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Abstract. Letf be a C*> map of the circle or the interval and let X(f) denote the
complement of the basins of attraction of the attracting periodic orbits. We
prove that X(f) is a hyperbolic expanding set if (and obviously only if) every
periodic point is hyperbolic and X(f) doesn’t contain the critical point. This is
the real one dimensional version of Fatou’s hyperbolicity criteria for holo-
morphic endomorphisms of the Riemann sphere. We also explore other appli-
cations of the techniques used for the result above, proving, for instance, that for
every C? immersion f of the circle (i.e. a map of the circle onto itself without
critical points), either its Julia set has measure zero or it is the whole circle and
then f is ergodic, i.e. positively invariant Borel sets have zero or full measure.

Introduction

The subject of this paper is the dynamics of C? maps of the circle or the interval, on
regions bounded away from the critical points. The aspects of the dynamics that we
shall consider, and the corresponding results that we shall prove, can be summarized
as follows:

Hyperbolicity—Ifthemapisnottopologicallyequivalenttoanirrationalrotation
of the circle, every compact invariant set not containing critical points, sinks or non-
hyperbolic periodic points is hyperbolic.

Stability—Structural stability is generic in the space of C"immersions of the circle
and is characterized by the hyperbolicity of the non-wandering set.

Ergodicity—Transitive C*immersions of the circle are ergodic, i.e. every invariant
Borel set has either zero or full Lebesgue measure.

Measure—If I" is a compact invariant set with empty interior not containing
critical points, then either the Lebesgue measure of I” is zero or there exists an
interval U that is mapped diffeomorphically into itself by some power of the map and
such that I'n U has positive Lebesgue measure.

Sinks—Forevery compactset K that doesn’t contain critical points, the periods of
the sinks or non-hyperbolic periodic orbits contained in K are bounded.
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Before entering into the precise statements of these results, let us recall the
definition and basic properties of the concepts they involve.

Let N denoteeitherthecircle ' = {zeC||z| = 1 } or theinterval [0, 1]. Let End"(N)
be the space of C" maps f: N o {(endomorphisms) endowed with the C" topology. As
usual we say that xeN is a periodic point of feEnd"(N) if f"(x)=x for
somen = 1. In this case we say that it is hyperbolicif | (") (x)| # 1,asinkif](f")(x)| <1
and a source if |(f")(x)| > 1. The basin of a sink x is defined as the set of points y such
that lim d(f")(x), f"(y)) = 0.Itisanopenset containing x. Wesay thataset A = Nis

n—>+ow
an invariant set of feEnd"(N)if f(A) = A. If there exists a neighborhood U of A such
that A = () f(U), we say that A isisolatedand that U is an isolating block A. A hyper-

bolic set of feEnd"(N) is a compact invariant set A such that there exists constants
K >0and 4> 1 satisfying |(f")(x)| = KA" for all xeA, n = 0. Hyperbolic sets have
remarkable properties, the most outstanding being its stability and the reducibility of
its dynamics to certain simpler models.

What follows is a short glossary of these properties:

I) If N is a hyperbolic set of feEnd"(N), then N = 8!, and f is topologically
equilvalenttoamap f :S' o givenby f(z) = z¢, wheredisaninteger # 1 or — 1. Recall
that topologically equivalent means that there exists a homeomorphism A: §* = such
that hf =fh.

II) If A =« N — 0N is an isolated hyperbolic set of f eEnd’(N) and A # N, then
f1A is topologically equivalent to a subshift of finite type. A subshift of finite type
is a map 0:X*(A) o, where 4 is a m x m matrix whose entries a (i,j) are 0 or
1;X*(A) is the space of the sequences 6:Z" —{1,...,m} that satisfy the transition
law a (6(n), 0(n + 1))=1 for all n =0, endowed with the pointwise convergence
topology, and ¢:X *(A) o is defined by a(0)(n) = O(n + 1).

III) If A = N — 0N is an isolated hyperbolic set of feEnd! (N), then for every
isolating block U of A, there exists a neighborhood # of f such thatif ge#, f|A is
topologically equivalent to g/(")g"(U).

1V) For every hyperbolic set A ¢ N — 0N of feEnd'(N) and every neighbor-
hood V of A there exists an isolated hyperbolic contained in V and containing A.

Property (I) is the one dimensional case of a result of Shub [6]. Property (II) was
proved by Jacobson [1] and Nitecki [5] (for a certain A, but their techniques with
minor modifications prove (II)). Property (III) is nowadays a minor application of
the stability theory of hyperbolic sets, but proofs can be found in [5]. (IV) is
folklorical. We shall give a simple proof of it in the Appendix.

In [1], Jacobson introduced the set X(f) of an endomorphism feEnd"(N)
defining it as the complement of the union of the basins of the sinks and, attempting
to characterize the C" structurally stable endormorphisms (i.e. those that are
topoligically equivalent to every C" nearby endomorphism), he considered the class of
maps feEnd"(N) such that X(f) is hyperbolic and contained in N —dN. This
class will be denoted #"(N). He proved the following results:

V) #(N) is open and dense in End!(N).

VI) Every feS!(N) is X-stable, ie. if geEnd!(N) is C! near to f, g/X(g) is
topologically equivalent to f/2(f).
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VII) If fe#*(N) and Z(f)=N, then N=S* and f:S' o is topologically
equivalent to a map f ,:S* = (defined as in property (I), of which this property is an
immediate corollary).

VI If fesY(N)and X(f)# N, then f/X(f) is topologically equivalent to a
finite type subshift. This is a corollary of (II).

IX) If fe%(N) and has not critical points, then f is C!-structurally stable.

X) If fe#*(N) and satisfies:

a) Every critical point is non-degenerate, i.e. f'(x)= f"(x) #0.

b) If C(f) denotes the set of critical points of f, plus, in the case N = [0, 1], the
points 0 and 1, then f"(x) # f™(y) for all x and y in C(f) and every n=0,m = 1.

¢) If N =[0,1],0and 1 are not critical points of f, then f is C2-structurally stable.

These properties pose two questions:
Problem 1. Is ¥"(N) dense in End’(N) for r = 2?
Problem I1. Is X(f) hyperbolic for every C"-structurally stable feEnd"(N)?

An affirmative answer to Problem II would yield a complete characterization of
structural stability, namely that feEnd!(N) is structurally stable if and only if
C(f)=¢ and feF'(N), and that feEnd(N)(r=2) is C’-structurally stable if
and only if fe%"(N) and satisfies (a), (b} and (c). We shall give positive answers
to both questions when restricted to the space of C" immersions (that is an open
subset of End"(N)) with r = 2. This will be based on the following hyperbolicity
criteria that also has an independent intrinsic interest.

Theorem A. If feEnd*(N) and A =N is a compact invariant set that doesn't
contain critical points, sinks or non-hyperbolic periodic points, then either A = N = S!
and f is topologically equivalent to an irrational rotation or A is a hyperbolic set.

Corollary 1. If all the periodic points of f eEnd?(N) are hyperbolic and X(f) doesn’t
contain critical points, then either N =S* and f is topologically equivalent to an
irrational rotation or X(f) is a hyperbolic set.

Corollary IL. Forallr = 1, every C" immersionf: S' o can be approximated in the C"
topology by an immersion g:S* a such that X(g) is a hyperbolic set.

Corollary III. Forallr =2,a C" immersion f:S* 2is C" structurally stable if and only
if Z(f) is hyperbolic.

Corollary Iis an easy consequence of Theorem A. Corollary I1 also follows easily
from Theorem A recalling that for allr = 1, the hyperbolicity of all the periodic points
is a generic property in End’(N). Corollary III follows from Theorem A, property (IX)
and the fact that all the periodic points of a C"-structurally stable endomorphism are
hyperbolic.

Wewerenotabletosolve ProblemsIandII, but using Theorem A we canreduceits
solution to a problem related to links of critical points. To define this notion first recall
that given feEnd’(N), the a-limit set of a point xeN is defined by:

)= ) U "({x))

n20mzn
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Denote C (f) the set of critical points of f plus, in the case N = [0, 1], the points 0 and
1. A link of f is a pair (x, y) of points in C(f) such that y is in the forward orbit of x. A
fake link is a pair (x, y) of points in C(f) such that it is not a link and xea(y). Denote
v(f) the number of links of f.

Conjecture. If all the critical points of f e End"(N) (r = 2) are non-degenerate and all
its periodic points are hyperbolic, then, if f has a fake link, there exists geEnd"(N)
arbitrarily near to f in the C" topology and satisfying v(g) > v(f).

In other words, using the fake link a new link is created by a small perturbation
without destroying those already existing. To see how this conjecture implies an
affirmative answer to Problems I and II we need the following approximation
theorem.

