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Abstract. Recent work by G. Bunting and by P. O. Mazur has developed new
techniques for proving uniqueness theorems for extensive classes of non-linear
elliptic boundary value problems including that of the equilibrium state of an
electromagnetically charged black hole. These methods are described and
compared. It is shown that the rather general class of harmonic mappings that
can be dealt with by the Bunting method (which needs no internal symmetry
group) can be regarded as a generalisation of the particular (totally symetric)
class of non-linear o-models that can be dealt with by the Mazur method.

Introduction and Background

The purpose of this work is to give a coherent description of the methods of
proving uniqueness theorems for extensive classes of non-linear elliptic boundary
value problems that have been developed recently by the independent work of
Bunting [1,2] and of Mazur [3]. It is shown that the particular class of non-linear
o-models (where the field lies in the quotient space of a non-compact Lie group by
a maximal compact subgroup) to which the Mazur method applies can be
considered as a special case of the more general class of harmonic (hypergeodesic)
mappings (where the image space has negative curvature) to which the Bunting
method applies.

The particular application that provided the original motivation for the
development of these methods was a two-dimensional boundary problem for a
well behaved but non-linearly self coupled elliptic system that was posed by the
present author [4, 5] (see Appendix A) as the crux of a programme whose objective
is to obtain a complete classification of all isolated black hole equilibrium states
subject to the classical Einstein and Einstein-Maxwell field equations. The well
known conclusion that for practical astrophysical purposes any isolated
(asymptotically flat) pure vacuum black hole equilibrium state can be described by
(a certain subclass of) the 2-parameter Kerr family of Einstein-solutions was
effectively established by 1975 along lines originally sketched out by the present



564 B. Carter

author [6] in 1971 and subsequently completed by the work of Hawking [7, 8], the
present author [4], and Robinson [9]. However while this body of work was
adequate for the purpose of justifying the exclusive use of the Kerr solutions for
describing isolated black holes in realistic astrophysical applications, it neverthe-
less left over a considerable number of loose ends involving technical questions of
rigour and generality. Although it is difficult to imagine a realistic astrophysical
situation in which the charge on an isolated black hole could become or remain
large enough to have any significant effect on the geometry, the loose end that
received the most widespread attention, in view of its obvious academic interest,
was that of generalizing the results to cover solutions of the electromagnetic
Einstein-Maxwell equations as well as the pure vacuum Einstein equations.
Despite the early progress achieved by Robinson [10] (in 1974) the demonstration
of the sufficiency of (a subclass of) the 3-parameter Kerr-Newman family of
Einstein-Maxwell solutions for describing the corresponding charged states
remained until very recently on an only slightly more rigorous footing than had
been achieved for the pure vacuum case in 1971.

Before describing the method by which Bunting [1,2] and Mazur [3] have at
last obtained a rigourous proof of the uniqueness of the Kerr-Newman solutions of
the basic two-dimensional elliptic boundary value problem (as specified in
Appendix A), it is to be mentioned that this still leaves many other loose ends to be
sorted out before the classical black hole equilibrium problem can be considered to
have been completely tidied up. To start with, the reduction [4, 5] of the global
geometric black hole equilibrium problem (involving an unknown metric) in
4-dimensions to a regular albeit non-linear elliptic boundary value problem
(involving a known metric) in 2-dimensions, is still dependent on a number of
technical assumptions justified by heuristic physical considerations rather than
mathematical arguments. For example although the work of Hawking [7, 8], in
conjunction with the earlier theorems of Israel [11, 12] (as completed by the work
of Miiller zum Hagen et al. [ 13], Robinson [ 14] and most recently Bunting [2] has
provided an almost, though not quite, complete mathematical justification for the
earlier heuristically based assumption [6] that the equilibrium solutions should be
axisymmetric, and that individual black hole components should be topologically
spherical, there is nevertheless (as far as the author knows) still no mathematical
basis for the physically plausible assumption that only one such topologically
spherical axisymmetric component can be present. Indeed it has been shown by
Hartle and Hawking [15] that counterexamples exist as marginally stable limit
cases, in which gravitational attraction is balanced by electrostatic repulsion, and
the existence of more general counterexamples, in which a spin-spin contribution
to the repulsion might also be present has still (as far as the author knows) not been
excluded.

Even after the basic 2-dimensional boundary value formulation of the
problem, as presented in Appendix A has been justified, subject to suitable caveats
excluding unphysical limit cases, it remains that all the partial uniqueness results
obtained by the author [6] and by Robinson [9, 10], as well as the complete
demonstrations of Bunting [1,2] and Mazur [3], are entirely dependent on the
regular elliptic character of the problem, which itself was established [4, 6], not asa
mathematical necessity from the basic definition [6] of a black hole equilibrium
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state, but on the basis of the additional physically motivated assumption of
causality, which guarantees the spacelike nature of the Killing vector generator of
the axial symmetry action. It was for this reason that I chose to formulate the
problem (as given in Appendix A) on the basis of the axisymmetry generator,
instead of using the more traditional Ernst type formulation, as based on the
Killing vector generator of the stationary symmetry, which would lead to a system
of field equations that is irregular on an “ergosurface” except in the strictly static
(non-rotating) case. I am strongly inclined to believe in the conjecture that no more
general (i.e. other than Kerr-Newman) solutions of the boundary condition
problem as formulated in Appendix A can exist, even if one drops the causality
requirement (by allowing the variable X to become locally negative), but a
treatment of a different kind from that described below would be necessary to
prove this.

2. The Basic Mazur Identity

Like the earlier less complete results [6,9,10] the recent demonstrations by
Bunting [1,2] and Mazur [3] of the uniqueness of solutions of the regular two-
dimensional formulation [4, 5] of the black equilibrium problem (as recapitulated
in Appendix A) depend on the construction of an identity equating some positive
definite function of the difference between two sets of values of the field variables or
their gradients to the sum of another quantity that vanishes locally when the field
equations are satisfied and of the divergence of another quantity whose surface
integral over the boundary vanishes when the boundary conditions are satisfied.
By an application of Green’s theorem, one can use such an identity to establish that
the positive definite function, and hence also its argument, must vanish through-
out, thereby establishing the uniqueness of the solutions or at least of their
gradients. The identity constructed by Mazur [3] includes as special cases the
earlier more specialized identities constructed by Robinson [9, 10] (and hence, a
fortiori, their common limit as originally constructed by the present author [6])
However whereas these predecessors were obtained by ad hoc, hit and miss,
procedures, the new identity of Mazur is based on a very elegant construction that
can easily be adapted to cover a wide class of related problems. The independently
developed identity of Bunting [1, 2] (to be described in Sect. 6) is based on an even
more widely applicable construction but it is from some points of view less elegant.

