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Abstract. Let/ be a C 2 map of the circle or the interval and let Σ(f) denote the
complement of the basins of attraction of the attracting periodic orbits. We
prove that Σ(f) is a hyperbolic expanding set if (and obviously only if) every
periodic point is hyperbolic and Σ(f) doesn't contain the critical point. This is
the real one dimensional version of Fatou's hyperbolicity criteria for holo-
morphic endomorphisms of the Riemann sphere. We also explore other appli-
cations of the techniques used for the result above, proving, for instance, that for
every C 2 immersion / of the circle (i.e. a map of the circle onto itself without
critical points), either its Julia set has measure zero or it is the whole circle and
then / is ergodic, i.e. positively invariant Borel sets have zero or full measure.

Introduction

The subject of this paper is the dynamics of C 2 maps of the circle or the interval, on
regions bounded away from the critical points. The aspects of the dynamics that we
shall consider, and the corresponding results that we shall prove, can be summarized
as follows:

Hyperbolicity—If the map is not topologically equivalent to an irrational rotation
of the circle, every compact invariant set not containing critical points, sinks or non-
hyperbolic periodic points is hyperbolic.

Stability—Structural stability is generic in the space of C immersions of the circle
and is characterized by the hyperbolicity of the non-wandering set.

Ergodicity—Transitive C2 immersions of the circle are ergodic, i.e. every invariant
Borel set has either zero or full Lebesgue measure.

Measure—If Γ is a compact invariant set with empty interior not containing
critical points, then either the Lebesgue measure of Γ is zero or there exists an
interval U that is mapped diffeomorphically into itself by some power of the map and
such that ΓnU has positive Lebesgue measure.

Sinks—For every compact set K that doesn't contain critical points, the periods of
the sinks or non-hyperbolic periodic orbits contained in K are bounded.
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Before entering into the precise statements of these results, let us recall the
definition and basic properties of the concepts they involve.

Let N denote either the circle Sι = {zeC||z| = 1} or the interval [0, l].LetEndr(iV)
be the space of Cr maps/:iV P (endomorphisms) endowed with the C topology. As
usual we say that xeN is a periodic point of feEndr(N) if fn(x) = x for
some n ^ 1. In this case we say that it is hyperbolic if | (fn)'(x) \ φ 1, a sink if | (fn)'(x) \ < 1
and a source if \(fn)'{x)\ > 1. The basin of a sink x is defined as the set of points y such
that lim d(f")(x\ f"{y)) = 0. It is an open set containing x. We say that a set A c N is

«-> + 00

an invariant set of/eEndr(Af)if/(Λ) c /I. If there exists a neighborhood l/of/i such
that/I = P|/n(t/),wesaythat/l is isolated and that ί/is an isolating block A. A hyper-

n

bolic set oϊfeEndr(N) is a compact invariant set A such that there exists constants
K > 0 and λ > 1 satisfying |(/n)'(x)| ̂  KAn for all xeΛ, n ^ 0. Hyperbolic sets have
remarkable properties, the most outstanding being its stability and the reducibility of
its dynamics to certain simpler models.

What follows is a short glossary of these properties:
I) If AT is a hyperbolic set of/eEndr(Λ/), then N = S1

9 and / is topologically
equivalent to a map j\\Sι p given by fd(z) — zd, where d is an integer φ 1 or — 1. Recall
that topologically equivalent means that there exists a homeomorphism h: S1 :p such
that hf=fdh.

II) If A c N — dN is an isolated hyperbolic set of/eEndr(JV) and A φ N, then
f\Λ is topologically equivalent to a subshift of finite type. A subshift of finite type
is a map d:Σ+(A)^>, where A is a m x m matrix whose entries a ( ΪJ ) are 0 or
l;i^+(i4) is the space of the sequences 0:Z+->{l,...,m} that satisfy the transition
law a (θ(n), θ(n + 1)) = 1 for all n ^ 0, endowed with the pointwise convergence
topology, and σ:Σ+(A) ^ is defined by σ(θ)(n) = θ(n + 1).

III) If Λ c: N — dN is an isolated hyperbolic set of feEnd1 (JV), then for every
isolating block U of Λ, there exists a neighborhood * of/such that iϊge<%,f\Λ is
topologically equivalent to g/f]gn(U).

n

IV) For every hyperbolic set A c JV - δiV of /eEnd r(N) and every neighbor-
hood V oϊ A there exists an isolated hyperbolic contained in V and containing A.

Property (I) is the one dimensional case of a result of Shub [6]. Property (II) was
proved by Jacobson [1] and Nitecki [5] (for a certain A, but their techniques with
minor modifications prove (II)). Property (III) is nowadays a minor application of
the stability theory of hyperbolic sets, but proofs can be found in [5]. (IV) is
folklorical. We shall give a simple proof of it in the Appendix.

In [1], Jacobson introduced the set Σ(f) of an endomorphism /eEndr(7V)
defining it as the complement of the union of the basins of the sinks and, attempting
to characterize the C structurally stable endormorphisms (i.e. those that are
topoligically equivalent to every Cr nearby endomorphism), he considered the class of
maps /eEndr(iV) such that Σ(f) is hyperbolic and contained in N — dN. This
class will be denoted ^\N). He proved the following results:

V) &\N) is open and dense in Endx(N).
VI) Every fe&\N) is X-stable, i.e. if geEnd^N) is C 1 near t o / , g/Σ(g) is

topologically equivalent to f/Σ(f).
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VII) If fe6fx(N) and Σ{f) = N, then N = S1 and f'.S1 ^ is topologically
equivalent to a m a p / ^ S 1 p (defined as in property (I), of which this property is an
immediate corollary).

VIII) If fe&\N) and Σ(f) φ N, then f/Σ(f) is topologically equivalent to a
finite type subshift. This is a corollary of (II).

IX) \ifsSf\N) and has not critical points, then/ is C1-structurally stable.
X) lϊfe^2{N) and satisfies:

a) Every critical point is non-degenerate, i.e./'(x)=>/"(x) ΦO.
b) If C(/) denotes the set of critical points of/, plus, in the case N = [0,1], the

points 0 and 1, then/"(x) φfm(y) for all x and y in C(f) and every n ^ 0,m ^ 1.
c) If iV = [0,1], 0 and 1 are not critical points of/, then/ is C2-structurally stable.

These properties pose two questions:
Problem I. Is 9>r{N) dense in Endr(N) for r ^ 2?
Problem II. Is £ ( / ) hyperbolic for every C-structurally stable /eEndr(iV)?

An affirmative answer to Problem II would yield a complete characterization of
structural stability, namely that /eEnd^N) is structurally stable if and only if
C(f) = φ and feSf\N\ and that /eEnd r(N)(r ̂  2) is Cr-structurally stable if
and only if fe^r(N) and satisfies (a), (b) and (c). We shall give positive answers
to both questions when restricted to the space of Cr immersions (that is an open
subset of End%/V)) with r ^ 2. This will be based on the following hyperbolicity
criteria that also has an independent intrinsic interest.

Theorem A. // /eEnd2(Λf) and A a N is a compact invariant set that doesn't
contain critical points, sinks or non-hyperbolic periodic points, then either A — N = S1

and f is topologically equivalent to an irrational rotation or A is a hyperbolic set.

Corollary I. // all the periodic points offeEnd2(N) are hyperbolic and Σ(f) doesnt
contain critical points, then either N = S1 and f is topologically equivalent to an
irrational rotation or Σ(f) is a hyperbolic set.

Corollary II. For allr^. 1, every Cr immersion/: S1 P can be approximated in the Cr

topology by an immersion g'.S1 p such that Σ(g) is a hyperbolic set.

Corollary III. For all r ^ 2 , α C r immersion/: S1 p is Cr structurally stable i/and only
if Σ(/) is hyperbolic.

Corollary I is an easy consequence of Theorem A. Corollary II also follows easily
from Theorem A recalling that for all r ^ 1, the hyperbolicity of all the periodic points
is a generic property in Endr(N). Corollary III follows from Theorem A, property (IX)
and the fact that all the periodic points of a C-structurally stable endomorphism are
hyperbolic.

We were not able to solve Problems I and II, but using Theorem A we can reduce its
solution to a problem related to links of critical points. To define this notion first recall
that given /eEndr(Λ0, the α-limit set of a point xeN is defined by:
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Denote C (/) the set of critical points of/ plus, in the case N = [0,1], the points 0 and
1. A link of/ is a pair (x, y) of points in C(/) such that y is in the forward orbit of x. A
fake link is a pair (x, y) of points in C(f) such that it is not a link and xeα(y). Denote
v(/) the number of links of/.

Conjecture. If all the critical points oϊfeEndr{N) (r ^ 2) are non-degenerate and all
its periodic points are hyperbolic, then, if/ has a fake link, there exists geEndr(N)
arbitrarily near to / in the C topology and satisfying v(g) > v(f).

