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Abstract. We construct a 1:1 correspondence between the equivalence classes
of Yang-Mills fields over S2 and the conjugacy classes of closed geodesies of the
structure group. Furthermore, we give an explicit isolation theorem for any
Yang-Mills field over S2.

Let G be a compact and connected Lie group and consider a principal fibre bundle
(P, M, G) over a compact oriented Riemannian manifold M. On the space ̂ (P) of
connections on P the Yang-Mills functional L:^(P)-># is defined by

L(Z)=ί||ί2z||
2ΛM,

M

where Ωz is the curvature of the connection Z and the norm is defined by the
Riemannian metric on M and a fixed Ad-invariant scalar product on the Lie
algebra of G. The critical points of the Yang-Mills functional are called Yang-Mills
connections. It is well-known (see [3]) that Z e ^(P) is a Yang-Mills connection if
and only if Z is a solution of the Yang-Mills equation DZ*ΩZ = Q. In the
introduction of [2] Atiyah and Bott mentioned that, for the 2-sphere S2, the Yang-
Mills equation for G essentially reproduced the Morse theory picture for the loop
space ΩG. Similar ideas can be found in papers concerning magnetic monopoles
(see [4,6,10]). The purpose of the present paper is to work out this idea exactly and
to complete it.

In the first section we investigate a mapping Φ: ̂ (P)-»ΩG (see [4,12]) from the
space of connections on a principal fibre bundle (P, S2, G) onto a subspace of ΩG
determined by the topological type of P.

In Sect. 2 we show that the mapping Φ carries the critical points of the Yang-
Mills functional into the critical points of the energy integral on ΩG. For this we
prove that the holonomy group of a Yang-Mills connection over S2 is either trivial
or the group S1. Furthermore, calculating the index and the nullity of a Yang-
Mills connection over S2 by means of cohomology theory and studying the Jacobi
equation on the corresponding closed geodesic, we verify that, after identification



232 Th. Friedrich and L. Habermann

of gauge equivalent Yang-Mills connections, the index of a critical point of the
Yang-Mills functional is equal to the index of the corresponding critical point of
the energy integral. Moreover, in both cases the nullity is equal to zero. This means
that the equivalence classes of Yang-Mills connections are isolated.

In Sect. 3 we prove an explicit isolation theorem for any Yang-Mills
connection over S2. In a sense this result corresponds to an isolation phenomenon
for Yang-Mills fields over S4 announced by Bourguignon and Lawson [3].

1. A Map from the Space of Gauge Fields over S2

Into the Loop-Space of the Structure Group

Let (̂P) denote the space of smooth connections on a principal fibre bundle P.
The gauge group (̂P), on (̂P), is the group of automorphisms which act on P.
Denote by &o(P) the group of automorphisms preserving a fixed point pQ e P.

Now suppose that (P, π, S2, G) is a principal fibre bundle over S2, where G is a
connected Lie group. Let ΩG be the loop space of G, i.e. the Hubert manifold of
ίί^maps of the unit circle S1 into G taking 1 eS1 to the unit of G. Then the
mapping Φ : %>(P)-+ΩG is defined in the following way. Identify S2 with Cu{oo} (C
is the complex plane) and set V± = S2\{0} and V2 = S2\{oo}. Denote by τ(Z, y) the
parallel displacement along the curve y : [0, 1]->S2 by means of the connection
Z e ̂ (P) and fix a point p0 e π~ 1(oo). If y* and y2 are the curves

y2:ίe[0,

we define

sf(x) = τ(Z,y2)(pf), xeV2.

Here pf = τ(Z,y1)(p0), where γ1 is the curve ίe[0, 1]-* - eS2.

Proposition 1.1. The mappings sf : F^P and sf : V2-^P are smooth sections of the
bundle (P,π,S2,G).

Now let ρz : S
1^G be the mapping which is given by the condition

s%(x) = SI(K) - Qz(x) for x e S1 ,

and define Φ(Z) = ρz.