The Mazur construction can be applied to any system in which the field
variables (over a base space of, let us say, n dimensions) can be expressed in terms of
a positive definite (let us say m x m) matrix field obeying field equations such that
there is a conserved current matrix of the form

F=0p~ " ¢, 21

where the dot denotes contraction of adjacent (covariant and contravariant)
matrix indices while the semi-colon denotes covariant derivation with respect to a
positive definite metric Riemannian metric g with components of the form g,,, say,
in terms of base space coordinates x* (=1, ..., n), and the proportionality factor ¢
is arbitrary positive scalar weighting function on the base space. The positivity
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requirement on the matrix ¢, with components ¢, say (a,b=1, ..., n, where a dot is
used to distinguish conjugate vector space components in the complex case)
necessarily entails the hermiticity requirement,

o=9%, (2.2)
where ¢* is the transposed conjugate matrix, whose components are defined by
¢* = Jba s

where a bar indicates ordinary complex conjugation. With the usual convention
that raised indices denote dual space components, the inverse matrix ¢~ *, will
have components of the form ¢~ !%% while the current itself will have mixed
(undotted) components of the form J,%. In consequence of (2.2) the hermitian
conjugate current, as defined by

J*udb' — jub’a,
will be expressible in the form
JH=¢.J¢- ¢ 1. (23)

In terms of covariant differentiation, the conservation property (which of course
applies also to the conjugate current) is expressible in the usual way as

J*,=0. (24)

The explicit demonstration that the particular example of the standard 2-dimen-
sional formulation of the black hole boundary problem, as given in Appendix A,
can in fact be expressed in this standard Mazur form will be postponed until later
(Sect. 4 and Appendix B). We shall also postpone until the next section the
discussion of the rather severe internal symmetry group requirements that are
necessary for the consistency of the linearly independent components of the matrix
conservation law (2.4) when the linearly independent components ¢, are not all
algebraically independent, but subject to non-linear restrictions as is the case for
the particular application we have in mind. Although such group theoretical
considerations are relevant for considerations of generality and applicability, their
invocation is an unnecessary deviation in so far as the derivation of the basic
Mazur identity is concerned. By provisionally leaving aside this aspect one can
shorten the original derivation [3] so as to obtain a result of the required formin a
very direct manner as follows.

Let us consider two different sets of values, ¢o; and ¢y, say, of the field
variables, and (slightly modifying our previous notation convention [5]) let us use
a bull’s eye, ©, to indicate the corresponding difference between the values of any
functionals of these variables, so that in particular for the current defined by (2.1)
we have o

JE=df = 2.5

This current difference bears a very simple relationship to the gradient of a certain
deviation matrix A defined by

A=$‘¢[6]1=¢[1]'¢[B]1_1’ (2-6)



Bunting-Mazur Identities and Black Hole Equilibrium 567

where 1 (with components d3) is the unit matrix, so that A vanishes if and only if (as
one intends ultimately to prove) the two sets of field variables coincide. One
obtains

. o
QA’”=¢[11‘J”‘¢[0]1' (2.7)

The Mazur construction can be effected by taking the divergence of this, which
immediately gives

. O e —
(QA’");uzd’[u'{J";u*‘Q I(Jmu‘Jf'u“leuu'Jf‘01+J[01u'Jf'01)}'¢[011- (2.8)

One now invokes the consequence (2.3) of the hermicity property (2.2), which
makes it possible to rewrite the terms above that are quadratic in the current as

¢[11'(thll"?u_‘?u"]%])'d’[:)]l :Jﬁ‘i'd’[ll"?u'¢[6]1_4)[1]"?u'¢[6]1 oy (29)
Hence taking the trace, and using the abbreviated notation
A=tr{A}=4;, (2.10)
one finally obtains the scalar identity
(QA;“);u—tf{‘i)m e ¢[B]l}=Q_lguv tr{‘?*” "y ¥ ¢[511}- (2.11)

This has the required form, since the second term on the left-hand side drops out
when one applies the field Eq. (2.4) which evidently implies

Gu
J,=0, (2.12)

while the term on the right-hand side will be a manifestly positive definite function
of the current difference, i.e.

o] 1 ] 9] _
JiE0 = @7 g, tr J”“‘~<1>[1]-J”-d>[0]1 >0, (2.13)

as a consequence of the postulated positivity properties of the weight function g, i.e.

0>0 (2.14)
of the metric g as a bilinear form for space tangent vectors &, i.e.
E+0 = &,,8">0, (2.15)

and of the matrix ¢ (and hence also its inverse ¢ ~!) as a sesquilinear form for an
m-dimensional space of vectors u with components u*, i.e.

uk0 = Fh,ub>0. (2.16)

The required inequality (2.13) results directly from the postulates (2.14), (2.15),
(2.16) by the general principle that a tensor product of positive definite bilinear or
sesquilinear forms (in the present instance, the tensor with components
0 g bradio; ) is always itself a positive definite bilinear or sesquilinear form
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for the tensor product of the corresponding vector spaces (in the present instance,
the space containing the current matrix with components J 2. and conjugate
components J* ;).
It thus follows from Green’s theorem that if the boundary conditions are such
that the relevant surface integral tends to zero there, i.e.
$oA#dS,—0 (2.17)
N
(where dS,, denotes the components of the metric normal surface element) then we
must have

Q

J*=0, (2.18)
and hence, by (2.9),

A=C, (2.19)

where C is a constant matrix, throughout the base space region under consider-
ation. To obtain an absolute uniqueness theorem of form

A=0 (2.20)

it is then sufficient that there should exist at least one part of the boundary on
which the limiting value of ¢ is specified uniquely so that A is zero there. It is to be
noted that the requirement (2.17) does not mean that the gradient 4°# itself must
tend to zero on the boundary: an alternative possibility is that the weight function
¢ should have a vanishing limit.

3. General Consistency Requirements for the Mazur Construction

Despite the apparent simplicity of the requirements (2.1), (2.2), and (2.4) on which
our short (“royal road”) derivation of the Mazur identity in the form (2.11) was
based, the range of circumstances to which it can be applied is not quite so large as
might first appear, since consistency requirements for the system (2.4) will impose
severe restrictions if the linearly independent components of ¢ are not free field
variables but subject to non-linear restraints, as they must be if ¢ is to satisfy the
positivity requirement (2.16). In order to obtain a self consistent system in which
this requirement is satisfied, let us work in terms of a variational formulation,
based on a simple Lagrangian scalar function

L=307 g, tr{J*-¢-J"- ¢~} G.1)

with the current as given by (2.1), which leads directly to field equations of the form
(2.4) in the free (unconstrained) case. This Lagrangian is manifestly real by (2.2),
and furthermore it will have a positivity property analogous to (2.13), namely

J+0 = L>0, (3.2)

when the same positivity postulates as before, namely (2.14), (2.15), (2.16) are
satisfied.
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Starting from the more compact (though no longer manifestly real and
positive) equivalent form

L=% 'tr{J*-J,}, (3.3)
one immediately obtains the effect of varying the field ¢ in the form
OL=o ' tr{J*-8J,}=tr{J*- ¢~ 60}, ,—tr{J* - o' 5¢}. (3.4

The variational principle therefore takes the form of the requirements that one
should have
tr{J*,- ¢~ 164} =0 (3.5

for arbitrary allowed d¢, which would immediately lead to field equations of the
required form (2.4) if there were no constraint.