Theorem B. Suppose that f eEnd’(N), r = 2, satisfies:

a) all the periodic points of f are hyperbolic,
b) all the critical points are non-degenerate,
c) f has no fake links.

Then f can be approximated in the C" topology by an endomorphism ge ¥#"'(N).

Now let #5(N) be the set of maps f eEnd’(N) such that all its periodic points are
hyperbolic and all its critical points are nondegenerate. If f ;€ ¥ (N) take an open
neighborhood % of f, such that the number of critical points of every fe% is the
same, say N. Then v(f) < (N + 2)? for all fe#. Take f,e% such that v(f;) = v(f)
for all fe. It is easy to see that we can construct an endomorphism f,e% such
that all its periodic points are hyperbolic and having the same links of f;. Then
v(f5) = v(f1). Suppose that f, has a fake link. If the conjecture is true there exists
f3€% with v(f3) > v(f,). But then v(f3) > v(f,) contradicting the way we choose f;.
Therefore f, has no fake links. By Theorem B we can approximate f, by ge#%
such that ge "(N). Since % is arbitrary, we have proved that, if the conjecture is
true, every element of &5 (N) can be approximated by an element in &"(N). Since

%(N) is obviously dense in End'(N) this yields an affirmative answer to Problem
1. Therefore, if f eEnd"(N) is C"-structurally stable (r = 2) we can approximate it
by ge#"(N), and because of the structural stability of f, g and f are topologically
equivalent. Moreover, it is easy to verify that if r =2 all the critical points of a
C'-structurally stable endomorphism are non-degenerate and that a topological
equivalence transforms non-degenerate critical points in critical points. Then, the
fact that X(g) contains no critical points implies that X(f) contains no critical
points. Since all the periodic points of f are hyperbolic (because f is structurally
stable) it follows from Corollary I that X(f) is hyperbolic.

This approach is obviously motivated by Peixoto’s proof [6] of the density of
Morse—Smale vectorfields in two dimensional compact orientable manifolds, where
the role of the critical points is played by the saddles and saddle connections
correspond to links. The phenomena corresponding to fake links is a separatrix of a
saddle accumulating in a saddle. In Peixoto’s proof there is a step, corresponding to
Theorem B, where it is proved that a Kupka—Smale vectorfield without fake links
can be approximated by a Morse—Smale vectorfield. But the crucial point is to show
that when a separatrix of a saddle accumulates in another saddle then a new saddle
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connection can be created without destroying those already existing. However this
step doesn’t work in the non-orientable case because of the reversing of orientation
of certain Poincaré maps. The same problem appears here, but instead of being
produced by the non-orientability of the manifold its cause is the existence of critical
points.

Now let us consider the problem of whether there exists a one dimensional
version of the infinitely many sinks phenomena found by Newhouse for dif-
feomorphisms in dimension = 2. To produce examples of endomorphisms f:N o
with infinitely many sinks is trivial. For instance one can easily construct C*®
diffeomorphisms f:[0,1] @ having infinitely many sinks. However the following
theorem states that the only way to produce C? endomorphisms with infinitely
many sinks bounded away from the critical points is by inserting intervals where
some power of f acts as a diffeomorphism with infinitely many sinks. To give the
precise statement of this property, let us first introduce a definition. Given if
eEnd’(N) we shall say that two periodic orbits y, and y, are homologous if they
have the same period n and there exist x,€y, and x,ey, and an interval J
with x; and x,ey, as endopoints such that f"/J maps J diffeomorphically onto
itself. Obviously this is an equivalence relation.

Theorem C. If feEnd*(N), every compact set that doesn’t contain critical points
contains only finitely many non-homologous orbits of sinks or non-hyperbolic periodic
points.

Corollary 1. If feEnd*(N)and K is a compact set not containing critical points, then
the periods of the sinks or non-hyperbolic periodic points whose orbit is contained in K
are bounded.

Corollary ILIf f:N o is real analytic and K is a compact set not containing critical
points then the set of sinks or non-hyperbolic periodic points whose orbits are
contained in K is finite.

Both Corollaries follow immediately from Theorem C. Another interesting
application is the finiteness of the set of periodic plateaus of an immersion. Let
us recall the basic dynamical properties of immersions. Given a C! endomorphism
f:S* owithdegreed 5 1 or — 1 thereexists a continuous map h:S* o of degree 1 such
that hf =f,h, where f ;S 2 is defined by f ,(z) = z%. Moreover, if f is an immersion,
h is monotone, ie. for every zeS', h™!({z}) is either a unique point or an
interval [a, b] with a # b. In the last case we say that (a, b) is a plateau of f. Denote
J(f) the complement of the union of the plateaux of f. Using the map 4 it is easy
to check the following properties:

XI) Two plateaux are either disjoint or coincide.

XII) f maps diffeomorphically plateaux onto plateaux.

XIII) Every plateau U is either periodic (ie. f¥(U)=U for some N =1),
eventually periodic (ie. f™(U) is periodic for some m=1) or wandering (i.e.
MUY f™(U)=Ifor all n=1).

XIV) If f is C?, every plateau is periodic or eventually periodic.

XV) xeJ(f)if and only if for every neighborhood W of x there exists n = 0 such
that f"(U) = S!. This implies that F/J(f) is transitive.



500 R. Maié

XVI) J(f) is either a Cantor set or coincides with S!. In this case f is
topologically equivalent to z+-z“
XVII) J(f) contains a dense subset of sources.

Property (XIV) is not a corollary of the existence of the semiconjugacy h but
follows easily from an adaptation of Denjoy’s theorem (see Lemma 1.4 below).

Each periodic plateau is mapped by h in a periodic point of f, with the same
period as the plateau. Moreover different plateaux are mapped in different points.
Therefore if an immersion f:S! o has infinitely many periodic plateaux, the periods
of these periodic plateaux is an unbounded set. But it is clear that every periodic
plateau contains a sink or a non-hyperbolic periodic points. Then, by Corollary
I of Theorem C, there can be only finitely many periodic plateaux. We have thus
proved:

Corollary III. The set of periodic plateaux of a C* immersion f:S' o is finite

The question of the Lebesgue measure of compact invariant sets not containing
critical points has an answer similar to that of the finiteness of the set of sinks.
Every diffeomorphism of the interval has compact invariant sets with positive
measure, but the next theorem shows that this is essentially the only way of
producing examples of a compact invariant set without critical points and with
positive measure.

Theorem D. If feEnd*(N) and A c N is a compact invariant set not containing
critical points, then, either the Lebesgue measure of A is a zero of there exist an
interval J = N and an integer n =1 such that f"(J)<J, f"/J has no critical points
and J A has positive Lebesgue measure.

Corollary L. If f:S! oisa C* immersion, either J(f) = S* or the Lebesgue measure of
J(f) is zero.

Now observe that if all the periodic points of a C? immersion are hyperbolic, then
by Theorem A, f is expanding, i.. there exists N =1 such that |(fVY(x)| > 1 for
all xeS*. This class of transformations have a very developed ergodic theory. For
instance, they have a unique f-invariant probability absolutely continuous with
respect to the Lebesgue measure and this f-invariant probability is ergodic and its
Radon—Nikodym derivative with respect to the Lebesgue measure is a Holder
continuous positive function. For simple reasons this result is false if there exists a
non-hyperbolic periodic point x,, even if for some N > 1 the inequality |(fVY (x)| > 1
holds for all x # x,. However, immersions f:S* o with J(f) =S are ergodic:

Theorem E. Every C? immersion [:S' o with J(f)=S' is ergodic, ie., every
invariant Borel set has either zero or full Lebesque measure.

The proof of these theorems, with the exception of Theorem B, will be based on
Lemma 1.3, stated in Sect. I and proved in Sect. II. Essentially it states that given a
compact invariant set A = N of a C? endomorphism, then if A doesn’t contain
critical points and (7) f"(A) is not a union of periodic orbits, there exists an open

nz0
interval J having non-empty intersection with (7} f*(A), where the backward dy-
n=0
namics of f/(") f™(A) is reasonably hyperbolic. More precisely, if aeJ N( N f1(A))

nz0 nz0
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and a = ag, ay,..., are points in () /"(A) satisfying f(a,+ ,) = a, for all n = 0, there
exists maps ¢,:J > N,n= 1,2,..?;§uch that:
pua) = ay,
"o (x)=x for all xeJ
for all n =1, and also satisfying the following three properties:

a) p(J)nI=¢ or o)),
b) lim |, (»)|=0 forall yeJ,

n—+ o

¢) There exists K > 0 such that

1_lei)l

K
K~ loa()l

lIA

foralln=1,zeJ,yel.