Proposition 1.2. Let fe9(P) and g^G such that f(p0)=ρ0 g. Then Φ(/*Z)

Proof. This follows from

/o τ(/*Z, y) = τ(Z, y) o/ for all curves y .

From Proposition 1.2 we obtain Φ(/*Z) = Φ(Z) for /e #0(P). Thus we have a
map Φ0 :̂ (P)/ 0̂(^)-»βG induced by Φ.
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Let us recall that P determines a homotopy class [P] in [S1 G], i.e. a connected
component of ΩG (see [13, Sect. 18]). Then we prove:

Proposition 1.3. The image of the map Φ0 is the subspace [P]nΛ.°°G, where ΛL°°G is
the space of smooth mappings of S1 into G.

Proof. Let Z e ̂ (P). According to Proposition 1.1, ρz e A°°G holds. Moreover, for
the charts

φi:(x,g)eVixG^sf(x)'geπ-\Vi), i=l ,2

of the bundle P, we obtain g 1 2 \ s t = Qz> where g ί 2 is the transition function. Hence,
ρz is the characteristic map, and we have ρze [P]nΛ.°°G.

Conversely, let ρ e [P] r\A °° G, and define ρ : Fx n V2 -> G by ρ(x) = ρ I — - 1 . From
\PH/

the existence of a principal fibre bundle (β, S2, G) with charts W J^xG-^Q,
i= 1, 2, whose transition function is ρ (see [14, Proposition II.2.1]) and from the
condition ρ e [P], implying the equivalence of the bundles P and β, we infer the
existence of sections st : P^->P, i = 1, 2, satisfying ^(oo) =p0 and s2(x) = s1(x) ρ(x)
for xe FiΠp^. Let α:(0, oo)->[0, 1] be a smooth mapping with α(ί) = 0 for i<8i
and α(ί) = 1 for t > ε2, 0 < E! < ε2. Using that {x, ix} is a basis of the tangent space of
S2 = Cu{oo} at x for x e VΐnV2, we define a 1-form Z\ on Fj by

βίtx)-1|ts=0 for xe

71 —0^ρ, oo ~~U 9

and a 1-form Z2 on F2 by

d _,
)-1|(=0 for

It is clear that the forms Z^ and Z2 are smooth. Moreover, there exists a
connection Zρe#(P) with sfZQ = Zί

ρ and s%ZQ = Z2

Q (see [8, Proposition II. 1.4]).
Since s{e = sv and sfe = s2, we have Φ(Zρ) = ρ, and our statement is proved.

We note that the proof of Proposition 1.3 yields the construction of such a
mapping φ : [P]n/L°°G^(P)/%(P) that Φ 0 oφ is the identity of [P]n/L°°G.

Remark. Fix a connection Z e ̂ (P), a point p0 e π~ 1(oo) and consider a 1-form η
with values in the adjoint Lie algebra bundle AdP = P x Adg. If 7 is a curve in S2

with y(0) = oo, we define the integral

(fJ */eg
y

in the following way: Let 7* be the Z-horizontal lift of y such that y*(0) =p0 and put

(f fJ η' = \η.
γ y*
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The values of this integral are elements of the Lie algebra 9. Now we can easily
describe the differential

dΦ: TZ<#(P) = Γ(AdP® T*M)->TΦ(Z)ΩG

if we identify the tangent space TΦ(Z}ΩG with the space of curves in g (using left
translations in the group G). dΦ is given by

(Z)

dΦ(η)(θ)=ΪΊ
yβ

with θeS1. yθ denotes the closed curve [0,oo]u{ί θ,0?gί^oo} in S2.