If the matrix ¢ is constrained to lie on some lower dimensional variety within
the vector space of all hermitean matrices, the variational condition (3.5) will not
lead to such a strong set of field equations as (2.4), but an obvious way to recover
the full set would be to require that variations of ¢ should be generated by (let us
say) the right action of some subgroup ¢ of GL(m) matrices, since in this case
¢~ '-0¢ as well as the current matrices J* and their divergence J*,, would all
belong to the algebra o/ of 4. Thus (3.5) would boil down to the requirement that
the contraction of J*,, with any other arbitrarily chosen element of the algebra
should be zero, which provided the latter were semi-simple, would lead again to the
required result (2.4).

The situation with which we are concerned cannot be quite as straighforward
as that described in the previous paragraph since a simple right (or left) matrix
group action will not in general preserve the hermicity property (2.2). This
property will however be preserved if we suppose that the subspace to which ¢ is
constrained is generated by an action of the form

+—Q*-¢-Q, (3.6)

where Q, with components Q%, is any element in the matrix group ¢ under
consideration. The corresponding infinitesimal variations will therefore have the
form

So=(d-a+a* ¢)oi, (3.7)

where §4 is an arbitrary infinitesimal parameter variation and a, with components
a%, is any element of the algebra .« of generators of 4.

It is convenient at this stage to introduce a notation scheme based on the
involutory (¢ dependent) automorphism

bi—b' (3.8)

of the space of m x m matrices b with mixed components b, according to the

specification
b'=—¢""-b* 9, (3.9)

where the minus sign is included so as to ensure that its effect on a commutator is
given straightforwardly by

[b,c]'=[b',c']. (3.10)
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Since the hermiticity property (2.2) implies the reciprocity property
(b =b (3.11)

that characterises an involution, any such (mixed) mxm matrix b can be
unambiguously decomposed in the form

b=b*+b", (3.12)
where the odd and even parts are characterised by

(b*)'=£b*, (3.13)
and hence are given explicitly by

b*=3(b+b"). (3.14)

The commutators between the odd and even subspaces constructed in this way will
have the properties

[(b*,c*] =[b",c"] =[b*,e"]"=0. (3.15)
In terms of the standard (pseudo) metric
<b,e)=3tr{b-c} (3.16)

on the whole vector space of mixed m x m matrices, the elements of the even and
odd subspaces have norms given respectively by

b*,b*)=Ftr{b* 71 -b** ¢}, (3.17)

so that [by the same principle as was used in deriving (2.13) and (3.2)] one can
deduce, as a direct consequence of the positivity property (2.16) postulated for ¢,
that the metric is respectively negative and positive definite on the even and odd
subspaces, i.e.

b*+0 = <b*,b*)»<0, (3.18)
and

b™+0 = <b",b >>0. (3.19)

In terms of this scheme, the identity (2.3) satisfied by the current matrix is
expressible in the equivalent compact forms

J=-J,, J5=0, (3:20)
from which it follows that its derivative must satisfy
(Ju; v)+ =%Q—1[Ju’ Jv] =Q(Q_ lJ[u); v]> (3'21)

where the latter equality expresses the integrability condition for the existence of a
matrix ¢ such that the current takes the form (2.1). The manifestly antisymmetric
right-hand side contributions in (3.21) will drop out when it is contracted, so that it
may be seen that the current divergence has the same oddness property as the
current itself, which is expressible by the equivalent relations

@' =0, Jr=T4. (3.22)
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Since the postulated form (3.7) of the allowed variations is expressible in the
present terminology as the requirement that we should have

¢ 1-5p=2a"64, aed, (3.23)
the variational condition (3.5) reduces to the form
J/*)",a7>=0, Vaed. (3.24)

Now since we know from (3.19) that the metrics induced on the even and odd
subspaces </ *, as defined by

A*={at:aed} (3.25)

are respectively negative and positive definite and hence non-degenerate in either
case, we can conclude from (3.24) and (3.22) that

IO = (P ) ¢ (3.26)

However this last eventuality is not excluded by any of the assumptions we have
made so far: although the restricted form (3.23) of the allowed variations implies by
(2.2) that the current itself should have the form

J,=a, (3.27)
for some one form a, with Lie algebra valued components, i.e.
a,Cd, (3.28)

it does not automatically follow that the current J, itself, or for that matter the
subspace <, should lie within <.

In order to make progress we are therefore obliged at this stage to introduce
what is in fact a severe further restriction by postulating that our system be such
that wherever a belongs to the algebra .7 of 4, the same should necessarily hold for
a' ie.

acd = ated, (3.29)
so that the same applies to the even and odd parts, i.e.
g CoA, ATCA. (3.30)
Under these circumstances (3.27) and (3.28) imply

J,CoH, (3.31)
and hence also

Jjc, (3.32)
since differentiation automatically preserves the property of belonging to the
(fixed) algebra o (though not of belonging to the ¢ dependent subspaces .o *).

Thus the eventuality (3.26) can at last be excluded, so that one finally obtains the
desired conservation law (2.1).
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4. Realisation of the Requirements for the Mazur Construction

In order to fulfill the requirements described in the preceding section we now
confine our attention to matrix groups ¢ of the standard kind, as defined by the
requirement that they should leave invariant some standard tensor n with
components of the form #*%, which at this stage need not be supposed to satisfy any
particular symmetry or antisymmetry conditions. This means that a matrix Qin &,
with components of the form Q% will be characterised by

Q-n-Q*=n. (4.1)

Subject to the proviso that i be non-singular, it can be used for index raising and
lowering in accordance with the conventions described e.g. by the author [16],
where the ordering must be treated carefully except in the real-symmetric case.
Thus for any m-dimensional vector u or covector v with conjugate components
u;, v* respectively one defines

u'= ’1”5“5 s U= Uﬁnﬁa H (42)
where the lowered component version of 1 is defined as the inverse of its hermitian
conjugate, i.c. by

*Cyz 61’
a’

Ma" =gl 4.3)
or equivalently by
¥y =N =04 (4.4)

This convention enables us to write the defining property (4.1) of the group ¢ in
component notation as

0 0**=4}. (4.5)
The corresponding defining property for the elements a with components of
the form a%, of the algebra &/ of & is expressible as
a-n+n-a*=0, 4.6)
or equivalently, in component notation
a; ' +a*,=0. 4.7)
This property obviously implies that one has
a*yab,=a*ba*?, (4.8)
and hence by the definition (3.16) that the metric on the algebra has the reality
property