The reader familiar with the ergodic theory of hyperbolic sets will recognize in
(a), (b), (c) an analog of the properties on which this theory is founded. In fact, once
the existence of J satisfying all these properties is proved, the proofs of Theorems A, C,
D and E requireslittle or very standard work. Theorem Bis a corollary of Theorem A
and a folklorical extension of Denjoy’s theorem (Lemma 1.4). It has no intrinsic
value. Its interest may reside in motivating research on the link conjecture. This
conjecture has a Closing Lemma flavour and as such it can prompt the remark that it
can be harder than the problems it attempts to solve. However one must not forget
that in the interval, Closing Lemma problems have been successfully handled (L. S.
Young [7], I. Malta [4]) and that what Jacobson does in his paper is (essentially) to
solve the conjecture exploiting the fact that the points involved are critical.

We suggest to the readers to (at least in the first lecture) follow the proofs, reasoning
in the case of f being an immersion of S'. By doing this they will reach the core of the
proofs faster and avoid tedious technicalities.

A natural question is whether Theorems C and D survive without the hypothesis
that keeps the critical points away. A concise simple question that exposes the lack of
good general techniques to analyse the dynamics near critical points is the following.

Problem I111. Does there exist a real analytic endomorphism f: N © with infinitely
many sinks?

I. Proof of the Theorems

To prove the hyperbolicity of a set, instead of directly finding the constants K and 4
required by the definition, it is easier to check the formally weaker condition
required by the next lemma (whose very easy proofis left to the reader). We shall use
the following notation: If f e End'(N) and A is a subset of N, we denote #(A, x) the
set of sequences 0:Z* — A such that 8(0)=x and f(0(n))=06(n—1) for all n = 1.

Lemma L1. If feEnd}(N) and A is a compact invariant set such that
lim |(f"Y(6(n)| = + (1)

n—+ o

for all xe A and 0e S (A, x), then A is hyperbolic.
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To verify the hypothesis of this lemma we shall use the concept of coherent
sequence of branches. If J < N is an open interval we say that ¢:J — N is a branch of
™I if @ is C* and f"@(x) = x for all xeJ. A coherent sequence of branches is a
couple (J,{¢,}), where J is an open interval and ¢,:J — N is a branch of f~"/J,
n=1,2,3,..., satisfying f ¢, ., = @, for all n 2 1.

Given feEnd'(N) and a compact invariant set A = N, we say that an open
interval J is adapted to A if there exists 6 >0 such that for every xeJnA and
fe S (A, x) there exists a coherent sequence (J,{ ¢, }) satisfying:

a) @,(x) = 0(n),
b) d(e,(J), C(f)) >3,
C) (pn(J)CJ or (pn(‘])m‘] = d)’

for all n 2 1. Let us say that a coherent sequence (J,{ ¢, }) is associated to A if there
exists xe A nJ such that ¢, (x)eA for all n= 1.

Lemma L2. If feEnd?(N) is not topologically equivalent to an irrational rotation
and A = N — 0N is a compact invariant set not containing critical points, then, for all
non-periodic points xe (| f"(A) there exists an interval J > {x} adapted to A.

This lemma and t};e= 0next one will be proved in Sect. II. Given feEnd}(N), a
compact invariant set A and an interval J adapted to A, we say thatamapy:J oisa
return map of A if there exist m = 1 such that y is a branch of f~™/J satisfying
fipJ)nJ=¢ for all 0<j<m and there exists xeJN([) f"(A)) such that

n=0
Y(x)e () f™(A).Ttis clear that f™(y(J)) = J. Denote F(A, J) the set of return maps :J
oof ;\g.OThe next lemma is the fundamental step of the proof of the theorems.

Lemma 13. If feEnd?(N) is not topologically equivalent to an irrational rotation
and A =« N —0N is a compact invariant set not containing critical points, then,
if () .f"(A) contains non-periodic points, there exists an interval J adapted to A and

nz0

constants K; > 0,0 < A < 1 such that every coherent sequence (J, {,}) associated to
A satisfies

AT S @
lpn(¥)| = K1 lou()l, @)

for all xeJ, yeJ, n=1, and
W'(x) < 4 4

for all xeJ,yeF(J,A).

Now let us prove Theorem A. First observe that given f eEnd"(N) and a compact
invariant set A, we can assume without loss of generality that A = N —dN. In fact,
A NON # ¢meansthat N = [0, 1]7and A contains either 0 or 1. Then we can extend f
toa C"map g of a bigger interval, say [ — 1,2], and now A will be a compact invariant
setofgeEnd"([ — 1,2])suchthat A < [—1,2] — d[ — 1,2]. Now we work with g and
N =[—1,2](wherewecanapplyl.2and I.3)and the conclusion on A willhold also for
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A as an invariant set of f:[0, 1] o. For this reason, in the proofs of A, B, C and D, we
shall assume that the compact invariant sets that we shall handle, are contained in N
—0N.

To prove Theorem A suppose by contradiction that f is not topologically
equivalent to an irrational rotation and that A is not hyperbolic. Denote % the
family of non-hyperbolic compact invariant subsets of A. Order & by inclusion.
F # ¢ because A eF. Moreover, if #, < £ is a totally ordered subfamily, the set
N{I'\I'eZ ,} belongs to &, because otherwise it would be hyperbolic and then it
would have a compact neighborhood U whose maximal invariant (7} f"(U) is

hyperbolic. But I" = U forsome " €% y,and then I” < ﬂ f"(U), thusimplying that I”

is hyperbolic and contradicting I"'e# , < &. Therefore, by Zorn’s Lemma, there
existsaminimal A e . Observe that ﬂ ™A )isagainnon-hyperbolic(becauseifit

n=0
were, A, would be also hyperbolic; this follows easily from Lemma I.1). Then the
minimality of A, implies Ay = ) f(A,). Hencef(A o) = Ao Moreover A, can’t bea

union of periodic orbits because E%ery periodic orbit is hyperbolic and then A , would
be hyperbolic (a compact union of hyperbolic sets is hyperbolic, this is another simple
corollary of I.1). Then we can apply Lemma I.3. Let J be the interval given by 1.3. Take
any e S (A, x), xeA . Let I" be the limit set of 6 (i.e. the set of points p such that
lim inf d(6(n),p) = 0). I"iscompact and invariant. If I" # A jthen I" ishyperbolic by the

n—+ o
minimality of A in &. Using the hyperbolicity of I" it is easy to prove that
1ir+n [/ (0(m))] = oo. )

If I'=A, there exists n, such that O(ny)eJNA,. Define feF(A,,0(n,)) by
O(n) = 0(n + ny). Since J is adapted to A, there exists a coherent sequence (J,{ ¢, })
satisfying ¢,(6(n,)) = 0(n) for all n = 1. Moreover (2) implies

3. 1040 < + e

In particular lim |@,(0(n))|=0. Then lim |(f"Y(0(n))|= o0 because (f"
n—>+o n—+ o

(6(n)) = (@3,(8(n)))~*. Hence:
tim ((/7Y@)| = tim (Y@ — o))

n—=+ o n—+ o

lim |(f")(0(no))| 1(f" ") (Bn — no))|

n—+ o

Il

= + 0.

Therefore (5) holds for all xe A ; and §e F (A , x) thus proving, by Lemma 1.1, that
A is hyperbolic and contradicting A je %

To prove Theorem B we need one more lemma. It is a property essentially
contained in Schwarz’s proof of Denjoy’s theorem. Given f eEnd*(N) we say that an
open interval J < N is a d-interval if f"/J is injective and has no critical points for all
n = 1. Wesay that a d-interval J is eventually periodic if there exist a d-interval J; and
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integers n = 0, m = 1 satisfying
) <edy, (6)
1<y ™

Lemma 14. If feEnd*(N) is not topologically equilvalent to an irrational rotation,
every d-interval J is either eventually periodic or satisfies:

lim inf d(f"(J); C(f)) =0,

where C(f) is the set of critical points of f.