2. A Correspondence Between Yang-Mills Connections and Closed Geodesies

Let G be a compact and connected Lie group with the Lie algebra g and a fixed
Ad-invariant scalar product on g. By Hom^G) we denote the set of all
homomorphisms S1 ->G. We note that sometimes we will identify ρ e Hom(S1

9 G)
with the closed geodesic t e [0,1] -+ρ(e2πίt). A pair (P, Z), where P is a G-principal
fibre bundle over the oriented Riemannian manifold M and Z is a Yang-Mills
connection on P, we call a Yang-Mills field over M with structure group G. The set
of all these pairs we denote by YM(M; G). We recall that Z 6 <g(P) is a Yang-Mills
connection if it is a solution of the Yang-Mills equation Dz*ί2z = 0. Here Ωz

denotes the curvature of Z; it is a section of AdP®yί2Γ*M, where AdP = P x Adg
is the vector bundle associated with P by means of the adjoint representation. The
operator * is the Hodge operator and Dz is the covariant differential defined by Z.
Sometimes we will interpret a section ξ e Γ(AdP) as an equivariant mapping P-»g.

In this section we investigate the relation between Yang-Mills connections
over S2 and closed geodesies. First we define a mapping θ .Hom^G)
-»YM(S2, G). For this we consider the Hopf bundle (S3, S2, S1), where S1 acts on

by (z1? z2) z = (zί z, z2 z). Then

A = ̂ (z1dz1 — zίdzί 4-z2dz2 — z2dz2)

is an irreducible Yang-Mills connection on S3 with the curvature

ΩA = ™ ®dS2. Let ρ e Hom^S1, G). The associated bundle Pρ = S3x QG is a

G-principal fibre bundle, where G acts on Pρ by [u, g] gl = [w, ##ι]. It is clear that
iρ:tteS3->[tt,e]ePρ is a homomorphism of fibre bundles with the homomor-
phism ρ: S1 -> (?. Consequently, ie induces a connection Aρ on Pρ, determined by i*Aρ

= Q^A. Since ί*ΩA = ρ*ΩA, we can easily verify that Aρ is a Yang-Mills connection
on Pe. Thus, setting θ(ρ) = (Ptt9Aβ), the mapping θ:Hom(S:1,G)->YM(S2,G) is
correctly defined.

Proposition 2.1. Let ρ and ρ be in Horn^1, G). Then the Yang-Mills fields (Pρ, Aρ)
and (Pρ, AQ) are equivalent, i.e. there exists a gauge transformation f: PQ-+PQ with

y = Aρίf and only if the homomorphisms ρ and ρ are conjugate.
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Proof. Suppose ρ = g^Qgΐ 1,gίeG, and denote by [, ]ρ and [, ]̂ , respectively, the
equivalence classes in Pρ and Pρ. Then the gauge transformation /: [u,g~]QePρ

->[w,0ι#]ρePρ satisfies i*f*A6 = ρ^A. This implies f*Aρ = Aρ, since Aρ is
determined by ί*Aρ = ρ%A.

Conversely, let/: Pρ^P§ be a gauge transformation with/*^ = AQ. We define
a map /:S3->G by the condition f°iρ(u) = ίρ(ύ)'f(u) for weS 3 and observe
f(u)ρ(z)f(uz) ~1 = ρ(z) for u e S3 and z G S1.

In order to complete the proof we have to verify that / is constant. The
definition of/yields

n / j _ / * / j _ / * f * / j —(Ώ-oiQ*Λ — lQΛρ — lρJ /iρ — {Kf°li

where ω is the Maurer-Cartan form of G. Hence, if £ e TS3 is horizontal with
respect to the connection A, then J*ω(ί) = 0 holds. Consequently, / is constant
along any horizontal curve in S3. Since A is irreducible, / is constant on S3.

From Proposition 2.1, we obtain that θ induces an injective mapping
θ:Hom(S1,G)-^ΎM(S2,G) from the set HomQS1,G) of conjugacy classes of
homomorphisms S1-*G into the set YM(S2,G) of equivalence classes in
YM(S2, G). Before we show that the mapping θ is also surjective, we prove:

Proposition 2.2. Let (P, M2, G) be a principal fibre bundle, where M2 is a connected
Riemann surface, and let Z be a Yang-Mills connection on P. Then the holonomy
group of Z is discrete or one-dimensional. In particular, if M2 = S2, then the
holonomy group is either trivial or S1.