{a,b)=<a,b}. (4.9)
For any element characterised by (4.6) the automorphism (3.9) is expressible by
a'=m-¢)""-a-(m-¢), (4.10)

where 1 - ¢ is simply the matrix with components ¢“,. The crucial postulate (3.29)
to the effect that the defining property (4.6) of the algebra should be preserved by
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an automorphism of this form for allowed values of ¢ can be seen to be equivalent
to the requirement that we should have the commutation property

[-¢)-(-¢*),a]=0 (4.11)

for any element a of the algebra.
It can be seen from (4.10) that the scalar product [as defined by (3.16)] of any
elements a,b of the algebra .« will satisfy

{a,by=<(a",b"), 4.12)

and hence that the cross product between the odd and even algebra subspaces [as
characterised by (3.24)] will be zero, i.e. one will have the orthogonality property

(at,b>=0. (4.13)

In order to satisfy (4.11) for an arbitrary element a € &/, we are now lead to
impose the requirement that the allowed values of ¢ should satisfy

-¢)-(-¢*)=x1 (4.14)

for some scalar constant x. It can be checked that this condition is automatically
preserved (with the value of k remaining invariant) by the group action (3.6) for any
Q satisfying the group characterisation (4.1). The postulated condition (4.14) can
be expressed in component notation as

Gicd* P =xn*;. (4.15)

Comparing this with the analogous component version (4.5) of the group
characterisation condition, we see that it will be identical, i.e. the postulate (4.14)
will be equivalent to

n-6€9%, 4.16)
if (and only if) the standard tensor 7 is subject to a condition of the form

n=xn*, 4.17)
which entails the requirement

x]*=1, (4.18)
and implies

n=x0t, n*P=r6L. (4.19)

In the case of a real matrix group, the requirement (4.18) can be satisfied only for

k=1=1, (4.20)

the two possibilities corresponding respectively to (pseudo) orthogonal and
symplectic groups. In the case of complex matrix groups it is possible, without
affecting the group, to adjust a phase factor in the specification of 1, and hence of
K, sO as to obtain the standard hermiticity property as specified by k= + 1.
From this stage on we shall suppose that the group ¢ under consideration is
indeed of (pseudo) hermitian, (pseudo) orthogonal or symplectic type, with n
satisfying (4.17) and (4.20). There is then no further loss of generality in supposing
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that the constant « in (4.14) is the same as that specified by (4.17) because it can be
seen [by taking the trace of (4.14) and using the positivity property (2.16)] that it
could deviate by at most a constant positive factor which can be normalised to
unity by a choice of scale. Despite the apparent generality of the requirements (2.1)
and (2.16) their realisation has lead us to postulate a rather special situation in
which ¢,, is restricted not only by the positivity condition (2.16) but by the more
particular requirement that the allowed values of the corresponding mixed tensor

P =1"Ps 4.21)
should lie on an orbit of the adjoint action
1:6-Q7"-(n-¢)-Q (422)

that expresses the effect of (3.6) for a group ¥ of the kind characterised by (4.1).

The space of allowed values of ¢, as constructed in this way, will automatically
have a natural Riemannian metric induced by the algebra metric (3.16) according
to the specification

ds’=Km-¢) "' -dm-¢), (- )" -dn- )

=i(¢ ! -do, 07" -d). (4.23)
Since the allowed variations have the form (3.23), the positivity property
ddp+0 = ds>=<a",a"Ddéi*>0 4.24)

holds as an application of (3.19). The induced metric (4.23) is evidently invariant
under the adjoint action (4.22) of the group on the orbit. More particularly it will
be invariant under the action

Q—Q' (4.25)

of the group on itself that is induced by an arbitrarily chosen fixed element 5 - ¢ on
the orbit, according to the specification

Q'=m-¢)"'-Q-(m-¢). (4.26)
Any element a of the algebra will determine a field of infinitesimal allowed
displacements
Q—-Q+dQ 4.27)
within the orbit, which by (3.7) and (4.6) will have the form
dQ=[Q,a]é (4.28)

for any fixed value of dA. This isometry generating (i.e. Killing) vector field will by
transformed by (4.26) onto another such field of displacements

Q'—Q'+4Q", (4.29)

which will have the form
dQ'=[Q',a"]o4 (4.30)

where, in conformity with the notation scheme previously introduced, the
corresponding transformed value a® of a will be precisely as specified by (4.10). The
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isometry (4.26) evidently leaves the chosen fixed element n- ¢ itself invariant and
therefore determines an isomorphism of its tangent space. This isomorphism can
be seen to map a displacement

dm-¢)=[n-¢,aldi (4.31)
in the tangent space onto an element which, by (4.10) will be given by
dm-¢)'=[n-¢,a"ldi=[n-¢, —aldi=—d(n-¢), (4.32)

i.e. this isometry reverses all the tangent vectors at the arbitrarily chosen fixed
point i - ¢ on the allowed group orbit. This establishes the well known fact [17]
that such group orbits are totally symmetric spaces in the technical sense that there
exists a tangent space inverting isometry about every point.

5. The Lorentzian Signature Case

The totally symmetric orbit spaces that have just been set up can be interpreted as
quotient spaces of the form %/, where # is the isotropy subgroup of ¢ that
leaves some arbitrarily chosen element 1 - ¢ of the orbit invariant. In view of the
fact that the action of ¢ has the form (3.6) where ¢ is positive definite, the elements
of the isotropy subgroup must also belong to the (strictly) unitary or (strictly)
orthogonal group of all matrices that leave such a positive definite form invariant
in the complex and real cases respectively, so that we shall have respectively

H=%AU(m), 5.1)
or H =9n0(m). (52)

In the case k = + 1, for a hermitian or symmetric metric n) with signature such that
its diagonal form contains p negative and g positive components (with p+q=m)
we shall have the respective possibilities

4/# =SU(p, 9)/S(U(p) x U(q)) (5.3)
or
Y/# =S0(p,9)/S(0(p) x O(9)), (54

while in the real symplectic case, x = — 1, (which needs an even value of m) we shall
have

G/ # =Sp(m)/OSp(m). (5.5)

The examples considered explicitly by Mazur [3,17] were of the former type
(5.3) with Lorentzian signature as characterised by k = + 1. In such a case, matrices
of the form

B ="Nap+ 20,05 (5.6

will have the required positivity property (2.16) for any sufficiently large timelike
vector v, or to be more precise, whenever

P, < —%. (5.7)
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More particularly, a matrix of the form (5.6) will satisfy the required group
membership requirement (4.15), which in this case reduces simply to,

Pach® =0, (5.8)
whenever v is a timelike unit vector, i.e.
ﬁal)a = — 1 5 (5.9)

which is consistent with the positivity requirement (5.7). Since this property is
preserved by the relevant group action, the conditions (5.6) and (5.9) characterise
all elements of the allowed orbit.