Now suppose thatf e End’(N) satisfies the hypothesis of Theorem B. Denote C(f)
the set of critical points of f contained in X(f). Order the points in C(f) by the
relation y = x if there exists n =1 such that y = f"(x). This order has no cycles
because a cycle would be a periodic critical point, hence a sink that cannot be
contained in X(f). Then there exist points x,, ..., x,, in C(f) such that every xe C(F)
satisfies x < x; forsome 1 < i <mandif x; £ x then x = x;. Denote S; the set of points
xeC(f) such that x < x,. Let us say that a d-interval J is maximal if every open
interval properly containing J is not a d-interval. It is clear that if f is not a
diffefomorphism of the circle every d-interval is contained in a unique maximal d-
interval and two maximal d-intervals are either disjoint or coincide. Since for the
proof of Theorem B the case of f being a diffeomorphism of the circle is trivial, we
can assume that this property holds and then the set of maximal d-intervals is a
countable family J,, J,,... of disjoint intervals. Moreover, since f maps d-intervals
in d-intervalsit follows that foralli = 1 there existsj = 1 such that f(J;) = J;. We shall
say that J; is periodic if f*(J;) = J, for some n = 1, and that it is eventually periodic if
f™(J;)iscontained in a periodic maximal d-intervalfor somem = 0. The absence of fake
links easily implies that for every critical point x there exist intervals (a, x) and (x, b)
(only oneif N = [0, 1]and xis an endpoint) not intersecting the backward orbits of the
critical points. Hence (a, x) and (x, b) are d-intervals. Therefore to every critical point x
we can associate maximal d-intervals J ~(x) = (a(x), x), J *(x) = (x, b(x)) (again, only
onewhen N = [0, 1]and xisanendpoint). Ifweapply Lemmal.4to J°(x)(oc = + or —)
we get that either J7(x) is eventually periodic or

liminf d(f"(J?(x)), C(f)) = 0. 8)
nz0
If (8) holds it means that there exists ye C(f) such that for suitable values of n, f"(J(x))
isarbitrarily near to y. Hence,fora = + or —,wehavef"(J?(x)) nJ*(y) # ¢ .Butsince
f"(J°(x)) is a d-interval it follows that

7)) = J*(y). ©)

Hence every J?(x) is either eventually periodic or satisfies (9) for some n = 0, ye C(f)
and o = + or —. If J*(y) is eventually periodic then so is J?(x). If it is not, we have
f*¥(J*(y)) = J#(z) for some k = 1, yeC(f), B = + or —. Since the number of critical
points is finite, an interval must appear twice in this process, thus proving that the
initial J?(x) is eventually periodic. Therefore every J°(x) is eventually periodic. Then
to every x; we can associate a maximal d-interval A4; and integers n; =0, m; = 1
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satisfying
I (x)) = A fM(A) = A

Without loss of generality we can assume (replacing m; by 2m; if necessary) that f™/A;
is order preserving. Since every periodic point of f™ is hyperbolic it follows that
every xe 4, is either a source or belongs to the basin of a sink (recall that /™/4; has
no critical points). Then f™(x;)eA; is either a source or belongs to the basin of
a sink. The second possibility cannot hold because x,X(f). Then f"(x,) is a
source for all 1 i< m.

Using that f™/A; has no critical points, it is easy to find a closed interval
B; c A, such that one of its endpoints is f™(x;) and the other endpoint is a sink
whose basin contains Int B;. Now we take geEnd'(N) near to f, having all its
periodic points hyperbolic and satisfying

a) f and g coincide in a neighborhood of ] B,

i=1
b) C(f)=Clg),
¢) g"(x;)elnt B;,
d) g and f coincide in | J S,

i=1
From (c) and (d) follows that all the critical points in C(f) eventually under g will

fall in U Int(B,). By (a), every Int B, is in the basin of a sink of g. Hence
i=1

14

C(f) =Z(g). (10)

On the other hand, points in C(f) — C(f) are in the basins of sinks of f, and if g is
sufficiently near to f, are in the basins of sinks of g. Therefore:

C(f)— C(f) = Z(g). (11)
From (10), (11) and (b) we get

Clg)=C(f)=Z (9. (12)

Since every periodic point of g is hyperbolic and X(g) by definition doesn’t contain
sinks and by (12) doesn’t contain critical points, we can apply Theorem A to X(g)
proving that it is a hyperbolic set

To prove Theorem C suppose by contradiction that there exists an infinite set
S of sinks and non-hyperbolic periodic points such that any pair of points x, y€S
are not homologous. First we shall prove that § contains a non-periodic point.
If it doesn’t there exists a periodic point peS and a sequence {p,}<S
converging to p. Without loss of generality we can assume that p, <p,<-* <p
and take N such that f¥(p) = p and (fV)(p) > 0. Then in a neighborhood of p, f¥
is order preserving. Therefore we can assume that

Po=x=Zy<p= M) < M) (13)



506 R. Maiié

In particular p, < p, < p implies

) < fMp)=p.
Then, if

p. < fN(p),

we have po <p, < fM(p,) <p, and applying (13) we get p, < fM(p,) < f*Mp,) <
f™(p) = p. Applying again (13) we get po < f*M(p,) < f*"(p,) = fM(p)=p. Con-
tinuing with this method we obtain:

= M) S PN p) S < ™M) =p,

if m,N is a period of p,. Hence f™(p,) = p,. Then the integer N and the interval [p,, p]
prove that p, is homologous to p. Since there can be at most one point in S
homologous to p, it follows that we can assume that no p, is homologous to p and
then

NP <pn (14)

for all n= 0. Using the fact that fV is injective in a neighborhood of p, we can
take 6 >0 such that if xe(p,, p) and y # x satisfy fN(x) = f¥(y), then

d(x,y) > 0. (15)

Now take n= 0. If f7™(p,)e(p,_,,p) for all 0 <j < N, then p, is a periodic point of
the injective order preserving map f"/(p,_,p). Hence p, is actually a fixed point,
and arguing as before, p, is homologous to p. But we have assumed that no p, is
homologous to p. Hence for all n = 0 there exists 0 <j, <m, such that

SN ()¢ Pa-150)s (16)
[N (P, )e(p, -1, p). (17)
Since by (14) f¥((p, - 1.0)) = (Pn- 1, p), there exists g,&(p,_1,p) such that
Mg = 0O (p,). (18)
By (16) f*"(p,) # g, and by (18) f™(f*"(p,)) = f(q,). Hence (15) implies:
d(qy f7N () > 0. (19)
Moreover
P—Gu<P—Pu-r (20)

because g,(p, - 1, p,)- Taking limit when n— + oo (on a subsequence if necessary)
we have that g,—p and the sequence f#¥(p,) converges to a point p that is in
S but that by (19) is different from p, and by (17) f¥(p)=p= f¥(p). Since p is
periodic and p#p, the relation fY¥(p)=p shows that peS is not periodic.
Now that we know that § contains non-periodic points we can apply Lemma 1.3
to A =S§. Observe that f(S5)= S and then [} f"(5)=S. Then by Lemma 1.3 there

n>0

exists an interval J adapted to A satisfying (2) for every coherent sequence (J,{ ¢, })
associated to S. Take xeJ N S and choose the periodic fe.# (A, x) (that exists because
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x is periodic). By the definition of adapted interval there exists a coherent sequence
(J,{ @, }) such that ¢,(x) = 6(n) for all n > 1. From (2) it follows that [(f")(6(n))| !
=|¢,(x)| =0 when n— + oo and if N is the period of x we have 8(nN) = 6(0) for all
n= 1. Then:

(SN )l =1(f"NY (0] = |(f™) (O(nN))1.

Then |(f"V)(x)]— o when n— + oo thus implying that x is a source and
contradicting the definition of S.

To prove Theorem D we can assume that f is not topologically equivalent to an
irrational rotation because in that case the property follows from a stronger
property proved by Herman [2]. Suppose also that A doesn’t satisfy the second
option of Theorem D. We have to show that A(A)=0, where A(-) denotes the
Lebesgue measure. Let & be the family of compact invariant sets I = A such that

MA —{xeA|lo(x)=T})=0.

Order & by inclusion. Let #, < # be a totally ordered subfamily. We claim that
N{IMI'eZ,}eZ, Denote A, =n{I'|I'eZ,}. Take a neighborhood V of A,,.
Then I" < V for some I'e%, and

MA —{xeAlo(x)cV} S MA —{xeA|w(x)=T'})=0.

Since this is true for every neighborhood V of A it follows that (A — {xeA|w(x)
< Ay})=0.Hence A e ;provingtheclaim. We cannow apply Zorn’s Lemmato %
and obtain a minimal A,e%. We claim that A, has the following property: for
every open interval J such that jn A # ¢, the set

J = {xeJnA|f"(x)eJ for infinitely many n’s}
has positive measure. Suppose by contradiction that A(J) =0 and define
Ay ={xeA|f"(x)¢J foralln=0}.
Clearly A is compact and invariant. Moreover:

{xeAlo(x)= Ay} = ( U f"(.7)>u{xe/1 lo(x) = AL}

n=0

Since /1( U s ‘"(f)) =0 (because A(J) = 0) it follows that:

: MA —{xeAlo(x)yc Ag}) =MHA — {xeAlo(x) = A}).