In other words, using the fake link a new link is created by a small perturbation
without destroying those already existing. To see how this conjecture implies an
affirmative answer to Problems I and II we need the following approximation
theorem.

Theorem B. Suppose that f eEndr{N\ r ^ 2 , satisfies:

a) all the periodic points of f are hyperbolic,
b) all the critical points are non-degenerate,
c) / has no fake links.

Thenf can be approximated in the C topology by an endomorphism ge^r(N).
Now let yr

0(iV) be the set of maps/eEndr(iV) such that all its periodic points are
hyperbolic and all its critical points are nondegenerate. If/oe^o(iV) take an open
neighborhood % of/0 such that the number of critical points of every fetfl is the
same, say N. Then v(/) ^ (N + 2)2 for a l l / e * . Take / x e * such that v(/Ί) ̂  v(/)
for a l l /e^ . It is easy to see that we can construct an endomorphism/26^ such
that all its periodic points are hyperbolic and having the same links of fγ. Then
v(/2) = vί/Ί). Suppose that/ 2 has a fake link. If the conjecture is true there exists

f3e% with v(/3) > v(/2). But then v(/3) > v(/x) contradicting the way we choose fv

Therefore/2 has no fake links. By Theorem B we can approximate^ by ge°ll
such that ge^r{N). Since °lί is arbitrary, we have proved that, if the conjecture is
true, every element of ^r

0(N) can be approximated by an element in ^r(N). Since
^Q(]V) is obviously dense in Endr(iV) this yields an affirmative answer to Problem
I. Therefore, if/eEnd%/V) is Cr-structurally stable (r^2) we can approximate it
by ge6f\N\ and because of the structural stability of/, g and/ are topologically
equivalent. Moreover, it is easy to verify that if r Ξ> 2 all the critical points of a
C-structurally stable endomorphism are non-degenerate and that a topological
equivalence transforms non-degenerate critical points in critical points. Then, the
fact that Σ(g) contains no critical points implies that Σ(f) contains no critical
points. Since all the periodic points of/ are hyperbolic (because/ is structurally
stable) it follows from Corollary I that Σ(f) is hyperbolic.

This approach is obviously motivated by Peixoto's proof [6] of the density of
Morse-Smale vectorfields in two dimensional compact orientable manifolds, where
the role of the critical points is played by the saddles and saddle connections
correspond to links. The phenomena corresponding to fake links is a separatrix of a
saddle accumulating in a saddle. In Peixoto's proof there is a step, corresponding to
Theorem B, where it is proved that a Kupka-Smale vectorfield without fake links
can be approximated by a Morse-Smale vectorfield. But the crucial point is to show
that when a separatrix of a saddle accumulates in another saddle then a new saddle
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connection can be created without destroying those already existing. However this
step doesn't work in the non-orientable case because of the reversing of orientation
of certain Poincare maps. The same problem appears here, but instead of being
produced by the non-orientability of the manifold its cause is the existence of critical
points.

Now let us consider the problem of whether there exists a one dimensional
version of the infinitely many sinks phenomena found by Newhouse for dif-
feomorphisms in dimension ^ 2. To produce examples of endomorphisms/:JV p
with infinitely many sinks is trivial. For instance one can easily construct C00

diffeomorphisms/:[0,1] P having infinitely many sinks. However the following
theorem states that the only way to produce C 2 endomorphisms with infinitely
many sinks bounded away from the critical points is by inserting intervals where
some power of/ acts as a diffeomorphism with infinitely many sinks. To give the
precise statement of this property, let us first introduce a definition. Given if
eEndr(ΛQ we shall say that two periodic orbits yx and y2 are homologous if they
have the same period n and there exist Xi^^i and x2^72 a n < i a n interval J
with xί and x2sy2

 a s endopoints such that fn/J maps J diffeomorphically onto
itself. Obviously this is an equivalence relation.

Theorem C. // /eEnd2(JV), every compact set that doesn't contain critical points
contains only finitely many non-homologous orbits of sinks or non-hyperbolic periodic
points.

Corollary I. /// eEnd2(JV) and K is a compact set not containing critical points, then
the periods of the sinks or non-hyperbolic periodic points whose orbit is contained in K
are bounded.

Corollary ϊl.Iff .N P is real analytic and K is a compact set not containing critical
points then the set of sinks or non-hyperbolic periodic points whose orbits are
contained in K is finite.

Both Corollaries follow immediately from Theorem C. Another interesting
application is the finiteness of the set of periodic plateaus of an immersion. Let
us recall the basic dynamical properties of immersions. Given a C 1 endomorphism
fiS1 ^ with degreed / 1 or — 1 there exists a continuous map h'.S1 ^ of degree 1 such
that hf =fdh, where//.Si p is defined by/d(z) = zd. Moreover, if / is an immersion,
h is monotone, i.e. for every zeS 1, /ι-1({z}) is either a unique point or an
interval [a, b] with a φ b. In the last case we say that (α, b) is a plateau off. Denote
J(f) the complement of the union of the plateaux of/. Using the map h it is easy
to check the following properties:

XI) Two plateaux are either disjoint or coincide.
XII) / maps diffeomorphically plateaux onto plateaux.
XIII) Every plateau U is either periodic (i.e. fN(U)=U for some N ^ l ) ,

eventually periodic (i.e. fm(U) is periodic for some mgrl) or wandering (i.e.
fn(U)cΛfm(U) = I for all n ^ 1).

XIV) If / is C2, every plateau is periodic or eventually periodic.
XV) xeJ(f) if and only if for every neighborhood W of x there exists n ^ 0 such

that fn(U) = S1. This implies that F/J{f) is transitive.
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XVI) J(f) is either a Cantor set or coincides with S1. In this case / is
topologically equivalent to zh->zfl.

XVII) J(f) contains a dense subset of sources.

Property (XIV) is not a corollary of the existence of the semiconjugacy h but
follows easily from an adaptation of Denjoy's theorem (see Lemma 1.4 below).

Each periodic plateau is mapped by h in a periodic point of fd with the same
period as the plateau. Moreover different plateaux are mapped in different points.
Therefore if an immersion /: S1 P has infinitely many periodic plateaux, the periods
of these periodic plateaux is an unbounded set. But it is clear that every periodic
plateau contains a sink or a non-hyperbolic periodic points. Then, by Corollary
/ of Theorem C, there can be only finitely many periodic plateaux. We have thus
proved:

Corollary III. The set of periodic plateaux of a C2 immersion f.S1 p is finite
The question of the Lebesgue measure of compact invariant sets not containing

critical points has an answer similar to that of the finiteness of the set of sinks.
Every diffeomorphism of the interval has compact invariant sets with positive
measure, but the next theorem shows that this is essentially the only way of
producing examples of a compact invariant set without critical points and with
positive measure.

Theorem D. // /eEnd2(JV) and A c N is a compact invariant set not containing
critical points, then, either the LebeJgue measure of A is a zero of there exist an
interval J a N and an integer n ^ 1 such that fn(J) c J, fn/J has no critical points
and J nA has positive Lebesgue measure.

Corollary I. Iff'.S1 τ^isaC2 immersion, either J(f) = S1 or the Lebesgue measure of
J(f) is zero.

Now observe that if all the periodic points of a C 2 immersion are hyperbolic, then
by Theorem A, f is expanding, i.e. there exists N^l such that \(fN)'{x)\ > 1 for
all xeS 1. This class of transformations have a very developed ergodic theory. For
instance, they have a unique/-invariant probability absolutely continuous with
respect to the Lebesgue measure and this /-invariant probability is ergodic and its
Radon-Nikodym derivative with respect to the Lebesgue measure is a Holder
continuous positive function. For simple reasons this result is false if there exists a
non-hyperbolic periodic point xθJ even if for some N ^ 1 the inequality \(fN)'(x)\ > 1
holds for all x φ x0. However, immersions f:Sr p with J(f) = S1 are ergodic:

Theorem E. Every C2 immersion / S1 P with J(f) = S1 is ergodic, i.e., every
invariant Borel set has either zero or full Lebesgue measure.