For any two distinct such fields, ¢y, and ¢y,,, the corresponding value of A,
which in this case is defined by

S+ A=y Jac¢fgj (5.10)

will be given in terms of the corresponding vector v which is defined only to within
a phase factor) by

145_ = 5 - - b b
244 =1a011y +2”[11CU[01CU[11aU[01 + Vb0 » (5.11)
and hence its trace is given by
1 = 2
4 =v001 1" = 1, (5.12)

which satisfies the positivity condition
Oy F oy = 4>0. (5.13)

The metric (4.23) on such a space will take the form
ds® = 59N dps) ¢ dpaa = yapdr di? , (5.14)

where we have introduced the notation
YViv=MNap + Vil (5.15)

for the effective metric whose restriction to the allowed hyperboloid characterised
by (5.9) is the same as the metric induced on it directly by #,,. The distance s along a
geodesic within such a hypersurface can be seen to be given by

COShS = |v[1]cﬁ[0]c| 5 (5.16)

so that it will be related to the corresponding value of A, characterising the
separation between the endpoints, by

A=4sinh?s. (5.17)

Since the matrix ¢ obtained from (5.6) is not affected by an overall phase
change in v, and since its magnitude is in any case fixed by (5.9) it follows that only
m—1 of its m complex components correspond to the (2m—2) real degrees of
freedom of the field. Their relation to the variables of the standard formulation [5]
of the black hole equilibrium problem for the pure vacuum (m=2) and
electromagnetic (m=3) cases is specified in Appendix B.
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6. The Bunting Identity

Having elucidated the way in which the very elegant Mazur construction is
dependent on a particularly high degree of symmetry in the space of variables, we
now come to describe a more robust and general procedure that has been
developed independently for the same purpose by Bunting.

The basic Bunting construction as described in this section does not require
that the space of variables should have any special symmetry properties at all, but
merely that the field equations are a homogeneous quadratic function of the space
gradients of the form of harmonic type in the sense of being obtainable from a
variational principle based on a Lagrangian scalar that is locally a homogeneous
quadratic function of the gradients of the independent field variables X“
(A=1,...,N, say) of the form

L=309""G X" X" ,, (6.1)

where g*" is as usual the inverse of the n-dimensional base space metric field with
components g, in terms of the base space coordinates x*, and g is a scalar field on
the base space which could be absorbed into the metric by a conformal rescaling
except in the special case n=2 with which the black hole application is in fact
concerned. The coefficients § ,5 are required to be independent of position on the
base space, though they may have arbitrary dependence on the field variables X4,
and they may therefore be interpreted as components of a metric of the form

ds? =g zdX4dX?® (6.2)

on an N dimensional manifold & of which the X4 are local coordinates. In its most
general sense a harmonic system may be envisaged as a mapping

M—-X (6.3)

of the n-dimensional base Riemannian (or pseudo-Riemannian) manifold .# onto
an N-dimensional Riemann (or pseudo-Riemannian) manifold Z whose local
coordinate representation

XM X4 (6.4)

satisfies the equations derived from the Lagrangian that is given by (5.1) in terms of
the corresponding local coordinate components of the metrics on .# and Z. A very
helpful introduction (from a physicist’s point of view) to the theory of such
mappings has been provided by Misner [18].

In any discussion of maps (whether of harmonic or more general type, such as
those discussed in [30]) between spaces .# and & that are both endowed with
metrics, or even merely with linear connections, it is convenient to introduce the
corresponding concept of covariant differentiation over .# of elements specified in
the tangent space (or its tensor products) at the image points X(x) e Z of base
space points x € .. The covariant variation §¥, say of a tangent space element ¥,
say between nearby points with position coordinates X4 and X“+dX“ on %, is
given in terms of the variations dV“ of the corresponding components V4 of I7by
an expression of the usual form

OV =dVA+(dXO)ARVE, (6.5)
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where I, are the components of the linear connection on % In the Riemannian
(or pseudo-Riemannian) case these components will in turn be given in terms of the
coordinate components § 45 and §*® of the metric on & by an expression of the
familiar form .

I#p= éAD(gD(c, B~ 39cs,p)> (6.6)
where a comma denotes partial differentiation. The case of covariant differenti-
ation over the base space .# arises when the variation dX* is considered as
representing the variation of the image X(x) arising from a corresponding
infinitesimal displacement between nearby points with coordinates x* and x* + dx*
in the base space, i.e. when

AXA=X4 dx*. 6.7)

The corresponding expression for the covariant derivative of ¥ can thus be seen to
have the form

VuVA= VA,;;+[;‘1ABVB5 (68)
where the components of the (mapping dependent) connection form I, over ./ are
given by

LAa=XC It (69)

The formula can be applied to cases where Vis defined only at the image points of
the mapping (6.4), but in the particular case when V is specified in advance as a
vector field over &, the formula (5.8) can be expressed in terms of the ordinary
covariant derivative

VeVA=VA g+ LA VE (6.10)
over & by the simple relation
ALED G ALY (6.11)
The commutator of two covariant differentiation operation of the form (6.8) takes
the form
[V, V.IJVA=R,"3V?, (6.12)

uv B

and the components of the (mapping dependent) curvature two-form R, over .#
that is defined in this way will be given by

R, *5=X€ X" Rcp’s, (6.13)

uv B

where the ordinary Rieman tensor on & is defined by the usual relation
[Ve, VplVA=RcpipVE. (6.14)

The foregoing concept of covariant differentiation of tangent vectors on the
image space & can naturally be extended in the normal way to the associated
cotangent vectors and tensors on &. In conjunction with the ordinary concept of
covariant differentiation on the base space, which we shall denote simply by a
semi-colon, so that for example

vt =v" +LF0 (6.15)

v g70°
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where
Lt =9""Gav.0—39ve. ) » (6.16)

the generalised covariant differentiation procedure can be further extended in a
natural manner to bi-tensors defined on tensor products of tangent or cotangent
spaces on & and .. Thus in the particular case of the projection bitensor, with

components 4 y
rXA=X4 (6.17)

which behaves simultaneously as a vector on & and a covector on ./, we shall have
RIXA=XA, ,—LeXA +TAXD =X, + [ VXWXC. (6.18)

On applying this formalism to the particular case of a harmonic mapping, as
specified by the Lagrangian (6.1), which may now be expressed more compactly as

L=%(,X"V*X ,, (6.19)

we obtain SL={o(7"X )6X4},,— {7,V X )}oXA. (6.20)
Thus one obtains the harmonic field equations in the compact form

V(eV*X*)=0, (6.21)

or more explicitly (0X* #=—pX® XCin £A,. 6.22)

Although such a system of equations has come to be commonly designated by the
description “harmonic” it would perhaps be preferable to use the more explicit and
less overworked adjective “hypergeodesic” in view of the fact that it is a natural
higher dimensional generalisation of the ordinary geodesic equations, which are
included as the special case for which the base space .# is uni-dimensional, and
also to avoid confusion with the non-covariant system of equations

x4 )*=0 (6.23)

that characterises what are widely known as “harmonic” coordinates. This latter
system will however be compatible with the hypergeodesic Eq. (6.22) in the case in
which & has the same dimension as .# and in which, instead of being specified in
advance, the metric on & is directly induced by the mapping, according to the
prescription

gB=g"X* X4, (6.24)

In this isometric case, and for a uniform value of the weight factor g, the
hypergeodesic Eq. (6.22) reduce to

XA ) =1g1"12(1g1'"*g*?) s, (6.25)

which will be satisfied automatically (since the right-hand side is interpretable as
the Laplacian of the new coordinates X in terms of themselves), expressing the
fact that an isometry is a trivial special case of a hypergeodesic mapping. The
further (non-covariant) requirement that the right-hand side of (6.25) should
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vanish [leaving (6.23) as a consequence] is De Donder’s well known intrinsic
characterisation of a “harmonic” coordinate system.