Hence A, €% . But then the minimality of A, implies A; = A,. This means JNn A, =
¢ contradicting our hypothesis on J. Now we claim that if A({xeA|w(x) = Ay}) #0
thereexistsan openinterval J withJ n A, # ¢ and A(J) = 0.Since suchinterval cannot
exist, it will follow that A({xeA|w(x) = Ay})=0 and then:

MA)=MA — {xeAl|w(x) = Ay}).
But the measure at right is zero because A €%, and then A(A) =0 as we wished to
prove.
To prove the claim observe that f(A)e.#, and then the minimality of A, implies
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Ag= f(Ag).Hence Ay = () f"(A,).If A yisfinite, every pointin A, is periodic. Then

M{xeAlo(x)= Ay})= O%eocause ifitis # 0 there exists a periodic orbit y = A, such
that A(xe A |w(x) = y}) # 0. Thisinequality easily implies the existence of aninterval J
satisfying the second option in Theorem D. Since we are assuming that this option
doesn’t hold it follows that A({xeA|w(x) = A,})=0. If A, is an infinite union of
periodic orbits, itiseasy to prove, using Theorem C, that there exists an openinterval J
such that f¥/Jisadiffeomorphism of J forsome N = 1 and containinginfinitely many
periodic orbit of A,. Since we are assuming that the second option of Theorem D
doesn’t hold, it follows that A(J N A,) = 0. But on the other hand J n A, = J because
every pointin A, is periodic. It remains the case when A, = () f"(A,) contains non-

nz
periodic points. We can apply Lemma 1.3 and obtain an inter?gl Jadapted to A, and
K, > Osatisfying(4). We shall prove that A(J) = 0. Denote F (J, A ) the set of mapsy: o
thatcan be written asacomposition of nelements of F(J, A). By Lemma .3 there exists
o < A <1 such that:

W'(x)| < A" (21)
for all xeF,(J,A). In particular, (21) implies:
diam y(J) < A" diam(J) (22)

for allyyeF (J, A). Denote F,(J, A) the set of maps y in F,(J, A ) such that there exists a
coherent sequence (J,{¢,}) satisfying ¥ = ¢,. By 1.3 there exists K; > 0 such that

W'(x)| < Ky’ (y)|
for all xeJ, yeJ and ye | ) F, (J,A). It follows that

nz0

JYA) _ o HS)

M) = TR
for all e | ) F,(J,A) and every Borel set A =J. Then:

n20
W _ =D =)
) W =)
B )
=i K2<1 B A(w(.m)’

and since W(J) > y(J)nJ,

AJ) < /1(!//(1)0-7)>
—21-K,{ 1 —— 23
] A 7747 )
If A(J) # O we can take a density point xeJ. There existsa sequence y, € F', (A, J), with
n;— + oo such that xey, (J) for all n;. By (22), diamy,, (J)—0 when j— + oo. The
definition of density point grants:

WD)
)
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Applying (23) to =, and taking limits we obtain A(J) = A(J). Hence A(J) #0
implies that J is dense in J. In particular A contains J. But A doesn’t contain critical
points. Therefore f™/J has no critical points for all n = 0. Moreover f"(J) = A # N for
alln = 1. This excludes the possibility f"(J) = N = S* and shows that every power of f
is injective in J and has no critical points. In other words J is a d-interval. But by
Lemma 1.4 this means that there exists an open interval J, such that f*(J,)=J,,
/™ has no critical points in J, and fN(J) = J, for some N = 1. Therefore the interval
f™J) <= AnJ, proves that f satisfies the second option of Theorem D. Since we are
assuming that this option doesn’t hold, it follows that J is not dense in J and
MJ)=0.

To prove Theorem E we take the interval J obtained applying Lemma 1.3 to A =
S'. We shall first prove that A(I"nJ) # 0 implies A(I" " J) = A(J). Denote I', the set
of points xeS* whose forward orbit doesn’t intersect J. Then Iy is compact and
invariant. By Theorem D, A(Iy) = 0. Denote J, the set of points xeJ such that
there exists N > 0 satisfying f"(x)¢J foralln = N. Then J, < | ] f7"(I"y) and A(J,))

nz0

Define J, = J — J,. Since A(J)) = 0, to prove that A(I"nJ) = J it suffices to show that
MI'nJ)=0. Denote F,(J,S') the set of maps y:J o that can be written as a
composition of n elements of F(J, S*). Then for every xeJ, there exists a sequence
Y, €F,(J,S") such that

xey,(J) (24)
for all i =z 1. Moreover, 1.3 implies that:

W)= A
for all YeF,(J,S") and n = 1. In particular:

diam y(J) £ A"diam J (25)
for all n=1 and Yy eF,(J,S"). Moreover, by Lemma 1.3
W'(x) = Koly'(y)l

forall n=1, yeF,(J,SY), xeJ, yeJ. Then

M(4))
AW())

for all YeF,(J,S'), n =1 and every Borel set A < J. Therefore, if xeI'nJ and the
sequence {y, } is chosen satisfying (24) for all n;, we obtain:

MA)

Kyt 1))

1\%

a0 0) | - M0 T)

M) MJ)
But ¢, ()< ™)< I and ¥, (J,) = J,. Then
IrenJ oy, )=y, nJ)).
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Hence:
Mend ny, () - LM Ty)
L > K —— 26
W) ST 29
But if x is a density point of I'nJ, it follows from (25) and (24) that:

irtw  AWL)
Then, by (26), Al “nJ{)=0and M nJ,)= AJ,). Now we know that AT nJ)#0
implies A(I"nJ)= A(J). Suppose that A(I")=0. Observe that U f7™%J) has full

. . . . n20
measure because its Complement 1S a proper compact invariant set. Then:

0</1(F)=/1(Fr\( U f"‘(J))) gx( U f‘"(FmJ)).
nz20 n=0

This inequality shews that A(I"nJ)> 0. But we proved that A(I"nJ) >0 implies
M J)= AJ). Hence AI™° nJ) = 0 and then A(f"(I"“nJ)) = 0for alln = 0. Taking n
such that f"(J)=S* we obtain:

M) =M f1I) S TN J))=0.

I1. Proof of the Lemmas

We shall begin by proving Lemma 1.4 because it is in fact previous to the other
Lemmas. It is essentially an easy reformulation of Denjoy’s theorem and therefore
we shall only outline those parts of the proof that are only straightforward
modifications of the proof of Denjoy’s theorem.

We shall use the concept of maximal interval introduced in Sect. I to prove
Theorem B. Given a d-interval J of feEnd!*%(N) we can take (because f is not
a differmorphism of the circle), unique maximal d-intervals J; > fi{(J), i=0, 1,.....
Suppose that there exist m > n = 0 such that J,,nJ, # ¢. Then J,,=J, and

S IO 2 [P DO = TN T = (o) # ¢
But f™7"(J,,) is a d-interval. Hence
S"7" I € T s

and the theorem is proved. Now suppose that

J.nJ,=¢ (v
for all m>n=0. Then
io diam J, < + o0. 2)
Suppose that
liminfd(J,, C(f)) =0. 3)

n—+co
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We also have:
d(f"(Jo), C(f)) £ d(J,,, C(f)) + diam J,,. 4)
But (2) implies diam J, — 0. This together with (3) and (4) implies
liminfd(f"(J,), C(f)) =0,

n—+ oo
and the Lemma is proved. It remains to consider the case

liminfd(J,, C(f)) > 0.

n—>+ oo

This means that there exists ny = 0 such that

inf d(J,, C(f)) > 0.