Proof. Let Φ(j?0) be the holonomy group and P(p0) be the holonomy bundle of Z
with reference point p0eP. Because of DZ*ΩZ = Q the mapping *ί2z:P->g is
constant along horizontal curves. Hence, * Ωz is equal to X e g on P(p0). Applying
the holonomy theorem of Ambrose and Singer (see [8, Theorem Π.8.1]), we obtain
that the Lie algebra of Φ(p0) is spanned by X. Therefore Φ(PO) is discrete or one-
dimensional.

Suppose M2 = S2. Then Φ(p0) is connected (see [8, Sect. II.4]). Consequently,
Φ(po) is trivial, the circle S1 or the line #. Suppose Φ(PQ) = R. Since R is simply
connected, the holonomy bundle (P(p0), S

2, Φ(p0)) is trivial. Let Ze^(P(p0)) be
the reduced Yang-Mills connection. Because Φ(p0) is an abelian group, the Yang-
Mills equation Dz * ΩZ = Q is equivalent to d * (s*Ω^) = 09 where s: S2->P(p0) is a
global section. Hence s*Ωz = c dS2, ceR. Because of s*Ωz = s*dZ = d(s*Z) we
have d(s*Z) = c dS2. By integration we obtain 0 = c vol(S2). Consequently, Ωz

vanishes. Since this contradicts the irreducibility of Z, the proposition is proved.

Proposition2.3. Let (P,Z)eYM(S2,G) and let X=*Ωz(pQ), pQεP. Then
Q : t E [0, l]-»exp(ί X vol(S2)) e G is a closed geodesic, and the Yang-Mills fields
(P, Z) and (P6, AQ) are equivalent.

Proof. In the case G = S1 we have Ωz = X®dS2, X e iR. Then the first Chern class

ĵof the bundle P is cl(P)= — -—vol(S2). Since c1(P) = k is an integer, it is obvious
that 2πι



236 Th. Friedrich and L. Habermann

is a closed geodesic. Further, for the Yang-Mills field (Pρ, Aρ) we have

2πz

Hence c^P) = ̂ (P^). It follows that there exists a gauge transformation/!: Pρ->P.
Since Ωf*z = Ωz, interpreted as 2-forms on S2, and since the Picard group of S2 is
trivial, we obtain from the Theorem of Weil (see [9]) that there exists a gauge
transformation/2 :Pρ-+Pρ satisfying f£f?Z = AQ. Thus our statement is true for
G = Sί.

Now let G be any compact and connected Lie group. The connection Z e ̂ (P)
reduces to a connection Z on the holonomy bundle (P(p0), S

2, Φ(p0)). By
Proposition 2.2 Φ(p0) is either trivial or S1. Therefore, we have already shown that

ρ: t e [0,1] -+exp(ί - X - vol(S2)) e Φ(p0)

is a closed geodesic in Φ(/?0)
 and so is the embedded curve

ρ: t e [0, l]-*exp(ί X - vol(S2)) e G

in G. Moreover, there is a gauge transformation f:P^P(p0) with f*Z = AQ .
Extending/to a gauge transformation Pρ->P, we see the equivalence of (P, Z) and
(PQ,Ae).

So we have proved:

Theorem 2.1. The mapping θ:Hom(S1,G)->YM(S2, G) is a bijectίve correspon-
dence between conjugacy classes of homomorphisms S1-+G and equivalence classes
of Yang-Mills fields over S2 with structure group G.

We remark that a simple calculation leads to jE(ρ) = vol(S2)L(4fi) for
_

The following corollary shows that the correspondence between Hom(S'1, G)
and ΫM(S2, G) is realized by the mapping Φ : Z G %(P)-+ρz e ΩG.

Corollary 2.1. Let (P,Z)eYM(S2,G). Then ρzeHom(S\G) and the Yang-Mills
fields (P, Z) and (Pρz, Aΰz) are equivalent.