Returning from this digression, we are now ready to describe the basic Bunting
construction which applies to the case in which one has two distinct but
homotopicfields X o,(x), X{1;(x) corresponding to a pair of mappings .# —% given
as

x*-Xf,  x-X{, (6.26)

say, between spaces ./ and Z having fixed values for the respective metrices 9uv
and g 4. The essential idea is to work with a suitable homotopy X (x; f) between the
two fields corresponding to a mapping .# x % given as

(x*; X4, (6.27)

where ¢ is a parameter in the unit interval I, ranging from 0 to 1, representing the
qﬁfi{te length along a curve I > that is chosen, for each base point x € .#, to have
initial and final endpoints at the corresponding image points, so that we have

XA4x;0)=X{(x),  XAx;1)= X{(0). (6.28)

At a later stage we shall need to impose the further requirement that each such
curve I-% be geodesic, i.e. that its total length

1
s=[ (5,5 2dt (6.29)
0

should be stationary under small endpoint preserving variations, where we have
introduced the notation

g 4X (630)

dt '

for the affine tangent vector along the curve as normalised with respect to the affine
parameter ¢. For the time being however, we only need to require that the curve
varies smoothly as a function of the base point x € .#, thereby determining some
correspondingly smooth scalar length field over .. Since the length interval ds
along each curve must evidently be related to the corresponding affine parameter
variation by the proportionality relation

ds=sdt, (6.31)
the tangent vector §(x; ) must satisfy the ¢ independent normalisation condition
sst=s2. (6.32)

It is convenient at this stage to introduce a dot notation to indicate covariant
differentiation with respect to t along each curve, so that for a vector ¥ for example,

we shall have
7 A dVA Br A C
V = +5°I5 0 VE. (6.33)

In doing this we deviate slightly from the original treatment of Bunting [1,2], in
which a dot was used for the straight (i.e. non-covariant) operation d/dt of
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derivation with respect to t at fixed base space position x € .#. For the case of the
scalar position element X(x;t), which simply gives

XA=54, (6.34)
the distinction does not arise, but it is important for the second derivative,
XA=g4, (6.35)

which will be required to vanish later on when we impose the geodicity condition.
Applying the covariant differentiation procedure described at the beginning of
this section to the mapping .# — % that is specified by (6.27) for any fixed value of ¢,
one can verify that the dot derivation operation commutes with the covariant base
space gradient operation when applied to the effectively scalar coordinates X4, i.e.
one has
Vst=W X4 (6.36)
However when these operations are successively applied to a vector they no longer
commute unless £ is flat: in general one obtains

PVA—W VA =XC s"ReptpV® (6.37)

where, in accordance with (6.12), the image space curvature components are given
by
Repp= 218,101+ ZIECA|EED]EB . (6.38)

Applying this in conjunction with (6.36) one obtains the useful commutation
identity
0V, —(V(0V,X 1) = — R pcps (7, XP)V, X, (6.39)

The foregoing machinery can now be used to give a very rapid derivation of the
Bunting identity, which is based [1,2] on an evaluation of the (density weighted)
base space Laplacian of the field s? (which plays a role analogous to that of the
deviation matrix trace 4 in the Mazur identity). To start with we shall have

ss ,=3V,s*=5,V,s* (6.40)
by (6.32) (where the right-hand side may be evaluated at any value of t), and hence
(055" = 0(V*s )V, s* + s*V*(oV 5%). (6.41)

The last term here can be processed using (6.39) so as to give
(gss, )" = (s*V, (VX)) — sV, (eV*X*)
+0{(V*s4) VuSA - RABCDSASC( V.X BXP}.  (642)

Integrating over the curve for a fixed base space element x € .# and using the fact
that the left-hand side (unlike the separate contribution on the right) is constant
along the curve, one obtains the identity

1
(055, )" —[s4V,(@V"X)]o+ (I) dts V,(eV"X*)

1 ~
=9 g dt{(V*s )V,s* — R 4pcps™(V, X P)sCV X P}, (6.43)
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which holds for any smooth (affine) homotopy between mappings, regardless of
any field equations that may be satisfied. If one now chooses the homotopy curves
so as to satisfy the geodesic equations

§1=0, (6.44)

assuming that such a choice is possible, then the application of the harmonic (or,
more strictly, hypergeodesic) field equations (6.21) at the endpoints, which gives

[s4%.(e7*X*)]5=0 (6.45)

can be seen to reduce the left-hand side of (6.43) to a divergence of the required
form. Then provided the image space has a positive difinite metric, i.e.

V0 = §,5V4V8>0, (6.46)
and non-positive curvature, i.e.
R 5cpWAWEP <0 (6.47)

for any W8, then it will follow from our previous postulates (2.14) and (2.15) of
positivity of the base space metric with components g,, and of the scalar density o,
that the right-hand side of (6.43) can never be negative, and that in order for it to
vanish one must have V,s* vanishing everywhere as well, which by (6.40) is only
possible if the gradient of s itself vanishes. Thus one obtains a conclusion of the

desired form
5,+0 = (gss ,)*>0. (6.48)

Hence if the boundary conditions are such that
igss”‘dSu—»O , (6.49)

one can conclude that the metric separation s between the two solutions is uniform,
s=c, (6.50)

where ¢ is a constant. More particularly we can conclude that this constant
vanishes, i.e. that

s=0 (6.51)

everywhere, if there is at least one part of the boundary at which the value of the
field is specified completely, which means that the solution will be unique, at least
within the relevant geodesic homotopy class.

7. The Applicability of the Bunting Construction and its Relationship
to the Special Mazur Case

In the particular case of a image manifold Z with positive definite metric and non-
positive curvature [in accordance with (6.46) and (6.47)] as required for obtaining
the conclusions (6.48), (6.51) of the previous section, the existence of the postulated
geodesic homotopy is not such a severe restriction as it would be otherwise:
Bunting has shown that it in order for such a homotopy to exist (and be unique) it is
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sufficient (as a consequence of the well known theorem [17] that the exponential
map is an isomorphism in such a case) for the space & to be simply connected and
geodesically complete. [For metrics whose signature is indefinite there can exist
point pairs unconnected by any geodesic even in the geodesically complete case,
while for metrics with locally positive Riemannian curvature there can exist several
distinct geodesics connecting a given pair of points even in the simply connected
case. The well known uniqueness of the connecting geodesic in the positive metric
but negative curvature case can be regarded as the application of the foregoing
conclusion (6.51) for 1-dimensional base spaces].