The proof of these theorems, with the exception of Theorem B, will be based on
Lemma 1.3, stated in Sect. I and proved in Sect. II. Essentially it states that given a
compact invariant set A a N of a C 2 endomorphism, then if A doesn't contain
critical points and P)/"(Λ) is not a union of periodic orbits, there exists an open

interval J having non-empty intersection with f] fn(A), where the backward dy-

namics oίf/f] fn(Λ) is reasonably hyperbolic. More precisely, if aeJn(f) fn{A))
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and a = a0, α l 5 . . . , are points in f]fn(Λ) satisfying/(απ+1) = an for all ft ^ 0 , there

exists maps φn:J-> N,n= 1,2,... such that:

φn(a) = aw

fnφn{x) = x for all xe J

for all n ̂  1, and also satisfying the following three properties:

a) φn(J)nJ = φ or φn(J)aJ,

b) lim |φΛ(j>)|=0 for all yeJ,
M-> + 00

c) There exists K > 0 such that

l ^ i Φ ; ( z ) |

for all ft ^ l,zeJ,)/eJ.
The reader familiar with the ergodic theory of hyperbolic sets will recognize in

(a), (b), (c) an analog of the properties on which this theory is founded. In fact, once
the existence of J satisfying all these properties is proved, the proofs of Theorems A, C,
D and E requires little or very standard work. Theorem B is a corollary of Theorem A
and a folklorical extension of Denjoy's theorem (Lemma 1.4). It has no intrinsic
value. Its interest may reside in motivating research on the link conjecture. This
conjecture has a Closing Lemma flavour and as such it can prompt the remark that it
can be harder than the problems it attempts to solve. However one must not forget
that in the interval, Closing Lemma problems have been successfully handled (L. S.
Young [7], I. Malta [4]) and that what Jacobson does in his paper is (essentially) to
solve the conjecture exploiting the fact that the points involved are critical.

We suggest to the readers to (at least in the first lecture) follow the proofs, reasoning
in the case of / being an immersion of S1. By doing this they will reach the core of the
proofs faster and avoid tedious technicalities.

A natural question is whether Theorems C and D survive without the hypothesis
that keeps the critical points away. A concise simple question that exposes the lack of
good general techniques to analyse the dynamics near critical points is the following.

Problem III. Does there exist a real analytic endomorphism/:N p with infinitely

many sinks?

I. Proof of the Theorems
To prove the hyperbolicity of a set, instead of directly finding the constants K and λ
required by the definition, it is easier to check the formally weaker condition
required by the next lemma (whose very easy proof is left to the reader). We shall use
the following notation: If/eEnd^JV) and A is a subset of JV, we denote Sf(Λ,x) the
set of sequences θ: Z+ -+Λ such that θ(0) = x and f(θ(n)) = θ(n - 1) for all ft ^ 1.

Lemma 1.1. // feEndx(N) and A is a compact invariant set such that

lim \(fn)'(θ(n))\=+co (1)
n-> + oo

for all xeA and θeSf(Λ,x), then A is hyperbolic.
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To verify the hypothesis of this lemma we shall use the concept of coherent
sequence of branches. If J c N is an open interval we say that φ: J -> N is a branch of

f~n/J if φ is C 1 and/Mφ(x) = x for all xeJ. A coherent sequence of branches is a
couple (J,{(£>„}), where J is an open interval and φn:J-*iV is a branch oϊf~n/J,
n — 1,2,3,..., satisfyingfφn+1 = φw for all n ^ 1.

Given/6End 1(iV) and a compact invariant set Λ c JV, we say that an open
interval J is adapted to /i if there exists δ > 0 such that for every x e J n / 1 and

) there exists a coherent sequence (J,{φn}) satisfying:

a) φn(x) = 0(w),

b) d{φn(J), C(f))>δ9

c) φn(J)aJ or

for all n ^ 1. Let us say that a coherent sequence (J, {<£>„}) is associated to /I if there
exists xe/1 n J such that φn(x)e/l for all n ^ 1.

Lemma 1.2. J//eEnd2(JV) is not topologίcally equivalent to an irrational rotation
and A a N — dN is a compact invariant set not containing critical points, then, for all
non-periodic points XE f]fn(Λ) there exists an interval J =3 {x} adapted to A.

This lemma and the next one will be proved in Sect. II. Given fe End 1(iV), a
compact invariant set A and an interval J adapted to A, we say that a map φ: J :p is a
reίwrn map of /I if there exist m ^ 1 such that ψ is a branch oϊf~m/J satisfying

fj{φ(J))nJ = φ for all 0<j<m and there exists x e J n ( p | fn{A)) such that

ι//(x)e p | fn(Λ). It is clear that/m(ι//(J)) = J. Denote F(A, J) the set of return maps φ:J

P of /I. The next lemma is the fundamental step of the proof of the theorems.

Lemma 1.3. 7//eEnd2(iV) is not topologically equivalent to an irrational rotation
and A czN — dN is a compact invariant set not containing critical points, then,
if P|/n(71) contains non-periodic points, there exists an interval J adapted to A and

constants Kx > 0, 0 < λ < 1 such that every coherent sequence (J, {φn}) associated to
A satisfies

£ \φ'm(x)\ύKl9 (2)
m = 1

Iφ WI^Kjφ wi, (3)

for all xeJ, yeJ, n ^ 1, and

ψ(x)\£λ (4)

for all xeJ,ψeF(J,A).
Now let us prove Theorem A. First observe that given f eΈndr(N) and a compact

invariant set A, we can assume without loss of generality that A a N — dN. In fact,
A ndN Φφ means that N = [0,1] and A contains either 0 or 1. Then we can extend/
to a C map g of a bigger interval, say [—1,2], and now A will be a compact invariant
set of ^ e E n d r ( [ - 1,2]) such that A c [ - 1,2] - δ [ - 1,2]. Now we work withg and
N = [ - 1,2] (where we can apply 1.2 and 1.3) and the conclusion on A will hold also for
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A as an invariant set of/: [0,1] :P. For this reason, in the proofs of A, B, C and D, we
shall assume that the compact invariant sets that we shall handle, are contained in N
-dN.

To prove Theorem A suppose by contradiction that / is not topologically
equivalent to an irrational rotation and that A is not hyperbolic. Denote J^ the
family of non-hyperbolic compact invariant subsets of A. Order ^ by inclusion.
<F Φφ because A e # ' . Moreover, if # " 0 c <F is a totally ordered subfamily, the set
n {Γ\Γe^0} belongs to ^Fo because otherwise it would be hyperbolic and then it
would have a compact neighborhood U whose maximal invariant f] fn(U) is

n

hyperbolic. But Γ c U for some ΓetF0, and then Γ c p | fn(U\ thus implying that Γ
n

is hyperbolic and contradicting Γe^0 a^F. Therefore, by Zorn's Lemma, there
exists a minimal A 0 e #" 0 . Observe that Q /W(Λ 0) is again non-hyperbolic (because if it

were, Λo would be also hyperbolic; this follows easily from Lemma I.I). Then the
minimality of A 0 implies Ao = p | fn(Λ0). Hence/(/l0) = Λ0. Moreover A 0 can't be a

union of periodic orbits because every periodic orbit is hyperbolic and then A 0 would
be hyperbolic (a compact union of hyperbolic sets is hyperbolic, this is another simple
corollary of 1.1). Then we can apply Lemma 1.3. Let J be the interval given by 1.3. Take
any θe£f(Λ 0, x), xeA 0. Let Γ be the limit set of θ (i.e. the set of points p such that
lim inf d(θ(ri),p) = 0). Γ is compact and invariant. If Γ φ A 0 then Γ is hyperbolic by the
n-* -+• o o

minimality of A in 3F. Using the hyperbolicity of Γ it is easy to prove that

lim |(/7(θ(n))| = oo. (5)
n-* + oo

If Γ = Λ0 there exists n0 such that θ(no)eJnAo. Define £e^(Λ o ,0(n o )) by
§(n) = θ{n + n0). Since J is adapted to A 0 there exists a coherent sequence {J,{φn})
satisfying φn(θ{n0)) = θ(n) for all n ^ 1. Moreover (2) implies

Σ b;(^))i< + oo.

In particular lim |^(^(n)) | = 0. Then lim |(/")'(0(n))| = oo because (/")'

(£(»)) = (φi(5(n))Γ '• "Hence:

lim \(fn)f(θ(n))\ = lim |(/")'(^(n
n-+ + oo «-» + oo

= lim \(f"°)Wno))\

n-* + oo

= + 0 0 .

Therefore (5) holds for all xeA 0 and β e ^ ( Λ 0,x) thus proving, by Lemma I.I, that
Λo is hyperbolic and contradicting Λoe^".