Proof. Consider the Hopf bundle with the fixed connection A and set p0 = (1, 0).
Then we see that the sections sf and s$ are given by

-1/2), xe V2 .

Consequently QA = idsι. Now, applying Theorem 2.1, the proof is straightforward.
Let us recall that the Yang-Mills connections on a principal fibre bundle P are

the critical points of the Yang-Mills functional L : ̂ (P)->#. Since this functional is
constant on the orbits of the action of the gauge group 0(P), we have mappings
L : V(P)iy(P)-*R and L : ίf(P)/#0(P)-»Λ. Now we will calculate the index and the
nullity of a Yang-Mills connection over S2, understood as a critical point of the
functional L:#(P)/^(P)->R. For definitions we refer to [2].

Let ρeHomίS^G), X= — ρ(e2πl'%=0and choose a maximal abelian subal-
at

gebra t of the Lie algebra g of G with X e t. It is well-known (see [1]) that there
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exists a basis eί9 ..., en of g satisfying

k, ad(X)(e2k) = -

where the linear forms θfe : t^>R, k= 1, ...,/, are the roots of G.

Proposition 2.4. For ί/i£ Yang-Mills connection AQ e ̂ (Pρ), we

Index(4β) = 2 Σ (|θfc(X)|-l) and Nullity G4ρ) = 0.

For the proof we use a fact concerning the index and the nullity of a Yang-Mills
field (P, Z) over a compact Riemann surface M2 with structure group G. Endow
the bundle AdP(g)C = P x Ad(9® Q with the complex structure defined by Z and
consider the holomorphic bundle morphism

Λz : φ 6 AdP® C-*i[* Ωz, φ] e AdP® C ,

where [,] is the Lie bracket. Let Pλ = {φeAdP®C',Λz(φ) = λ φ} and

P+ = ff) Pλ (one easily sees that Pλ is a holomorphic subbundle of AdP® C, and
λ>o

so is P"1"). Then the following proposition holds:

Proposition 2.5. // M2 is a surface of genus g, then

Index(Z) = 2{Ci(P+) + dimc(P+) (g - 1)} and Nullity (Z) - 2dimc#
1(M2

 ; p°)

Here H1(M2;P°) is the first cohomology group of M2 with coefficients in the
sheaf of holomorphic sections of P°.

The proof of this proposition is given in [2].

Proof of Proposition 2.4. Fix X= ^-ρ(e2πί%=0>
 and let

Because of * ΩAe(iρ(uJ) = 2 for w e S3, we see that the holomorphic bundle Pλ

Q

and the bundle S3 x Adoρδ^ endowed with the complex structure defined by the
connection A on S3 are isomorphic (consider the mapping

[ii, 7] 6 S3 x Adoρg^[[w, e], 7] e Pρ

λ£Pρ x Ad(9® Q) .

Arrange the basis e{ , . . . , en of g so that θk(X) > 0 for fc = 1 , . . . , m and θk(X) = 0 for
^/, and let

a n d ^ = - f o r * = !,...,„.
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Then/1? ...,/W,Λ!, ...,/ιm,e2w+1, ...,en is a basis of g(x)C satisfying

vol(S2) v vo

Consequently, the bundles

PΪ = ®.(S3xM.,tf) and
λ > 0

are topologically isomorphic. Moreover calculating the curvature of the co variant
derivative in S3 x &&OQC-fk defined by ^4e^(S3), we obtain that the first Chern
class of S3 x AdoρC /fc is θk(X). Applying Proposition 2.5, we have

= 2{Cl(P^ fcΣ

Further, we see that g° is spanned by the vectors es, s = 2m + 1, . . ., n. Since ad(Jf)
vanishes on g°, the representation Ad ° ρ : S1 ->GL(g°) is trivial. Therefore, x 6 S2