Since f"(J,,) < J,+n,» We Obtain:
inf d(f"(J.,)), C(£)) >0, )
Y. diam f"(J,,) < + 0. (6)

n=0

We shall prove that (5) and (6) together contradict the maximality of J, . From
(5) and (6), as in the proof of Denjoy’s theorem, we get

310l < +eo )

for all xeJ,,.
As in the proof of Denjoy’s theorem, we can find, using (5) and (7), an open

interval A = {a}, where a is an endpoint of J, , such that

no?

lim diam f"(A)=0. ®)

n—+ o

Observe that the case J, =N =[0,1] doesn’t arise because of (1). The case
Ju, =N =S8" is also impossible for the same reason. Then we can take an open
interval A o A’ = {a} so small that

A'UJ, #N. )

Moreover, since we cannot have J, =N =[0,1], we can take the endpoint a
different from 0 and 1. Hence:

Ao, #J,,. (10)
Finally (8) implies that we can take A’ so small that
inf diam f"(A") <% inf d(f"(J,,), C(f)),

n20 n20
and then
infd(f"(4'uJ,,), C(f))> 0. (1)

nz0
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By (9), A'UJ,, is aninterval. By (11) it is a d-interval and by (16) it properly contains
J,,- Hence J,, is not a maximal d-interval and this contradiction completes the proof
of 1.4,

The proof of Lemma 1.2 requires a preliminary result:
Lemma IL1. If feEnd*(N) and AN —0N is a compact invariant set not
containing critical points, then, for every non-periodic point ae ﬂ f™A) and 6 >0,

nz0 .
there exists &€ >0 such that if J> {a} is an open interval with diam (J) <¢ then,
for all xeJ NnA and 0e (A, x) there exists a coherent sequence (J,{¢,}) satisfying

@u(x) = 0(n), (12)
diam ¢, (J) <6 (13)

for all n 2 0.
Proof. Take a non-periodic point ae() f™(A) and §>0. Let ¢,>0 be the

n=0
maximum positive number such that if J, = (@ — ¢,, a + ¢,) then, for every xe A nJ,
and every 0e #(A, x) there exists branches ¢;: J,— N of f 77/J,j=1,..., nsuch that

0 ) = 0(),
diam ¢ (J,) <o
forall 1 £j<n and
Jojr1=0;
for all 1 <j <n. Without loss of generality we can suppose
0<d<idA, C(f)u f(N)).
This implies that there exists 0 <j, < n such that
diam ¢; (J,) = 0.
If we prove that lim inf ¢, = ¢ > 0, the Lemma is proved just taking J = (a — ¢, a + ¢).

n—+ o

Suppose that liminf ¢, = 0. Then j, — + co. Now define U, = ¢; (J,). A subsequence

n—+ oo
of the sequence of intervals {U,} converges to an open interval U that satisfies diam
U = 6. We shall assume to simplify the notation that U, — U. Then U is a d-interval.
By 1.4 there exists a d-interval V and integers n = 1, N = 1 such that

MU ey, (14)
Ve, (15)
f™/V has no critical points. (16)

Take a point ge U such that, ge U, for every large value of n, say for all n = ny. By
(14), (15), (16) the w-limit set of g is a periodic orbit y. Then

d(a,)) S ey +d((@—epate)y) =g +d(f(U)hy) <6, +d(f@),)).  (17)
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But j,— + oo when n— + oo. Then

lim d(f™(q),y) =

n—>+

Moreover liminf ¢, =0. Hence (17) proves that aey, contradicting that a is non-

n—>+ o
periodic.

To prove 1.2 we shall consider first the case when f is an immersion of S*. If its
degreeis 1 or — 1,itis a diffeormorphism. Moreover it has periodic points because it
is not topologically equivalent to an irrational rotation. Then, using that x is not a
periodic point it is trivial to construct the adapted interval J (in fact any open
interval J o {x} such that f ~"(J)nJ = ¢ for all n > 0 works). If the degree d of f is
not 1 or — 1 we define g: S* o by g(z) = z? and, as we explained in the Introduction,
there exists a monotone map h: S* o satisfying gh = hf. Now observe that if J is an
interval whose endpoints are fixed points of some power ¢" of g (i.e. roots of the
equation z"~! — 1 =0) and doesn’t contain fixed points of g", then J satisfies (c)
(with respect to g). Condition (b) is obvious since C(g)= ¢ and the existence
condition (condition (a)) is easy to check (even for A = S?). Therefore J is an interval
adapted to S!, in particular adapted to A. Now, given xeA, we take h(x) and an
interval J o {h(x)} as described above. Using h it is easy to show that h~(J) is an
interval adapted to S! (in particular to A).

Now suppose that f is not an immersion of S*. Given the non-periodic point
xe () f"(A),let >0 be given by Lemma I1.1, taking as § > 0 a number satisfying

n=0

0< 8 <3d(A, C(f)). (18)

If Jo{x} is an open interval with diamJ <e¢ then, by Lemma IL1 the first
condition of the definition of interval adapted to A is satisfied. Condition (b) is also
satisfied because if (J,{¢p,}) is a coherent sequence associated to A, every ¢,(J)
contains a point inA and, by Lemma II.1, diam ¢,(J) < §. Then

d(@,(J). C(f)) = d(A, C(f)) — diam ¢,(J) S d(A, C(f)) — 6 £ 6.

Therefore conditions (a) and (b) are granted just by taking J having diameter <e.
The problem is condition (c). If J is an open interval denote %(J) the set of all the
coherent sequences (J,{¢,}) associated to J and denote J the connected
component containing x of the open set:

JuUeNinz1, (. {e,})e?)}).

Take a sequence J, ©J, > o {x} of open intervals with diam(J,)—0. Then
JyoJ, o {x}. If diam (J,)—0 we are done because it is clear from the
definition of J that if (J,{e,})e%(J), then ¢, (J)nJ#¢ implies ¢, J)=J.
Hence any J,, with diameter less than e will satisfy condition (c) (and, as we
observed before (a) and (b) are implied by diam(J,,) < ). Then suppose that ﬂ

J,, is not {x}. Then its interior is an open interval U. We claim that Uc:A
leen yeU and ¢, > 0, take m so large that diam(J,,) < ¢, and

sup {diam ¢,(J,)In 2 1,(J{0,})€€(J,,)) < ¢o.
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We can take such m by Lemma IL.1 By the definition of J, and since yelJ,,
either yelJ,, or yep,(J,) for some n=1 and (J,,, {¢,})e%(J,). In the first case
d(y, x) £ diam J,, < g,. In the second case, observing that ¢,(J,,) contains points of
A because (J,,{¢,}) is associated to A, we obtain again

d(y;A) é d(,V, (pn(']m)) é dlam (pn(‘jm) < €o.

Hence d(y,A) < ¢, for all ¢, and then yeA. This completes the proof of the claim.
But U = A implies f"(U) = A for all n > 0 and then f"/U has no critical points for
all n> 0. Since f is not an immersion of S! it follows that U is a d-interval. Let
V be the maximal d-interval containing U. By Lemma 1.4 it is eventually periodic.
Moreover the construction of U shows that xeU. We have now two cases to
consider

I) xeV. From the fact that V is eventually periodic follows the existence of an
open interval {x} = J < V satisfying

f'Inl=¢
for all n = 1. This implies that
o) = ¢

for all n2 1, (J, {¢,})e%(J). Hence condition (c) is satisfied and we are done.

IT) xedV. An endpoint of an eventually periodic interval is either eventually
periodic or its forward orbit contains a critical point (maybe both). The second
possibility cannot hold for x because x is contained in A that doesn’t contain critical
points. Then x is eventually periodic. But it cannot be periodic. Therefore V itself
is eventually periodic but not periodic and:

liminfd(f(V), V) > 0. (19)

n—+ o

On the other hand for every m there exists n, = 1 and (J,,, {¢,})€%(J,,) such
that

Uno, (J)NJ,# . (20)
In particular
d(x, ¢, (x)) < diam J,, + diam ¢, (J,).
But diam J,, -0 when m— + oo and, by Lemma II.1.
Sup{diam ¢ (J,)In = 1,(J ., {0,})€G(J )}

converges to zero when m— + co. Hence d(x, ¢, (x)) =0 when m— + co. If the
sequence {n,} is bounded, this implies that x is periodic, contradicting our
hypothesis. If it is unbounded we use (20) to obtain

¢ # (U@, In)ndy) e frU) NI [ ),
which implies:

T # .
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Then,
d(f™v), vysd(f™(v),x) < diam J,,

contradicting (19).

The proof of Lemma 1.3 will require different methods according to whether
A =N,A #N. To prove it in the case when A # N we need the three following
lemmas. In its statements A and f will be as in the statement of 1.3 and the notation
%(J,, A) will have the same meaning as that of the proof of IL.1.