Furthermore, when the base space . is itself simply connected, then the
additional requirement of simple connectedness of the image space & becomes
superfluous, since 2 will in any case have a simply connected universal covering
space containing a geodesic homotopy between the corresponding lifted mapp-
ings, so that a (not necessarily unique) local geodesic homotopy can always be
obtained by projection. Provided ./ is simply connected, any such local geodesic
homotopy can be extended in an unambiguous manner over the whole of .Z.

The requirement that the allowed range of variables constituting the image
space & should be geodesically complete can also be relaxed: it is evidently
sufficient that this allowed range should be extendable in such a way as to become
part of a larger space having the required properties of completeness, non-positive
curvature, etc. For a strictly homogeneous Riemannian space, completeness holds
automatically.

Although the class of non-linear g-models with totally symmetric image spaces
to which the Mazur construction can be applied (as described in Sect. 4) is
evidently a very specialised subset of the full class of harmonic (i.e. hypergeodesic)
mappings onto image spaces Z which in general need give no particular symmetry
properties at all, one can nevertheless raise the question of whether the Mazur
identity might be able to settle some uniqueness questions beyond the scope of the
Bunting identity in view of the fact that the application of the latter depends on the
non-positivity requirement (6.47) on the curvature, whereas there was no need for
any explicit mention of the curvature at all in the application of the Mazur identity.
In fact, however, the answer to this question is negative: the Mazur construction
cannot be used to evade the need to invoke the inequality (6.47) because of the fact
[17] that the non-negative curvature property is actually built in automatically for
symmetric spaces having the particular kind of structure (as the quotient space of a
non-compact group ¢ by a maximal compact subgroup ) described in Sect. 4.

To see this explicitly, we start from the remark that each element a in the Lie
algebra o7 of generators of a Lie group ¢ of isometries (if there are any) of a
Riemannian (or pseudo-Riemannian) space & will be associated with a corre-
sponding Killing vector field @, with components a”, which will satisfy, the Killing
equations

A

V(AaB)=0 (7.1)

(which express the requirement that the Lie derivative with respect to @ of the
metric § on & should vanish) and hence also the integrability condition

Vc( VABaA) = RABCDaD . (7.2)
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Using the fact that the displacement commutator field [d—; b] associated with [a, b]
in o is given simply by reversing the ordinary Lie differentiation commutator
[, b] (the latter meaning the Lie derivative of b with respect to d), so that one has

[a, b]* =bPVza — aPVb", (7.3)
one can deduce that for any three such generators a, b, ¢ we shall have
[[a,b], 14 = R4 pcpcBbCa® + 2cP(Voa4) Vb — [a, b]PVpct. (7.4)

Let us now restrict our attention to the case in which & is a totally symmetric
space in the technical sense that there is an isometric involution centred on each
point X € Z that reverses the tangent space at that point. For any particular point,
X|o; say, the corresponding involution maps any Killing vector field @ onto
another Killing vector field ' say, thereby inducing a corresponding involution on
the isometry group Lie algebra .o (of the kind exemplified by (4.10) in the
particular application with which we shall be concerned). The resulting decompo-
sition properties, of the form expressed already by our Egs. (3.10)—3.15), will reflect
corresponding decomposition properties for the Killing vector fields themselves.
Thus (with respect to an arbitrarily chosen point) any Killing vector field d can be
decomposed into odd and even parts @~ and a*, which will themselves be Killing
fields, given [in analogy with (3.13)] by the specification

a*4=Ya* +a'"), (75)

and the odd and even Killing vector fields will have commutation properties of the
form (3.15), i.e.

[a+’b+]_A=[a-9b—]_A=[a+’b—]+A=Oa (7.6)

the first of these, expressing the closure of the even subset, being an obvious
reflection of the fact that the even Killing vectors generate the isotropy subgroup
associated with the fixed point X; of the involution. In view of the fact that the
tangent space at X, is reversed by involution, the even Killing vector fields must
evidently vanish at that particular point, i.e.

a*h=0, (1.7)

and it can be seen (taking account of the fact that the metric is invariant under the
inversion) that their covariant derivatives of even order must also vanish there.
The odd Killing vector fields associated with the point X ,; will not themselves
vanish there, but it can be seen that their covariant derivatives of odd order must
do so, so that in particular, in the first order case, we obtain

VABa —A[0] = 0 . (7.8)

Hence [ by substituting odd fields on the left-hand side of (7.4) and using (7.8) and
(7.7) to simplify the result] we see that the curvature of a symmetric space can be
expressed directly in terms of commutators in the form

(R4 pcpaPbCe Pyoy=[la",b" 1, ¢~ ]A[O] . (7.9



Bunting-Mazur Identities and Black Hole Equilibrium 585

This specifies the curvature completely in view of the fact that the tangent space
will be completely spanned by Killing vectors in any homogeneous space, and
hence in particular, in any totally symmetric space.

We now restrict ourselves further to situations (such as that considered in
Sect. 4) in which the metric is induced directly by the standard metric on the group
algebra according to a formula of the form

(§4pa*b®)oy=<a~,b " )=atr{a” -b7}, (7.10)

where o a proportionality constant. It then follows from (7.9) [and from the
commutation rules (3.15) corresponding to (7.6)] that the curvature will be given
by

(RAABCDaAbBchD)[O] =octr{[[a_, b_]’ c_]s d_} =a tr{[a_7b_] +’ [C-,d—] +} s

and hence in particular (7.11)

(ﬁABCDaAbBaCbD)[O] =adfa”,b7] ’, [a~,b7] * > (7.12)

In the case of a compact group [such as the SO(3) isometry group of the ordinary
2-sphere] for which the trace of products on the algebra is negative definite, the
proportionality factor « would have to be chosen negative in order to give a
positive definite metric g, and hence as a result the curvature would be non-
negative also. However the conditions of applicability of the Mazur construction
require that we should be dealing with a situation in which the trace of products is
negative definite only on the even subalgebra subspace, while being positive
definite on the odd algebra subspace, as an expression of the fact that the
symmetric spaces under considerations are quotients of a non-compact group by a
maximal compact subgroup. In such a situation one needs a positive choice of the
proportionality factor o (our normalisation convention took «=1%) so as to obtain
a group metric that is positive definite [in accordance with (3.19)] on the odd
algebra subspace .« 7, in order to give rise [by (7.10)] to a positive definite metric
on the symmetric quotient space &' This restricts the group metric to be negative
definite [in accordance with (3.18)] on the even subalgebra .« *, so that it then
follows from (7.12), which expresses the curvature in terms of a product of even
subalgebra elements (obtained as commutators of members of the odd subspace
&/ ) that it must automatically be non-positive in accordance with Bunting’s
requirement (6.47).