To prove Theorem B we need one more lemma. It is a property essentially
contained in Schwarz's proof of Denjoy's theorem. Given/ e End1 (N) we say that an
open interval J a N is a d-interυal iff /J is injective and has no critical points for all
n ^ 1. We say that a d-interval J is eventually periodic if there exist a d-interval Jλ and
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integers n ̂  0, m ̂  1 satisfying

(6)

/%/)<= Λ (7)

Lemma 1.4. If f eΈnd2(N) is not topologίcally equivalent to an irrational rotation,
every d-interval J is either eventually periodic or satisfies:

liminfd(/V);C(/)) = 0,
n-* + oo

where C(f) is the set of critical points off.
Now suppose that/eEnd^N) satisfies the hypothesis of Theorem B. Denote C(f)

the set of critical points of / contained in Σ(f). Order the points in C(f) by the
relation y ̂  x if there exists n ̂  1 such that y — fn(x). This order has no cycles
because a cycle would be a periodic critical point, hence a sink that cannot be
contained in Σ(J). Then there exist points x x,.. ., xm in C(/) such that every xeC(F)
satisfies x ^ x ( for some 1 ̂  i^ m and if xf ^ x then x = xt. Denote St the set of points
xeC(f) such that x ^ xt . Let us say that a d-interval J is maximal if every open
interval properly containing J is not a d-interval. It is clear that if/ is not a
diffeomorphism of the circle every d-interval is contained in a unique maximal d-
interval and two maximal d-intervals are either disjoint or coincide. Since for the
proof of Theorem B the case of/ being a diffeomorphism of the circle is trivial, we
can assume that this property holds and then the set of maximal d-intervals is a
countable family J l 5 J 2 , . . . of disjoint intervals. Moreover, since/ maps d-intervals
in d-intervals it follows that for all i ̂  1 there exists; ^ 1 such that f(Jt) c Jjm We shall
say that Jt is periodic if /%/;) c h f° r s o m e n ^ 1> a n c * that it is eventually periodic if
/ m ( Jj) is contained in a periodic maximal d-interval for some m ̂  0. The absence of fake
links easily implies that for every critical point x there exist intervals (α, x) and (x, b)
(only one if N = [0,1] and x is an endpoint) not intersecting the backward orbits of the
critical points. Hence (a, x) and (x, b) are d-intervals. Therefore to every critical point x
we can associate maximal d-intervals J~(x) = (α(x), x), J+(x) = (x, b(x)) (again, only
one when N = [0,1 ] and x is an endpoint). If we apply Lemma 1.4 to Jσ(x)(σ = + or - )
we get that either Jσ{x) is eventually periodic or

If (8) holds it means that there exists ye C(f) such that for suitable values oϊnJn{Jσ(x))

is arbitrarily near toy. Hence, for α = + or - , wehave/"(JσW)n^α() ;) Φ φ .But since

/V σ (x)) is a d-interval it follows that

fVσ(χ))^J%y). (9)

Hence every Jσ(x) is either eventually periodic or satisfies (9) for some n ̂  0, yeCtf)
and α = + or —. If Ja(y) is eventually periodic then so is Jσ(x). If it is not, we have
fk{Γ{y)) c Jβ(z) for some k ̂  1, yeC(f)9 β = + or - . Since the number of critical
points is finite, an interval must appear twice in this process, thus proving that the
initial Jσ(x) is eventually periodic. Therefore every Jσ(x) is eventually periodic. Then
to every xf we can associate a maximal d-interval At and integers nt ̂  0, m, ̂  1
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satisfying

Without loss of generality we can assume (replacing mi by 2mi if necessary) that/mι/y4t

is order preserving. Since every periodic point offm is hyperbolic it follows that
every xeAi is either a source or belongs to the basin of a sink (recall that/m ί/.4 i has
no critical points). Then / " ' ( x ^ e ^ is either a source or belongs to the basin of
a sink. The second possibility cannot hold because XieΣ(f). Then fni(xi) is a
source for all 1 ̂  i ̂  m.

Using that fmjAi has no critical points, it is easy to find a closed interval
Bt c Ai such that one of its endpoints is /"'(x,) and the other endpoint is a sink
whose basin contains Int Bt. Now we take geΈndr(N) near t o / , having all its
periodic points hyperbolic and satisfying

m

a) / and g coincide in a neighborhood of (J Bb

b) C(f) = C(g),

c) ̂ (

m

d) g and / coincide in (J St.
ϊ = 1

From (c) and (d) follows that all the critical points in C(f) eventually under g will
m

fall in (J I n t ^ ). By (a), every Int Bt is in the basin of a sink of g. Hence

C(f)^Σ(g)c. (10)

On the other hand, points in C(f) — C(f) are in the basins of sinks of/, and if g is
sufficiently near to / , are in the basins of sinks of g. Therefore:

C(f)-C(f)c:Σ(gY. (11)

From (10), (11) and (b) we get

= C(f)c:Σ(gy. (12)

Since every periodic point of g is hyperbolic and Σ{g) by definition doesn't contain
sinks and by (12) doesn't contain critical points, we can apply Theorem A to Σ(g)
proving that it is a hyperbolic set

To prove Theorem C suppose by contradiction that there exists an infinite set
S of sinks and non-hyperbolic periodic points such that any pair of points x,yeS
are not homologous. First we shall prove that S contains a non-periodic point.
If it doesn't there exists a periodic point peS and a sequence {pn}^S
converging to p. Without loss of generality we can assume that Pi<p2< '" <P
and take N such that/"(p) = p and (/")'(/>) > 0. Then in a neighborhood of p, fN

is order preserving. Therefore we can assume that

Po^χSy^P=>fN(χ)<fN(y). (13)
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In particular po<pn<p implies

fN(pn)<fN(p) = P-

Then, if

we have p0 ̂  pn ̂  fN(pn) < p, and applying (13) we get p0 ̂  fN(pn) ^ fw{pn) <
/ > ) = p. Applying again (13) we get Po £ f2N(Pn) £ f3"(Pn) c= fN(p) = p. Con-
tinuing with this method we obtain:

Pn ^ f\Pn) ^ f2N(Pn) ί S fmΛPn) = Pn

\ϊmnN is a period of pn. Hence fN(pn) = pn. Then the integer N and the interval [pn, p]
prove that pn is homologous to p. Since there can be at most one point in S
homologous to p, it follows that we can assume that no pn is homologous to p and
then

fN(Pn)<Pn (14)

for all n ̂  0. Using the fact that fN is injective in a neighborhood of p, we can
take δ > 0 such that if xe{p0, p) and j ; Φ x satisfy fN(x) = fN(y\ then

d(x,y)>δ. (15)

Now take n ̂  0. If fjmn(pn)G{pn_ l 9p) for all O^j^N, then pn is a periodic point of
the injective order preserving map fN/(pn-uPy Hence pn is actually a fixed point,
and arguing as before, pn is homologous to p. But we have assumed that no pn is
homologous to p. Hence for all n ̂  0 there exists 0 <jn<mn such that

Since by (14)/iV((pn_1,p)) ^(p^.^p), there exists qn£{pn-i>P) such that

/ \Qn)= fJn \Pn) (18)

By (16) f^{pn) Φ qn and by (18) fΉ{f^{pn)) = fN(qn). Hence (15) implies:

d(qnJ
jnN(pn))>δ. (19)

Moreover

p-qn<p-pn_ί (20)

because qne(pn-i,pn). Taking limit when n-> + oo (on a subsequence if necessary)
we have that qn->p and the sequence fjnN(pn) converges to a point p that is in
S but that by (19) is different from p, and by (17) fN(p) = p = fN{p). Since p is
periodic and pφp, the relation fN(p) = p shows that peS is not periodic.
Now that we know that S contains non-periodic points we can apply Lemma 1.3
to Λ =S. Observe that f(S) = S and then f] fn(S) = S. Then by Lemma 1.3 there

exists an interval J adapted to A satisfying (2) for every coherent sequence (J, {φn})
associated to S. Take XGJ n S and choose the periodic θe^(A,x) (that exists because
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x is periodic). By the definition of adapted interval there exists a coherent sequence
(J,{φn}) such that φn(x) = θ(n) for all n ̂  1. From (2) it follows that | ( / " ) ' (%))Γ 1

= \ψn(χ) I -* 0 when rc -• + oo and if TV is the period of x we have θ(nN) = θ(0) for all
rc^l. Then:

Then |(/wΛΓy(x)|"->oo when n-> + oo thus implying that x is a source and
contradicting the definition of S.

To prove Theorem D we can assume that / is not topologically equivalent to an
irrational rotation because in that case the property follows from a stronger
property proved by Herman [2]. Suppose also that A doesn't satisfy the second
option of Theorem D. We have to show that λ(Λ) = 09 where λ( ) denotes the
Lebesgue measure. Let $F be the family of compact invariant sets Γ czΛ such that

λ(Λ -{xeΛ\ω(x)czΓ}) = 0.

Order $F by inclusion. Let #Ό c J* be a totally ordered subfamily. We claim that
n{Γ\Γeβr

0}eβr

0. Denote Λo = n{Γ\Γe^0}. Take a neighborhood V of Λo.
Then Γ c V for some Γe^0 and

λ{Λ - {XEΛ I ω(x) cz V} ^ λ{Λ - {xeΛ \ω(x) c Γ}) = 0.

Since this is true for every neighborhood V of A 0 it follows that Λ.(/i — {XG/1 |ω(x)
d A o }) = 0. Hence A 0 e J^ o proving the claim. We can now apply Zorn's Lemma to 3F
and obtain a minimal Aoe^. We claim that Ao has the following property: for
every open interval J such that jnAoφφ, the set

J = {xeJnΛ\fn(x)eJ for infinitely many n's}

has positive measure. Suppose by contradiction that λ(J) = 0 and define

A ι = {xeΛ \fn{x)φJ for all n ̂  0}.