Lemma IL2. If xe () f"(A) is non-periodic there exists an interval J , > {x} adapted

nz0
to A such that for all r 20 there exists an arbitrarily small interval {x} =J < J,
adapted to A satisfying

diam g, (Jo) <
foralln=N and (J,, {@,})e€(J,,A) such that
o J)NJ # ¢.
Proof. By Lemma 1.2 there exist arbitrarily small intervals J, > {x} adapted to A. If
the w-limit set of x is a periodic orbit, y, take J, satisfying
Jony =¢. (21)
This can be done because since x is not periodic x¢y. If the w-limit set of x is
not a periodic orbit, choose any J, = {x} adapted to A. Suppose that J, doesn’t
satisfy the required property. Then there exists » >0, a sequence of coherent
sequences (Jo, {0})eb(J,, A) i=1, 2, 3,..., a sequence of integers n; <n, <...
and a sequence of intervals J, o J, >+ = {x}, with ("} J,={x}, such that
nx1
PRIINT # ¢ (22)
diam P(J ) > r (23)
for all i = 1. Also from the fact that J, is adapted to A it follows that for any pair
of coherent sequences (Jo,{¢,})eé(Jy,A) and (Jo,{¥,})e®(Jy,A), and every
n=12=1, one of the following relations holds:
ouJo) Y (Jo) = ¢,
oulJo) =¥i(Jo) or Yy (Jo) € @u(Jo)

Using this property it is easy to see that the sequence above can be chosen satisfying
(Pg) (Jo) = q’f.{-)(-] 0 <Jo (24)
for all i = j = 1. Therefore (23) and (24) imply that the set
U=Int()oP(Jo) (24)
121

is a non-empty open interval contained in J . It is easy to check that it is a d-interval.
Since f is not topologically equivalent to an irrational rotation, U is eventually
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periodic by Lemma 1.4. On the other hand
lim diam @®(J)=0 (25)

i~ + o

by Lemma II.1. Moreover, by (22) and (24):
d(x, U)=1i¥n d(x, oI ))<11md(x @5AJ )

< 11m (diam J; + diam ¢{(J))).
Since limdiamJ;=0, this mequahty together with (25) implies that xeU.

Moreover from the definition of U it follows that f™(U) = J,. Hence w(x)NJ, # ¢.
But since xeU and U is eventually periodic it follows that w(x) is a periodic
orbit. Then the relation w(x)NJ, # ¢ contradicts the way we choose J,.

Lemma IL3. If feEnd%(N) for all >0 there exists K,= K, f)>0 such
that (J,{,}) is a coherent sequence satisfying:

inf d(¢,(J), C(f))>0

nz0

then

[on(x)] nel o
< K § J
0.0 <expK, pa diam ¢ (J),

diam ¢,(J)

n—1
()] WCXP K, j;o diam ¢ (J)

fIA

for alln=0, xeJ.

This Lemma is proved using a trivial adaptation of the method of Schwarz, proof
of Denjoy’s theorem. For a proof see Jacobson [1] Lemma Ia, Ib.

Lemma I14. If J is an interval adapted to A such that either F(J, A) = ¢ or there
exists 0 < A <1 satisfying:

W(x) <4
for all xeJ and yeF(J,A), then there exists K; >0 such that
| 0409 < K040,
3. 100 <K,
for all x, y in J and (J, {¢,})eb(J,A).
Proof. We shall first prove that there exists K > 0 such that:
i diam ¢, (J) = K (26)

for all (J, {¢,})€¥(J,A). We note that here ¢, stands for the identity and the same
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notation will be used in all this proof. Take (J, {¢,})€%(J,A). Suppose that

eI =¢
for all n > 1 (this is the only possibility if F(J,A)= ¢). Then:

o) N ou(J)=¢
for all 1 £n <m, and then

3 diam ¢,(J) < 2 diam . 27)

n=0

Now suppose that ¢,(J)nJ # ¢ for infinitely many values of n, and let n; <n, <+
be those integers for which ¢, (J)nJ # ¢. Since J is adapted to A,

q)ni(‘]) < J

for all i = 1. Clearly ¢,eF(A,J). Moreover it is easy to see (using again that J is
adapted to A) that for all i > 1 there exists ;e F(J,A) such that

Vil O (J) = @, flim1

Set Y, = ¢,,. Define m; =n, and m;=n,—n,_, if i>1. The maps y; can be
described as follows. There exist branches ¢! of f~"/J, where 1 < n < m; satisfying
the following properties:

a) (pi:) =f(p£::_1 for all lg 1, 1 §n<mi9
b) ¢ =y, for all i = 1.

Now observe that the definition of the sequence {n;} plus the fact of J being adapted
to A imply:
o) =¢
for all 1 £n<m; and i = 1. Then
PRI PRI = ¢
for all 1 <n <m;. Hence

m,—1

Y @P(J)<2diam N
n=0

for all i = 1. By 11.3 there exists a constant K, depending only on J such that

Kw <expK, "il diam ¢{(J) < exp 2K, diam N. (28)
@3y ) /=0
Set K, = exp2K,diam N. From (28) it follows easily that if A = J is any subset:
diam ¢'9(A4) < diam ¢(J)
diam4 = ' diamJ ’

and then
ik 0 d Ky &'y (g
. DA) < diam 41 . .
ng() diam ¢{(4) £ diam TamJ ”ZO iam @ 9(J)
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(29)

Set
K, =2K,diam N.
If i > 1, applying (29) to A = ¢,,_(J), we obtain:

mi—1

Y, diam (¢, (J))<K,diam g, (J)diam(J).
n=0
But ¢,  is a composition of i — 1 maps in F(J,A), namely the maps ¥,..., ¥; ;.
Then:
o, () =A1
for all xeJ. Hence
diam ¢, (J) < diam (J)A'"",

and then
mi— 1 . .
Y, diamoP(p, ()< K, A%
n=0
In a similar way we obtain:
mi—1
Z diam p(J) £ K,.
n=0

Then

Z diam oM (e,, - 1(J))

n=0

i diam ,(/) =

"Ms

< i KA (30)
i=1

With minor modifications the same methods can be applied to the case when
0, (J)nJ # ¢ holds for a finite non-empty set of values of n, and the result is

io o)) S2diam N + 3 Ky 31)

Then (27),(30) and (31) prove (26). The proof of 1.4 is now an easy corollary of IL.3. In
fact, applying I1.3 to (J, {@,})e%(J,A), we obtain

§
NP
=
:

-1
o) = XP Ko Z diam ¢ {J) < exp KoK (32)
n =0

for all x, yeJ and n = 1. Moreover

diam ¢@,(J )
diam J

diam ¢,(J)

o3 < iR

exp K, Z diam ¢ (J) < exp KoK.
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Hence:

exp . Kexp KoK
T 1015 TEner § diamg,0) 70 EE.
This inequality and (32) prove the Lemma.

Now we are ready to prove Lemma 1.3 in the case A # N. This property ensures
the existence of a point xeA that is an endpoint of an open interval U contained
in A% Let Joo {x} be the interval adapted to A given by IL2. Suppose that

= (x,b). Choose J, so small that b¢J,. Since J, is adapted to A, there exists
6>0 such that d(¢,(J,), C(f))>d for all n=1 and (Jo,{@,})eb(Jy,A). Let
K, =Ky, f) be the constant given by I1.3. Let J, be the interval (b~,b*) and
take r > O satisfying:

1
b—x2

By Lemma I1.2 there exists an interval {x} = J < J, adapted to A and such that
if (J0> {(pn})e(g(J05A) and

exp4K,diam N-——— (33)

PANNT # D
for some n= 1, then
diam ¢, (Jo) <.
Suppose that J =(a~,a™). Define:
=(x,b™).

Let ¢ be an element of F(J,A). By definition of F(J,A) there exists
xo€J N( () f(A)) such that Y(xo)e () f*(A). Take k = 1 satisying f¥(¥(x,)) = Xo»
and 0c (A, xo) such that 8(k) = y(xe). Take (Jo, { ¢, })eB(Jo, A) satisfying 0(n) =
@,(xo) for all n< 1. Then:

old =1, (34)
and

o) =¢ (35)

for all 1 <n<k. We claim that for all n > 1

o) ==, )nJ, = ¢. (36)

Suppose that ¢, (J)nJ=¢ and ¢, (J,)nJ, #¢. The last property implies
oJo)nJo # ¢, and then ¢, (J,) = J,. In particular ¢,(J) = J,, and since @, (J)nJ
= ¢, either ¢, (J)c(b™,a”) or ¢ (J)=(a™,b*). The last relation is not possible
because ¢,(J) contains @,(x,), and ¢,(x,) = A(n) is contained in A. But (a*,b™)
< (x,b*)doesn’t contain pointsin A. Then ¢,(J) = (b~,a"). One of the endpoints of

¢,(J ) is contained in ¢,(J). Since ¢,(J) = (b~,a") it follows that one endpoint of
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¢@,(J 1) is contained in [b~,a"]. Moreover ¢,(J,) = J, (because ¢,(J;) < ¢,(J,) and,
as we observed above, ¢,(J,) = J). Hence ¢,(J,) is an interval contained in (b~,b*)
with an endpoint in [b~,a”] and non-empty intersection with (x,b*)=J,. It
follows that ¢,(J,) > (x,a™). But then x,eq,(J,). This implies f"(x,)eJ,. Then
A NnJ # ¢ because f"(x,) belongs to A and J,. On the other hand J, = (x,b).
Therefore it doesn’t intersect A. This contradiction completes the proof of (36).
From (35) and (36) follows that ¢,(J,)nJ,; = ¢ for all 1 <n <k. Hence ¢,(J,)n
Qu(J)=¢ for all 1 £n<m<k and then

k—1
Y diam¢,(J,) < 2diam N.
n=0

By Lemma I1.3:

