid as long as the
solution (p, u) is C* in Dy, and we must conclude that T is finite.
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