Clearly / 1 1 is compact and invariant. Moreover:

{xeA \ω(x) <z:Λ0} = ({J f\J) )u{xeΛ \ω(x)

Since λ( [j f~n(J)) = 0 (because 2(J) = 0) it follows that:

λ(Λ — {xeΛ\ω(x) cz Ao}) = λ(Λ — {xeΛ\ω(x)cz y l j ) .

Hence A1 e£F. But then the minimality of Λo implies Λ1 = Λo. This means JnA0 =
φ contradicting our hypothesis on J. Now we claim that if λ({xeA \ω(x) cz Λo}) φ 0
there exists an open interval J with J nΛ0Φφ and λ(J) = 0. Since such interval cannot
exist, it will follow that λ({xeΛ|ω(x) cz Λo}) = 0 and then:

A(Λ) = 2(71 - {xeΛ \ω(x) cz Λo}).

But the measure at right is zero because A oe^, and then λ(Λ) = 0 as we wished to
prove.

To prove the claim observe that/(/l ) e # \ and then the minimality of Λo implies



508 R. Mane

Λo — f{Λ0). Hence Λo = f] fn(A0). lϊΛQ is finite, every point in Λo is periodic. Then

λ({xeΛ \ω(x) c Λo}) = 0 because if it is # 0 there exists a periodic orbit γ a Λo such
that A(XGΛ |ω(x) = y}) ^ 0. This inequality easily implies the existence of an interval J
satisfying the second option in Theorem D. Since we are assuming that this option
doesn't hold it follows that λ({xeΛ \ω(x) a Λo}) = 0. If Λo is an infinite union of
periodic orbits, it is easy to prove, using Theorem C, that there exists an open interval J
such that fN/J is a diffeomorphism of J for some N ^ 1 and containing infinitely many
periodic orbit of Λ o . Since we are assuming that the second option of Theorem D
doesn't hold, it follows that λ(J n A 0) = 0. But on the other hand J nΛ0 = J because
every point in A 0 is periodic. It remains the case when A 0 = f] fn(A 0) contains non-

periodic points. We can apply Lemma 1.3 and obtain an interval J adapted to A 0 and
K x > 0 satisfying (4). We shall prove that λ( J) = 0. Denote Fn( J, A) the set of maps φ: P
that can be written as a composition of n elements of F( J, A). By Lemma 1.3 there exists
σ < λ < 1 such that:

λn (21)

for all xeFn(J,A). In particular, (21) implies:

(22)

for all ψeFn(J, A). Denote Fn(J, A) the set of maps ψ in Fn(J, A) such that there exists a
coherent sequence (J,{φn}) satisfying ψ = φn. By 1.3 there exists Kί>0 such that

for all xeJ, yeJ and φe (J Fn (J,/i). It follows that

λ(Φ(Λ))

λ(ψ(J))- 2λ(J)

for all ψe [j Fn(J,Λ) and every Borel set AcJ. Then:

A(J) λ(J-J)> λ(φ(J-J))

λ(J) λ(J) = 2 λ(φ(J))

and since φ(J) ID φ(J) π J,

(J) / Mώ(.nnT\\
(23)

If A( J) / 0 we can take a density point xeJ. There exists a sequence ι/f n e FΠj. (A, J), with
fij-* -f oo such that xeφn.(J) for all ny By (22), diamι^Wj(J)->0 whenj-^ + oo. The
definition of density point grants:

λ(φnι(J)nJ)

j ^ + a> λ(φn.(J))
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Applying (23) to φ = φn and taking limits we obtain λ(J) ^ λ(J). Hence λ(J) Φ 0
implies that J i s dense in J. In particular A contains J. But A doesn't contain critical
points. Therefore f"/J has no critical points for all n ^ 0. Moreover /%/) c A Φ N for
all n ^ 1. This excludes the possibility /%/) = N = S1 and shows that every power of/
is injective in J and has no critical points. In other words J is a ^-interval. But by
Lemma 1.4 this means that there exists an open interval Jί such that /"(J^) c J l 5

/ " has no critical points in Jx and fN(J) c J 1 for some N ^ 1. Therefore the interval
/"(J) <= /I n ϋ ^ proves that / satisfies the second option of Theorem D. Since we are
assuming that this option doesn't hold, it follows that J is not dense in J and
λ{J) = 0.

To prove Theorem E we take the interval J obtained applying Lemma 1.3 to A =
S1. We shall first prove that λ(ΓnJ) φ 0 implies λ(ΓnJ) = λ(J). Denote Γ o the set
of points xeS1 whose forward orbit doesn't intersect J. Then Γo is compact and
invariant. By Theorem D, λ(Γo) = 0. Denote J o the set of points xeJ such that
there exists N > 0 satisfying fn(x)φJ for all n ^ N. Then Jo a [j f~n(Γ0) and λ(J0)

Define J\= J — JQ. Since λ(J0) = 0, to prove that λ(Γn J) = Jit suffices to show that
λ(ΓnJ1) = 0. Denote F^J.S1) the set of maps φ\J τ^ that can be written as a
composition of n elements of F(J, S1). Then for every xeJx there exists a sequence
φnieFn(J,Sι) such that

xeφni(J) (24)

for all i ^ 1. Moreover, 1.3 implies that:

for all φeF^J^S1) and n ^ 1. In particular:

diam(A(J)^/lndiamJ (25)

for all n^ 1 and φeF^J.S1). Moreover, by Lemma 1.3

\φ'(x)\^K2\φ'(y)\

for all n^l, φeF^J^S1), xeJ, yeJ. Then

^ λ(Λ)

- 1
λ(φ(J))- 1 λ(J)

for all φeFn(J, 51), n ^ 1 and every Borel set A aj. Therefore, if xeΓnJ and the
sequence {φn.} is chosen satisfying (24) for all nh we obtain:

>

But φnι{Γ) c= f~niΓ) d Γ and φni(Jλ) c J i . Then
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Hence:

' ( }

But if x is a density point of 7"n J l 5 it follows from (25) and (24) that:

^ λ(φm(J)) °

Then, by (26), λζΓ'nJJ = 0 and λfnJJ = λiJJ. Now we know that λfnJ) Φ 0

implies λ(ΓnJ) = λ(J). Suppose that λ(Γ) = 0. Observe that (J /"%/) has full

measure because its complement is a proper compact invarianf set. Then:

This inequality shows that Λ(ΓnJ)>0. But we proved that λ(ΓnJ)>0 implies
λ(ΓnJ) = λ(J). Hence λ(Γc nJ) = 0 and then λ(fn{Γc n J)) = 0 for all n ^ 0. Taking n
such that fn(J) = S1 we obtain:

C n / "(J)) ^ Kfn{Γc n J)) = 0.

II. Proof of the Lemmas

We -shall begin by proving Lemma 1.4 because it is in fact previous to the other
Lemmas. It is essentially an easy reformulation of Denjoy's theorem and therefore
we shall only outline those parts of the proof that are only straightforward
modifications of the proof of Denjoy's theorem.

We shall use the concept of maximal interval introduced in Sect. I to prove
Theorem B. Given a d-interval J of / e E n d i + ε(iV) we can take (because / is not
a differmorphism of the circle), unique maximal ίi-intervals J t 3 f\J), i = 0, 1,
Suppose that there exist m > n ^ 0 such that JmnJnΦ φ. Then Jm = Jn and

But /m""(Jm) is a ^-interval. Hence

fm — ns J \ r— J

and the theorem is proved. Now suppose that

JmnJn = φ (1)

for all m > n ^ 0. Then

00

]Γ diam Jn < + oo. (2)

Suppose that

liminfd(Jπ,C(/)) = O. (3)
M ^ + OO
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We also have:

d{fVo\ C(f)) £ d(Jn, C{f)) + diam Jn. (4)

But (2) implies diam Jn -> 0. This together with (3) and (4) implies

liminfd(/VoλC(/)) = 0,

and the Lemma is proved. It remains to consider the case

liminfd(JM,C(/))>0.

This means that there exists n0 ^ 0 such that

Md(Jn9C(f))>0.