->[w,βs]eS3 x Adoρg°, where w is in the fibre over x, is a holomorphic section.
Because of Hl(S2', C) = 0 (see [5], Theorem 12.1) we arrive at

Γ n 1
Nullity 04,) = 2 dimc H

1^2 P°) = 2 dimc < 0 H1^2 C) > - 0 .
(s = 2m+l J

This concludes the proof.
If a Yang-Mills connection on P is considered as a critical point of the

functional L : ̂ (P)/% (P)-»#, it is natural to define the index and the nullity of Z
as follows:

Index0(Z) = Index (Z),

Nullityo (Z) = Nullity (Z) + dim(Dz(Γ(AdP))/Dz(Γ0(AdP))) .

Here Γ0(AdP) = {ξeΓ(AdP);ξ(p0) = 0} is the Lie algebra of90(P).

Proposition 2.6. For the Yang-Mills connection ^ρe^(Pρ) we have
Nullity0 (AQ) = dim g - dim gx, where QX = { Ye g \_X, Γ] - 0} .

Proof. Since the sequence

0^kerD^Γ(AdP^

is exact and since Γ(AdPρ)/Γ0(AdPρ) is isomorphic to g, we have

) =dimg-di

Hence, using Nullity (/lρ) = 0, it suffices to show that KerD^ is isomorphic to g^.
Let ξeKQrDA and fix w0eS3. From DA DA ζ = \β^ζ\ = Q we obtain
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[X, ξ(iβ(w0))] = 0. So we get the mapping £eKerD^£(ι(w0))egx. It is easy to
check that this mapping is an isomorphism.

Endow the group G with the biinvariant metric #, induced by the Ad-invariant
scalar product on g. Then it is well-known that Hom(S1, G) is the set of the critical
points of the energy integral on ΩG. Therefore, the Morse theory defines the index
and the nullity of a closed geodesic ρ e Hom^S1, G).

Theorem 2.2. Let ρ e Hom^S1, G) and let (Pρ, Aρ) be the corresponding Yang-Mills
field. Then Index0(Aβ) = Index (ρ) and Nullity 0(4ρ) = Nullity (ρ).

Proof. We have to calculate the index and the nullity of the closed geodesic ρ. For
this we make use of a relation between index and nullity of a geodesic and the
Jacobi equation:

Proposition 2.7. Let ρ: [0,1] ->M be a geodesic on the Riemannian manifold M and
denote by J**9 0 < ί0 ̂  1, the space of Jacobi fields J: [0,1 ] -> TM along ρ, satisfying
j(0) = j(ί0) = θ. Then Nullity (ρ)- dim J\ and

Index(ρ)= Σ dimJ^0.
0 < t0 < 1

For the proof see [7, 2.5.6, 2.5.9].
We want to apply Proposition 2.7 to the closed geodesic

ρ:ίe[0,l]-»exp£ XeG, X e g .

The following lemma gives a useful characterization of Jacobi fields along ρ.

Lemma 2.1. A vector field J along ρ is a Jacobi field if and only if the curve
Γ:ίe[0, l]->dL~(ί)J(£)eg is a solution of the differential equation

Now we calculate the dimension of the space of solutions of the problem

^ 7(£) + [x, ̂  7(θl = 0, 7(0) = 7(ί0) = 0 (1)

for 0 < ί0 ̂  1. Fix a basis eί,..., en of g as in the proof of Proposition 2.4. It follows
that

m n

nθ = Σ (Ak(t)e2k.! + Bk(t)e2k) + Σ Ck(t)ek
k=l k=2m+l

is a solution of (1) if and only if (Al9Bl9 ...,^4m,βm) is a solution of

(2)
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and (C2w+ι,..., Cw) is a solution of

Cfc(O) = Ck(to) == 0, fc = 2w+1, ...,n.

From (3) we conclude that Ck, k = 2m +1,..., n, vanishes. Setting j;fe = ̂ 4k + iBk for
fe= 1, ...,m, problem (2) is equivalent to

A2 d
=Λ(*o) = 0, fc=l,...,nι. (4)

The solutions of (4) are given by

yk(t) = zk-zk e-2^X)t, zkeC, if θk(X) t0eZ,

yk = Q, otherwise.