, diam ¢,(J,) -
PV = W exp Ko nZ diam @,(J,)
di J
< exp 2K, diam N-%—‘)—) 37)

for all yeJ,. Moreover (35) implies ¢,(J) N ¢,(J) = ¢ for all 1 <n < m. Then, by IL.3:

lok(2)] _
Iwk(y)l -

for all y and z in j. Given zeJ and using (33), (37) and (38):

lo2)l

loila™)l =
This completes the proof in the case A # N. Now let us consider the case

A =N. In the case f has no critical points. If it is also injective, it will be a

diffeormorphism. Since f is not topologically equivalent to a rotation, it will be a
difftfomorphism with periodic points. Moreover by hypothesis not every point in

N={) f"(N)= () f"(A)will be periodic. Under this condition it is trivial to find an

ope,x{l %iglterval Jnf:oN such that Jn f~"(J)= ¢ for all n= 1. This means that J is
adapted and F(J,N)=¢. By 114, J satisfies the properties required in Lemma L.3:
If f in not injective, then N = S* and f:S! o is an immersion with degree d # 1
or — 1. If J(f)#S! (where J(f) is defined as in the introduction) there exists a
plateau J satisfying f ~"(J)nJ = ¢ for all n = 1 (any non-periodic plateau satisfies
this property). Then J is adapted and F(J, A)= ¢. Hence, by Lemma I1.4, J satisfies
the thesis of 1.3. It remains to consider the case J(f)=S!. This means that f is
topologically equivalent to the map z—z%. We claim that there exists an interval
J, adapted to S! such that for all £ >0 there exists Y eF(J,, S*) satisfying

diam yo(J,) <& (39)

exp K, Z diam ¢,(J) < exp 2K, diam N (38)

r 1
Zexpd4K,diam N —— <.

W'(2)] = lo2)] = loila™)] b —x "2

and

diam @y y(J,) < e (40)
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for all n=1 and every branch ¢ of f~"/J,. First let us prove this property for
f(z) = z% Take as J, an open interval whose endpoints are fixed points of some
power f™ and not containing fixed points of ™. It is easy to verify that if m|d| = 3
then F(J,,S!) contains infinitely many maps. Moreover ¥, (Jo)N,(Jo) = ¢ if ¥,
and v, are different maps in F(J,,A). Therefore there exists y,eF(J,,A) satisfying
(39). Property (40) also holds because any branch of f~"/J, is a contraction. This
completes the proof of the claim for the map z—z% The general case of an
immersion f:S! o topologically equivalent to z— z¢ follows easily from this case
using the conjugacy between f and z—z%

On the other hand, since f is a C? immersion, we can apply Lemma IL.3 to
obtain a constant K, such that the inequalities of Lemma II.3 hold for every open
interval J = S* and every coherent sequence (J, {¢,})e%(J,S").

Fix ¢ > 0 satisfying:

exp4K,diam N 1

diam J < 2 (41)

By the claim there exist an adapted interval J, and y,e F(J;,A) satisfying (39) and
(40). Set J = y/y(Jo). We claim that:

W) <3 (42)
for all yeF(J,A) and every xeJ. First we shall prove that:

diam y(J )

[V (x)] £ exp2K,diam N diam J,

(43)

for all yeF(J,,A). Take a coherent sequence (Jo, {¢,}) and k > 1 that satisfies:
Y=g
and
PuJo)NJo=¢

for all 1 <n<k. Then ¢ (Jo)N@u(Jo) = ¢ for all 1 £n<m < k. Hence

k
Y. diam ¢,(J,) <2 diam N,
n=1
and by I1.3:

diam y(J ) no1l
TP exp K .
diam J, exp Ko j;o diam ¢ (J,)

< diam y(J )
= diamJ,

W' (x)] = lor(x)| =

exp 2K, diam N,

completing the proof of (43). Now take a coherent sequence (Jo,{®,}) and k=1
satisfying ¢ = ¢,/J and ¢, (J)nJ = ¢ for 1 <n < k. Suppose first that ¢,(J,)N
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Jo=¢ for all 1 <n <k. Then ¢,eF(J,,S") and by (43), (39) and (41):
diam y/(J )
diam J,,
1

diam J,, <2 “4)

W' (x)| = |oi(x)| < exp 4K, diam N

< exp2K,diam N-

for all xeJ. Now suppose that there exist integers 1<n<k such that
0,(Jo)NJ o # ¢. Let ny be the maximum of such integers. Consider the maps:

Vi = Pug+n ™[ OnolJ 0) (43)

with n = 1. Then (¢,,(Jo), {¥,}) is a coherent sequence. We can extend it to a
coherent sequence (Jo, {,}). Moreover

UlJo)nJo=¢ (46)

for 1 <n <k —nybecause y,(Jo)NJ o # ¢ implies ¥,(J o) = J, because J, is adapted.
and then

Pro+nJ0) N0 = Y @u(J o)) N o # .

By the way we choose n,, this implies ny + n = k, hence n = k — n, and (46) is proved.
Property (46) implies that ,_, €F(J,,S"). Then, by (43),

di il
Wi 1391 S exp 2K diam N 22V eonllo)

diam J,,
for all xeJ,. But by (45)
Yi—no(Jo) = J.
Hence
, . diam J
Wi —no(¥)| £ exp 2K, diam N diam J,’ 47
Moreover:
‘p = l//k—-no<0n07 (48)
o), (J)=¢
for all 1 £n<m <n,. Then:
ng—1
Y. diam @,(J) < 2diam N.
n=1
Applying I1.3:
@i
(91, (x)] < exp 2Ky diam N T2 PuolS) (49)

diam J
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Then, using (48), (49) and (47) we obtain:

WO = Wk o @n(X)) | 91(X))

diam @, (J)

<exp4K,diam N
= CxpaRodia diam J,

1

< exp4K,diam N

diamJ, =2’

We have thus proved that J satisfies the hypothesis of Lemma I1.4. Then J satisfies
the properties required in Lemma 1.3.

III. Appendix. Isolated Hyperbolic Sets

Here we shall prove property (IV) of the Introduction. Let A< N— 0N be a
hyperbolic set of feEnd"(N). Let V be a neighborhood of A. Define

U(l) = {xeNld(x,A) < 1}, AR = () f"U®)).

nx0
Then () U(A)=A and () A(4)= A. It follows that there exists ¢ > 0 such that
A>0 A>0
Ac A<V, (1)
A(A)is hyperbolic 2

for every 0 < A <e. Since U(A) is open it can be written as a union of intervals
(@®(A),a**(A),i=0,...,m(A). Clearly m(A") = m(A') when 0 < i” < 1’. Then it is easy
to see that there exist 0 < a < b < ¢ such that m(J) is constant for a < 4 < b. Call m
this constant. It follows that the functions a(4) are continuous and monotone
for 1<i<m and Ae(a,b). Suppose that U(4) is a neighborhood of A(4), is
hyperbolic, contains A, is contained in V and is isolated (with U(T) as an isolating
block). Then property (IV) is proved. Now suppose that U(4) is not a neighborhood
of A(A) for all 1e(a, b). This means that for all Ae(a, b) there exists 1 <i < m such
that a®(A)eA(A). Therefore

(@b)= ) S, 3
i=1
where S; is define by
S; = {Ae(a,b)|a®(DeA(4)}.

Since every S; is closed, (3) implies that there exists 1 <i <m such that S, has
non-empty interior. Let (c,d) be an interval contained in S;. Then

a(DeA(l) = A(d)

for all Ae(c,d), and it follows that the interval J = a'((c,d)) is contained in A(d).
If f7/J is injective for all n = 1, the hyperbolicity of A(d) implies that diam f"(J)—
+ oo whenn— + co. Butsince A(d) > f*(J) for all n > 0, this is impossible. Therefore
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f"/J is not injective for some n = 0. Since for all n =1 f"/J has no critical points,
because for all n = 0, f"(J) = A(d), and A(d) contains no critical points because it is
hyperbolic, the non-injectivity of f"/J implies that N = S' and f"(J)=S!. Then
A(d) > f"(J)=St.IfA = S* without loss of generality we can take the neighborhood
V satisfying V# S*. But then (1) implies A(d) = V. On the other hand we have proved

that S! <A(d). Then V =S!. This contradiction shows that U(l) must be a
neighborhood of A(A) for some Ae(a, f) and completes the proof of property (IV).
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