Since fVJ^JΓ«+Πo>
 w e obtain:

infdi/-(JJ,C(/))>0, (5)

X diam/VJ<+oo. (6)
n = 0

We shall prove that (5) and (6) together contradict the maximality of Jno. From
(5) and (6), as in the proof of Denjoy's theorem, we get

Σ l(/7WI< + oo (7)

for all xeJno.
As in the proof of Denjoy's theorem, we can find, using (5) and (7), an open

interval A ZD {a}, where a is an endpoint of JΠo, such that

lim diam fn(A) = 0. (8)
n~* + oo

Observe that the case JΠo = N = [0,1] doesn't arise because of (1). The case
Jno = N = Sλ is also impossible for the same reason. Then we can take an open
interval A ID A' => [a] so small that

A'vJ^ϊN. (9)

Moreover, since we cannot have Jno = N = [0,1], we can take the endpoint a
different from 0 and 1. Hence:

A'vJnoΦJno. (10)

Finally (8) implies that we can take A' so small that

inf diam f"{A') < \ inf d{fVno\ OJ)\

and then

(11)
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By (9), A' u Jno is an interval. By (11) it is a ^/-interval and by (16) it properly contains
Jno. Hence Jno is not a maximal d-interval and this contradiction completes the proof
of 1.4.

The proof of Lemma 1.2 requires a preliminary result:

Lemma 11.1. // /eEnd2(JV) and A c N — dN is a compact invariant set not

containing critical points, then, for every non-periodic point ae f] fn(Λ) and δ > 0,

there exists ε > 0 such that if J ^ {a} is an open interval with diam (J) g ε then,
for all xeJnA and θeSf(A,x) there exists a coherent sequence (J,{φn}) satisfying

φn(x) = θ(nl (12)

dmmφn{J)Sδ (13)

for all n ^ 0.

Proof Take a non-periodic point aef) fn(A) and δ>0. Let ε n > 0 be the

maximum positive number such that if Jn = (a — εn, a + εn) then, for every xeA n Jn

and every θe£f(Λ, x) there exists branches (p,-: Jn-*N of f~j/JJ = 1,..., n such that

</>;« = 0(/%

diam φ/Jn) ^ <5

for all l ^ j ^ π and

for all l^j ^n. Without loss of generality we can suppose

0<δ<y(Λ9C(f)υf(N)).

This implies that there exists 0 ^jn S n such that

diam φjn{Jn) = δ.

If we prove that lim inf εn = ε > 0, the Lemma is proved just taking J = (a — ε, a + ε).
n-> + oo

Suppose that lim inf εM = 0. Then^ -> + oo. Now define ί/Λ = (pjn(Jn). A subsequence

of the sequence of intervals {[/„} converges to an open interval U that satisfies diam
(7 = (5. We shall assume to simplify the notation that Un -> (7. Then 1/ is a d-interval.
By 1.4 there exists a d-interval K and integers n ̂  1, ΛΓ ̂  1 such that

/"(]/) c=K (15)

/ ^ / F has no critical points. (16)

Take a point qeU such that, gel/Λ for every large value of n, say for all n ^ n0. By
(14), (15), (16) the ω-limit set of q is a periodic orbit y. Then

φ , y) g εn + d((α - επ, a + εj , y) - εn + d ί / ^ t / J , y) ^ εn + d ί / ^ ) , 7). (17)
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But jw-> -h oo when n-> -f oo. Then

lim d(fHq),y) = O.
n-+ + oo

Moreover liminf εn — 0. Hence (17) proves that aey, contradicting that a is non-
n-* + oo

periodic.
To prove 1.2 we shall consider first the case when / is an immersion of S1. If its

degree is 1 or — 1, it is a diffeormorphism. Moreover it has periodic points because it
is not topologically equivalent to an irrational rotation. Then, using that x is not a
periodic point it is trivial to construct the adapted interval J (in fact any open
interval J n> {X} such that f~n(J)nJ = φ for all n > 0 works). If the degree d of / is
not 1 or — 1 we define g: S1 τ> by g(z) = zd and, as we explained in the Introduction,
there exists a monotone map h: S1 P satisfying gh = hf. Now observe that if J is an
interval whose endpoints are fixed points of some power gn of g (i.e. roots of the
equation zd"~1 — 1 = 0) and doesn't contain fixed points of gn, then J satisfies (c)
(with respect to g). Condition (b) is obvious since C(g) = φ and the existence
condition (condition (a)) is easy to check (even for A = S1). Therefore J is an interval
adapted to S1, in particular adapted to A. Now, given xeΛ, we take h(x) and an
interval J 3 {h(x)} as described above. Using h it is easy to show that h'1^) is an
interval adapted to S1 (in particular to A).

Now suppose that / is not an immersion of S1. Given the non-periodic point
xe f] fn(Λ), let ε > 0 be given by Lemma II. 1, taking as δ > 0 a number satisfying

0<δ<y(Λ,C(f)). (18)

If J ZD [x] is an open interval with d i a m J < c then, by Lemma II. 1 the first
condition of the definition of interval adapted toΛ is satisfied. Condition (b) is also
satisfied because if (J, {φn}) is a coherent sequence associated to A, every φn(J)
contains a point in A and, by Lemma II. 1, άia.mφn(J) < δ. Then

d{φn{J\ C(/)) ύ d(Λ9 C(/)) - diam φn(J) ^ d{A, C(/)) - δ£ δ.

Therefore conditions (a) and (b) are granted just by taking J having diameter ^ ε.
The problem is condition (c). If J is an open interval denote ^(J) the set of all the
coherent sequences (J, {φn}) associated to J and denote J the connected
component containing x of the open set:

Take a sequence Jx ZDJ2ZD ZD {X) of open intervals with diam (Jn) -> 0. Then
Jι ZD J2 =>••• {x}. If diam (Jm)->0 we are done because it is clear from the
definition of J that if (J, {φn})e^(J), then φn(J)nJ Φφ implies φn(J)αJ.
Hence any Jm with diameter less than ε will satisfy condition (c) (and, as we
observed before (a) and (b) are implied by diam ( J J < ε). Then suppose that f]

m>0

Jm is not {x}. Then its interior is an open interval U. We claim that UαΛ.
Given yeU and ε0 > 0, take m so large that d iam(JJ < ε0 and

sup {diam φn(Jm)\n ^ 1,(Jm{φn})eV{Jm)) < ε0.
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We can take such m by Lemma II. 1 By the definition of Jm and since yeJm,
either yeJm or yeφn(Jm) for some n ^ l and (./m, {<pΛ})e#(Jm). In the first case
d(y, x) S diam Jm g ε0. In the second case, observing that φn(Jm) contains points of
A because (Jm{φn}) is associated to A, we obtain again

d{y,Λ) ^ d{y, φn{Jm)) g diam φ Λ (JJ < ε0.

Hence d(y,Λ) ^ ε0 f° r all ε0 and t n e n y G ^ This completes the proof of the claim.
But U czΛ implies fn(U) czA for all n > 0 and then fn/U has no critical points for
all n > 0. Since / is not an immersion of S1 it follows that U is a d-interval. Let
V be the maximal d-interval containing 17. By Lemma 1.4 it is eventually periodic.
Moreover the construction of U shows that xeU. We have now two cases to
consider

I) xeV. From the fact that V is eventually periodic follows the existence of an
open interval {x} cz J c V satisfying

fn(J)nJ = φ

for all n ̂  1. This implies that

for all n ̂  1, (J, {φn})e^(J). Hence condition (c) is satisfied and we are done.
II) xeδV. An endpoint of an eventually periodic interval is either eventually
periodic or its forward orbit contains a critical point (maybe both). The second
possibility cannot hold for x because x is contained in A that doesn't contain critical
points. Then x is eventually periodic. But it cannot be periodic. Therefore V itself
is eventually periodic but not periodic and:

liminϊd(fn(VχV)>0. (19)

On the other hand for every m there exists nm ̂  1 and (Jm, {φw})e#(Jm) such
that

UnφnJJm)nJmΦφ. (20)

In particular

d{x9 φnjx)) ύ diam Jm + diam φnrn{Jn).

But diam J m ->0 when ra-> -f oo and, by Lemma ILL

Sup {diam φ Λ ( J J | n ^ l,(Jm, {φn})eWm)}

converges to zero when m-> + oo. Hence d(x,φnm(x))-+0 when m-> + oo. If the
sequence {nm} is bounded, this implies that x is periodic, contradicting our
hypothesis. If it is unbounded we use (20) to obtain

φ Φ fn-(Un φnJJm)n Jn) cz f^U)nJmn/"-(JJ,

which implies:
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Then,

d(f»™(V% V) ̂  dif^n x) £ diam Jm,

contradicting (19).
The proof of Lemma 1.3 will require different methods according to whether

A = N, A Φ N. To prove it in the case when A Φ N we need the three following
lemmas. In its statements A and / will be as in the statement of 1.3 and the notation

) will have the same meaning as that of the proof of ILL

Lemma II.2. If xe f) fn(A) is non-periodic there exists an interval Jo ZD [X] adapted

to A such that for all r ̂  0 there exists an arbitrarily small interval { x j c j c J o

adapted to A satisfying

diam φn(J0) ^ r

for all n^N and (Jo,{φn})e<g(J0,Λ) such that

φn(J)nJΦφ.