Therefore, using θk(X)eZ, fc=l, ...,m, and the fact that gx is spanned by the
vectors e2m +i,...,en, Proposition 2.7 leads to Nullity (ρ) = 2m = dim g — dim g^ and

Index(ρ) = 2
k = l

This concludes the proof of Theorem 2.2.
_ It is clear that the energy integral induces a functional E : ΩG^R on the space
ΩG of conjugacy classes of loops. Therefore, a closed geodesic ρ e Hon^S1, G) can
also be considered as a critical point of E.

We denote the index and the nullity of ρ by Index.,, (ρ) and Nullity ̂ (ρ).

Lemma 2.2. Let ρe Horn (S^G). Then Nullity *(ρ) = 0.

Proof. It suffices to check that the tangent space 7 [̂ρ] of the conjugacy class of ρ at
the point ρ is equal to the space J1

Q of Jacobi fields / along ρ satisfying J(0)
= J(1) = 0. The relation Tρ[ρ]£j£ is well-known (see [7, 1.12.4]). To see that
J g 7[ρ] we consider the variations

φk:(s,t)εRx [0, l]->exp(s efc)ρ(ί)exp(-s efe), fc=l, ...,2m.

where e1?..., eM is the fixed basis of g. Since the vector fields

- φk(s, t) = dLρ(t)(ek - Ad(ρ(ί) ~ l)ej
as s=:0

form a basis of Jρ, the desired result follows.
As an immediate consequence we obtain:

Corollary 2.2. Let ρ e Hom(Sί, G) and let (Pρ, AQ) be the corresponding Yang-Mills
field. Then Index (Aρ) = Index* (ρ) and Nullity (AQ) = Nullity^(ρ).

3. An Isolation Theorem for Yang-Mills Fields over S2

We consider a G-principal fibre bundle P over S2 and endow the space (̂P) with
the Sobolev topology if1, which is defined by a H1-Norm || ||x in Γ(AdP). For
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details see [11]. We endow the space <^(P)/^(P) with the quotient space topology.
In this section, we will construct for any equivalence class of Yang-Mills
connections on P an explicit neighbourhood in which there are no other
equivalence classes of Yang-Mills connections. To describe this neighbourhood we
will use the mapping dist : %>(P) x %>(P)-*R defined by

dist(Z1?Z2) = nf \\Ωf*Zl-Ωf*2Z2\\2dS22.

The following lemma relates the mapping dist to the topology of

Lemma 3.1. Let Z0 e ̂ (P) and let ε be a positive real number. Then

{Ze#(P);dist(Z0,Z)<ε}

is an open subset o

Proof. By standard estimates we can show that for any Z 6 ̂ (P) there exists a
positive real cz such that άtet(Z9Z + ή)<Zcz\\η\\ι for all ^eΓ(AdP®T*M) with
|| η || 1 ̂  1. Since dist obviously satisfies the triangle inequality, the lemma follows.

Next we describe a correspondence which will be used decisively. Consider a
field (P, Z) E YM(S2, G) and interpret * Ωz as a mapping P-^g satisfying * Ωz(p - g)
= Δd(g~1)*Ωz(p) for all peP and all 0eG. Since the Yang-Mills equation
Dz * Ωz = 0 implies that * Ωz is constant along horizontal curves, the image Θz of
the mapping * Ωz is an orbit of the adjoint representation. Let Orb(G) denote the
set of all orbits of the adjoint representation and denote by Orb^G) the set of the
orbits Θ E Orb(G) with the property that X E G leads to exρ(X vol(S2)) = 1. By
Proposition 2.3 we have fl^-eOrb^G).

Proposition 3.1. The mαppm^_(P,Z)eYM(S2,G)-^^zeOrb1(G) induces a bίjec-
tive correspondence between YM(S2, G) and Orb^G).