Proof By Lemma 1.2 there exist arbitrarily small intervals J o 3 {x} adapted to A. If
the ω-limit set of x is a periodic orbit, γ, take JΌ satisfying

JoCΛy = φ. (21)

This can be done because since x is not periodic xφy. If the ω-limit set of x is
not a periodic orbit, choose any J o >̂ {x} adapted to A. Suppose that J o doesn't
satisfy the required property. Then there exists r > 0 , a sequence of coherent
sequences (J o , {φ^})G^(J0, A) i = 1, 2, 3,..., a sequence of integers nx < n2 < ...
and a sequence of intervals J1ZDJ2ZD- z> {*}, with f] Jn = {x}, such that

Φ (22)

diamφ<?(/0)>r (23)

for all Ϊ ̂  1. Also from the fact that Jo is adapted to/I it follows that for any pair
of coherent sequences (J o, {φn})e^(J0,A) and (J o , {ιl/n})e^(J0,Λ), and every
n ^ / ̂  1, one of the following relations holds:

Using this property it is easy to see that the sequence above can be chosen satisfying

φ$(Jo)^φ%(Jo)^Jo (24)

for all i ;>; ̂  1. Therefore (23) and (24) imply that the set

t/ = IntΠφί,?(J0) (24)
» ^ 1

is a non-empty open interval contained in Jo. It is easy to check that it is a d-interval.
Since / is not topologically equivalent to an irrational rotation, U is eventually
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periodic by Lemma 1.4. On the other hand

lim diamφ^(J;) = 0 (25)
ί-> + oo

by Lemma ILL Moreover, by (22) and (24):

d(x9 U) = lim φc, φ<%/0)) ^ lim d(x9 φ$(Jd)
i i

^ lim (diam J f + diam φ{^(Jι)).
i ι _

Since lim diam^ = 0, this inequality together with (25) implies that xeU.
i _

Moreover from the definition of U it follows that fnι(U) c J o . Hence ω(x)n Jo Φ φ.
But since xeϋ and U is eventually periodic it follows that ω(x) is a periodic
orbit. Then the relation ω(x)nJ0 φ φ contradicts the way we choose J o .

Lemma II.3. // feEnd2{N) for all δ>0 there exists Ko = Ko(δ,f)>0 such
that (J, {φn}) is a coherent sequence satisfying:

infd(φB(J),C(/))>0,

then

for all n ^ 0, xeJ.

This Lemma is proved using a trivial adaptation of the method of Schwarz, proof
of Denjoy's theorem. For a proof see Jacobson [1] Lemma la, Ib.

Lemma II.4. // J is an interval adapted to A such that either F(J, Λ) = φ or there
exists 0 < λ < 1 satisfying:

ψ(x)\<λ

for all XGJ and \l/eF(J,Λ), then there exists Kx>0 such that

Σ lrt.(*)I^Ki

for all x, y in J and (J, {φn})eV(J9Λ).

Proof We shall first prove that there exists K > 0 such that:

f dmm φn(J)^K (26)
n = 0

for all (J, {φn})E^(JfΛ). We note that here φ0 stands for the identity and the same
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notation will be used in all this proof. Take (J9{φn})e^(J,Λ). Suppose that

φn(J)nJ = φ

for all n ^ 1 (this is the only possibility if F(J,Λ) = φ). Then:

for all 1 ̂  n rg m, and then

£ diamφn(J)^2diamJV. (27)
n = 0

Now suppose that φn(J)nJ Φ φ for infinitely many values of n, and let nί < n2 <
be those integers for which φHι(J)nJ Φ φ. Since J is adapted to Λ9

φni{J) cz J

for all i ^ 1. Clearly φneF(Λ9 J). Moreover it is easy to see (using again that J is
adapted to Λ) that for all i> 1 there exists ψιGF(J,Λ) such that

Set \j/ί = φnί. Define m1 = nί and mi = ni — ni^ί if t > l . The maps φt can be
described as follows. There exist branches φf of f~n/J, where 1 ̂  n 5g m{ satisfying
the following properties:

a) qξ> = fφ«l ί for all i ^ 1, 1 S n < mi9

b ) φ ^ = ^ f o r a l Π ^ l .

Now observe that the definition of the sequence {nj plus the fact of J being adapted
to A imply:

for all 1 ̂  n < mi and i ^ 1. Then

for all 1 ̂  n < m{. Hence

for all i ^ 1. By II.3 there exists a constant Ko depending only on J such that

\(ω{i))Ίx)\ n~1

(0 , I ̂  exp Ko £ diam φj')(J) ^ exp 2K0 diam ΛT. (28)

Set Kγ = exp 2X0 diam N. From (28) it follows easily that if A a J is any subset:

diam φ®(A) ̂  κ diam φf{J)

diam A = 1 diamJ
and then

m , - l Jζ mι-l

Y disLmφV\A)^dia.mAjm

 x Y di
n = o d i a m J n =
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< diam A -—— 2 diam N. (29)

~ diamJ

Set

X 2 = 2X1diamiV.

If i > 1, applying (29) to A = φn._ X(J), we obtain:
Wi — 1

Σ diam φ®(φnιJJ)) < K2 diam φ^JJ) diam (J).

But φn is a composition of i — 1 maps in F(J,Λ), namely the maps ιj/ί9...9ιl/i_1.
Then: ' "

for all xeJ. Hence

diam φ n (J) ̂  diam {J)λ(~ι,

and then

In a similar way we obtain:

m i — 1

Then

oo oo m, — 1

X diam^(J)^ X Σ ^
Λ = 0 ι = l « = 0

g Σ «2A' (30)

With minor modifications the same methods can be applied to the case when
φn(J) nJ Φφ holds for a finite non-empty set of values of n, and the result is

ϊ = 0

(31)

Then (27), (30) and (31) prove (26). The proof of II.4 is now an easy corollary ofll.3. In
fact, applying II.3 to (J, (φπ})e^(J,Λ), we obtain

^ j S exp Ko "Σ diam φ/J) ^ exp X0K (32)
n(y)\ j=o

for all x, yeJ and n ^ 1. Moreover
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Hence:

This inequality and (32) prove the Lemma.
Now we are ready to prove Lemma 1.3 in the case A φ N. This property ensures

the existence of a point xeΛ that is an endpoint of an open interval U contained
in Λc. Let Jo => {x} be the interval adapted to A given by Π.2. Suppose that
U = (x,b). Choose Jo so small that bφJ0. Since Jo is adapted to A, there exists
δ>0 such that d{φn(J0), C(f))>δ for all n^l and (J 0 , {φ n })e^(J 0 ^) . Let
K0 = K0(δ,f) be the constant given by II.3. Let Jo be the interval (b~,b+) and
take r > 0 satisfying:

r 1
exp 4JK0 diam iV —^ < -. (33)

o — x 2,

By Lemma II.2 there exists an interval [x] aj c J o adapted to A and such that
if(J o ?{φn})G^(J o,/i)and

φn(J)nJΦφ

for some n ^ 1, then

diam φn(J0) ^ r.

Suppose that J = (α~?α
+). Define:

i i-(x,b + ) .

Let (/̂  be an element of F(J,A). By definition of F(J,A) there exists

f\A)) such that IA(XO)G Q / W Take fc ̂  1 satisying fk(φ(x0)) = x0,

and 0G^(yl?xo) such that θ(k) = ^(x0). Take (Jo, { ^ } ) G ^ ( J 0 , / 1 ) satisfying θ(«) =
φπ(x0) for all n<Ξ 1. Then:

^ (34)

and

φn(J)nJ = φ (35)

for all 1 <* n < fe. We claim that for all n ^ 1

φn(J)nJ = φ=>φn(J1)nJ1 = φ. (36)

Suppose that φn(J)nJ = φ and φn{J1)rΛJιΦφ. The last property implies
φ w (J 0 )n J o # φ, and then φn(J0) c J o . In particular φΛ(J) c J o , and since φn(J)r\J

= φ, either φn(J) a(b~,a~) or φn(J) c ( α + ,fc+). The last relation is not possible

because φn(J) contains φn(x0), and φn(x0) = λ(n) is contained in A. But (a+,b+)

c (x, b+) doesn't contain points in A. Then φπ(J) c (b~9 a~\ One of the endpoints of

φn(Jx) is contained in φn{J). Since φn(J)cz(b~,a~) it follows that one endpoint of
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φn{J^) is contained in \_b~ ,a~~\. Moreover φJ^Jγ) c J o (because φn(Jι) c= φΛ(J0) and,
as we observed above, φn(J0) <= J o ) Hence φn(J^) is an interval contained in (b~, b+)
with an endpoint in \b~,a~~\ and non-empty intersection with (x,b+) = J1. It
follows that φn(Jι)^(x,aJt). But then x o e (/>„(./J. This implies fn(x0)eJ1. Then
/I nJί Φ φ because fn(x0) belongs to A and Jv On the other hand J x c(x, h).
Therefore it doesn't intersect Λ. This contradiction completes the proof of (36).
From (35) and (36) follows that φn(J1)nJ1 = φ for all 1 :g w < fc. Hence φn{J^)r\
<Pm(Ji) = Φ for all 1 ̂  w < m < k and then

fc-1

Σ diam (^(J^ ^ 2 diam N.