Proof. The assertion follows from the relation Ωf*z=f*Ωz for any gauge
transformation / and from the correspondence between Hom(S1

9G) and
YM(S2, G), given in Sect. 2.

Now we choose a maximal abelian subalgebra t of g and set (9* = (9r\t for
& E Orb(G). Using the fact that all maximal abelian subalgebras of the Lie algebra
of a compact Lie group are conjugate, we obtain that Θ* is an orbit of the action of
the Weyl group on t. The distance d(Θl9Φ2) of two orbits βl9Θ2eOrb(G) we
define by means of the Ad-invariant scalar product on g, i.e.

Similarly, we define

Lemma 3.2. Let &ί,02E Orb(G). Then d(0l9 &2) = d*(Φl, Oξ).

Proof. Wechoose^i e Θ1 andX2 e (92 such that J^ etandd(0l9 &2) = \\X1 -X2\\
It suffices to show X2et. Since \\Xί-X2\\2^\\M(g)Xί-X2\\2 is valid for all
g E G, the unity of G is a critical point of the mapping / : g E G -» || Ad (g)X x — X2 \\ 2 .
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Consequently,

for all Yeg. Hence [X1,X2] = Q. Since t is maximal abelian, X2 e t follows.
Let θk : t-+R, k= 1, ..., / be the roots of G and let γk = Sk(Q), where Sfe is the

reflection of t with respect to the hyperplane θk = ί. Denote by Γ0 the additive
group generated by the vectors yk, k = 1 , . . . , /. It is clear that Γ0 is a subgroup of the
lattice I = {X eί;expX = l}.

Proposition 3.2. Let (Pi9Zj) and (P2,Z2) be contained in YM(S2,G). Then the
bundles P1 and P2 are equivalent if and only if

Proof. Let X1 e 0f x and X2 e 0£2 and consider the closed geodesies

From [13], Theorem 18.3, we obtain that the bundles Px and P2 are equivalent if
and only if Φ(Zί) and Φ(Z2) are homotopic (see also the proof of Proposition 1.3).
Applying the Propositions 2.1 and 3.1 and Corollary 2.1, we see that Φ(Zt) and ρf

(i=l,2) are conjugate. Since ρί and ρ2 are homotopic if and only if
vol(S2)(Xi-X2)eΓ0 (see [1], 5.47), the lemma is proved.

Let α=min{||JSf| |;Jf eΓ0,JSΓ ΦO}. Because of Γ 0g/ we have α>0.
Now we formulate the isolation theorem.

Theorem 3.1. Let Z{ and Z2 be two Yang-Mills connections on a G-princίpal fibre
bundle P over S2.

//dist(Zl5 Z2) < a vol(S2)~ 1/2 holds, then the connections Zί and Z2 are gauge
equivalent.

Proof. Using Proposition 3.1, dist(Z1?Z2)<α vol(S2) implies

l, &Z2)
2 = vol(S2) f2d(0Zl, ΦZ2)

2dS2

= V0l(s2) " * °"* " * fl» w

= vol(S2) dist(Z1?Z2)
2<α2.

Then, by Lemma 3.2, vol(S2)d*(^|1,^|2)<α holds. Furthermore, by Proposi-
tion 3.2, we have vol(S2)(&^-0^2)ζΓQ. Since α-min{||Z||;^eΓ0, JίφO}, we
obtain 0Zl

 = $z2>
 and our statement follows from Proposition 3.1.

Corollary 3.1. Let Z1 be a Yang-Mills connection on a G-principal fibre bundle P.
Then

{Z mod^(P) e «XP)/0(P) dist (Z1? Z) < α vol(S2) ~ 1/2}

is α neighbourhood of Z^ mod^(P), in which no other equivalence classes of Yang-
Mills connections appear.

Proof. This follows from Theorem 3.1 and the relation dist(/*Z, /*Z)
- dist(Z, Z) for Z, Z e V(P) and /, /e »(P).
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