By Lemma II.3:

^ (37)
t/ X

for all ye J x . Moreover (35) implies φn{J)r\ φm(J) = φ for all 1 ̂  n< m. Then, by II.3:

\Φ'(Z\\ k~1

f ^ 4 r ^ e x P κo Σ d i a m Φ«(J) ̂  e x P 2Ko ^iam ΛΓ (38)
\ψk(y)\ n = O

for all y and z in J Given zeJ and using (33), (37) and (38):

\φ'(z)\ = |^(z) | = | ^ ( f l + ) | . - i ^ L ^ exp4XodiamiV - ^ < i
\φk\a )\ Ό — x L

This completes the proof in the case A Φ N. Now let us consider the case
A = N. In the case / has no critical points. If it is also injective, it will be a
diffeormorphism. Since / is not topologically equivalent to a rotation, it will be a
diffeomorphism with periodic points. Moreover by hypothesis not every point in

N = f] fn(N)= Pi fn(A) will be periodic. Under this condition it is trivial to find an

open interval J a N such that J rλf~n(J) = φ for all n ^ 1. This means that J is
adapted and F(J,N) = φ. By II.4, J satisfies the properties required in Lemma 1.3:

If / in not injective, then N = S1 and / : S1 P is an immersion with degree άφ\
or — 1. If J{f)ΦS1 (where J{f) is defined as in the introduction) there exists a
plateau J satisfying f~n(J)nJ = φ for all n ^ 1 (any non-periodic plateau satisfies
this property). Then J is adapted and F(J, A) = φ. Hence, by Lemma II.4, J satisfies
the thesis of 1.3. It remains to consider the case J{f) = S1. This means that / is
topologically equivalent to the map z -> zd. We claim that there exists an interval
Jo adapted to Sι such that for all ε > 0 there exists ^ o e i ^ J ^ S 1 ) satisfying

diam I/Ό^O) < ε (39)

and

diam φψo(Jo)
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for all n^ 1 and every branch φ of f~n/J0. First let us prove this property for
f(z) = zd. Take as J o an open interval whose endpoints are fixed points of some
power fm and not containing fixed points of fm. It is easy to verify that if m\d\ ̂  3
then FiJviS1) contains infinitely many maps. Moreover Φι(Jo)r\φ2(Jo) = Φ if Ψi
and φ2 are different maps in F(J0,Λ). Therefore there exists φoeF(Jo,A) satisfying
(39). Property (40) also holds because any branch of f~n/J0 is a contraction. This
completes the proof of the claim for the map z^>zd. The general case of an
immersion f S1 :P topologically equivalent to z-+zd follows easily from this case
using the conjugacy between / and zv-±zd.

On the other hand, since / is a C2 immersion, we can apply Lemma II.3 to
obtain a constant Ko such that the inequalities of Lemma II. 3 hold for every open
interval J aS1 and every coherent sequence (J, {φn})e(^(J,S1).

Fix ε > 0 satisfying:

exp 4K0 diam N 1
£ r <~ (41)

diamJ 2 v ;

By the claim there exist an adapted interval Jo and φoeF(Jo,Λ) satisfying (39) and
(40). Set J = φo(Jo). We claim that:

I</Φ)l<έ (42)

for all \jjeF(J,A) and every xeJ. First we shall prove that:

| f (x) |g exp 2X0 diam Λf d i a m^ J°> (43)
diam J o

for all φeF(Jθ9A). Take a coherent sequence (Jo, {φn}) and k ^ 1 that satisfies:

and

φn(J0)nJ0 = φ

for all 1 ̂  n < k. Then φn(J0) n φm(J0) = φ for all 1 ̂  n < m ^ k. Hence

k

Σ diam φn(J0) < 2 diam N,

and by II.3:

= \φ'k(x)\ £ d Ξ ^ ) e x p K o " f diam φμ0)Qiam J j o

0 )
exp 2 X 0 diam N,

diam J o

completing the proof of (43). Now take a coherent sequence ( J o , {φn}) and /c ̂  1
satisfying φ = φfe/J and φn(J)nJ = φ ϊor l^n < L Suppose first that ψn{J0)n
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J0 = φ for all 1 g n < fc. Then c ^ e i ^ S 1 ) and by (43), (39) and (41):

\ψ'(x)\ = \φ'k(x)\ £

^ exp 2K0 diam N-~r-^—- < - (44)
diamJ 0 2

for all xeJ. Now suppose that there exist integers l^n<k such that

φn{J0)nJ0 Φ φ. Let n 0 be the maximum of such integers. Consider the maps:

Ψn = φno + nfnθ/φn0(Jθ) (45)

with n^l. Then (φnoC/oM^n}) is a coherent sequence. We can extend it to a
coherent sequence (Jo,{φn}). Moreover

φn(J0)nJ0 = Φ (46)

for 1 ̂  n < /c — n0 because ψn(J0) nJ0Φφ implies φn{J0)
c Jo because J o is adapted,

and then

Φno + n C o W o = Ψn(φno(
Jθ))πJθ * Φ

By the way we choose n 0, this implies n0 + n ^ /c, hence n^k — n0 and (46) is proved.
Property (46) implies that φ^^eFiJo^S1). Then, by (43),

for all xeJ0. But by (45)

Hence

|^-n o(x)| ύ exp2K0diam tf-T^f-. (47)

Moreover:

^ ) π φ m ( J ) = Ψ

for all \^n<m<n0. Then:

£ diam φn{J) ^ 2 diam N.

Applying Π.3:

\φ'no(
χ)\ = e x P 2Ko diam AT———^~~. (49)
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Then, using (48), (49) and (47) we obtain:

gexp4*odiamiVd i a m φ"° ( Ji
diam J o

1
^ exp 4K0 diam N

diam Jo 2

We have thus proved that J satisfies the hypothesis of Lemma Π.4. Then J satisfies
the properties required in Lemma 1.3.

III. Appendix. Isolated Hyperbolic Sets

Here we shall prove property (IV) of the Introduction. Let A aN — dN be a
hyperbolic set of feEndr(N). Let V be a neighborhood of A. Define

U(λ) = {xeN\d(x,Λ) < λl A(λ) = f| fn(U(λ)).
M > 0

Then P| U(λ)=A and f] A(λ) = A.lt follows that there exists ε > 0 such that
λ>0 λ>0

A c A(λ) a V, (1)

Λ(λ) is hyperbolic (2)

for every 0 < λ < ε. Since ί/(A) is open it can be written as a union of intervals

(a2i(λ\ a2i+\λ)\ Ϊ = 0,..., m(A). Clearly m(λ") ̂  m(/l;) when 0 < λ" < λ'. Then it is easy

to see that there exist 0 < a < b < ε such that m(λ) is constant for a < λ < b. Call m

this constant. It follows that the functions α(ι)(A) are continuous and monotone

for l^i^rn and λe(a,b). Suppose that U(λ) is a neighborhood of A(λ\ is

hyperbolic, contains A, is contained in V and is isolated (with U(λ) as an isolating

block). Then property (IV) is proved. Now suppose that U(λ) is not a neighborhood

of Λ{λ) for all λe(a,b). This means that for all λe(a,b) there exists 1 <£ z ̂  m such

that α(I)(A)6/l(A). Therefore

U s ' (3)
1 = 1

where S, is define by

Since every St is closed, (3) implies that there exists 1 ̂  / ̂  m such that Sf has
non-empty interior. Let (c,d) be an interval contained in Sf. Then

for all Λe(c,d), and it follows that the interval J = a(i\(c,d)) is contained inΛ(d).
If / 7 J is injective for all n ^ 1, the hyperbolicity of Λ(d) implies that diam fn(J)-*
+ oo when n -• + oo. But since A (d) => /"(J) for all n ^ 0, this is impossible. Therefore
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fn/J is not injective for some n ^ 0. Since for all n ^ 1 fn/J has no critical points,
because for all n §: 0, f"(J) a A{d\ and Λ(d) contains no critical points because it is
hyperbolic, the non-injectivity of fn/J implies that N = S1 and fn{J) = S1. Then
Λ(d) => fn(J) = S1. If A — S1 without loss of generality we can take the neighborhood
V satisfying Vφ S1. But then (1) impliesΛ(d) c V. On the other hand we have proved
that S1<Λ(d). Then V = S\ This contradiction shows that U(λ) must be a
neighborhood of A(λ) for some λe(a,β) and completes the proof of property (IV).
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