This completes the demonstration that the negative curvature property used
by Bunting’s method of establishing uniqueness is in fact an automatic conse-
quence of the totally symmetric character of these particular non-linear -models.
It is evident however that the negative curvature requirement (which would be
preserved by sufficiently small but nevertheless finite perturbations) does not in
itself entail such a strong restriction as total symmetry. One therefore sees that the
latter is not really essential for the uniqueness properties, contrary to the
impression that might have been obtained from the Mazur derivation [3], and
contrary to what is in fact the case for other properties such as the infinite sequence
of conservation laws discussed, e.g. by Eichenherr and Forger [20] and de Vega
[21] for which the total symmetry really is essential. Symmetry is also an essential
requirement for the construction of gauge-coupled non-linear o-models [22] for
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which one can obtain a natural generalisation of the Mazur construction in a
manner to be described elsewhere [30].

Appendix A. The Black Hole Equilibrium Boundary Value Problem

Subject to a number of reasonably plausible physical assumptions (including
technical restrictions which rule out degenerate limit cases such as the Majumdar-
Papapetrou black-holes of Hartle and Hawking [15]) and using a considerable
body of previous mathematical work [6-8, 11, 12, 23-26] the present author was
able to reduce the 4-dimensional geometric problem of finding the equilibrium
states of a black hole equilibrium solution of the Einstein-Maxwell (electromagne-
tic vacuum) solutions in an asymptotically flat background to an elliptic boundary
value problem four unknowns X, Y, E, B, (two in the non-electromagnetic case) on
a two-dimensional base space with a known metric

di? du?
dSn2 = /1_2_—02 + —1_—”2 . (Al)
The base space covers the ellipsoidal coordinate range
—l<u<l, c¢<i<o (A.2)

and the boundary conditions are specified in terms of the scale parameter ¢ which
has the dimensions of mass, and a second parameter J representing the angular
momentum, a third parameter Q representing the total electric charge and, if one
so desires, a fourth parameter P representing the (mathematically if not physically
conceivable) total magnetic monopole moment. (In so far as the space time
geometry is concerned this fourth parameter is redundant, since the metric is
invariant under the duality transformations which preserve the sum of squares
P?+ Q%)) The necessary boundary conditions at large radius, A— o, are given by

E=0Qu+0(A"Y), B=—-Put+0(Y), (A3)
Y=2Ju(3—p?)+0(AY), (A4)
X=(1—p2)12+0()). (A.5)

The boundary conditions on the horizon, A—c, consist merely of the requirement
that the unknown functions, E, B, Y, X should be regular functions of A and y there.
The most delicate boundary conditions are those on the north and south polar
axes of symmetry p—1and p— — 1, where it is required not only that the unknown
E, B, Y, X, should be regular as functions of A and u but more specifically that they
should satisfy

OE » OB s
5—0(1—#), 6,1_0(1_“)’ (A-6)
Y 5 Y 3B _OE\ _ i
o =00-m), +2<E6“ Ba>—0(1 1), (A7)
2_
x=o(—py¥ =D LX a2, (A8)

2 X ou
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This last equation is merely an expression of the requirement that although X itself
must vanish on the symmetry axis u? = 1, its derivative with respect to u must not.
[This condition was printed incorrectly — by omission of the factor 3(u* — 1)—in the
final version of the boundary conditions in the original derivation [4], and some
confusion may have arisen from transcription of that erroneous version in other
work [9], where the derivation was not discussed].

The field equations are of the Ernst [26] form, which was shown [4] to be
obtainable from a Lagrangian scalar of the harmonic type (6.19) where the base
space scalar field g is given by

*=(—c)(1-p?), (A9)
and where the image space metric is given by

_ (dX)?>+(dY+2EdB—2BdE)* + (dE)*+(dB)?

2
ds 4x?2 X

(A.10)

Whereas the potentials Y, E, B, are defined in an indirect manner (E and B being
zero in the non-electromagnetic case, while Y and B are zero in the strictly static
case) the variable X is directly interpretable geometrically as the squared length of
the primary space time Killing vector on which the Ernst [26] formulation of the
Einstein-Maxwell equations is based. The standard version of the Ernst formula-
tion uses as its starting point the generator of the stationary symmetry, which is
timelike, with negative squared length at large asymptotic distances, which
vanishes on an ergosurface (where the corresponding Ernst equations would
become singular) within which (except in the strictly case) it becomes timelike. The
present formulation [4] was designed to avoid the difficulty of the ergosurface
singularity by using as a starting point the generator of the axisymmetry. This
axisymmetry Killing vector is guaranteed to be non-vanishing throughout the
domain (A.2) under consideration by the physical requirement of causality (no
closed timelike curves) which ensure that it is strictly spacelike,

X>0, (A.11)

except on the axis itself where of course it vanishes in accordance with (A.8). As a
result the metric (A.13) is strictly positive definite, with signature (+ + + +)
[whereas the standard formulation would have given a metric with indefinite
signature (+ + — —) in the outer region where the stationary Killing vector is
timelike]. Although this non-standard formulation saves us from having to cope
with an ergosurface singularity in the interior of the domain (A.2) that is of interest,
it has not eliminated it altogether: we instead have to deal with a singularity on the
axis u®>—1 where the denominators in (A.10) tend to zero. (As an additional price
we also have to use the rather unfamiliar and awkward form (A.3)H(A.5) of
asymptotic boundary conditions, but as an unexpected bonus the horizon
boundary conditions become as simple as could be imagined). However although
the singularity makes the treatment of the axis rather delicate, it is rendered
tractable by the fact that the asymptotic boundary conditions (A.3), (A.4) enable us
to deduce that, like X (which vanishes), the other variables Y, E, B, are also fully
determined along the entire length of the symmetry axis: by integrating along the
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axis using (A.6) and (A.7), one obtains

Y=4Ju+0(1—p?), (A.12)
E=0u+0(1—p?), (A.13)
B=—Pu+0(1—p?), (A.14)

as u?— 1. Hence for two distinct solutions the difference must vanish on the axis, i.e.
using the notation convention introduced in Sect. (2),

XO=0(1—p?), Y°=0(1-p?), (A1)
E°=0(1—p?), B°=0(1—p?). (A.16)

Appendix B. Translation from the Ernst Formulation to the Mazur Formulation

Mazur’s reformulation [18] of the problem posed in Appendix A was based on
Kinnersley’s transformation [27] of the Ernst variables into a system which could
be interpreted as a standard (3-complex dimensional) linear representation of the
symmetric group SU(2, 1). Starting from standard complex Ernst [26] variables

w=E+iB, (B.1)
e=—X+iY—|p. (B.2)

Kinnersley introduced a new set of three complex variables v,, v;, v, given up to an
arbitrary overall complex factor by

v+ 0, U,

— =g, =p. B3

U1 —=0g ’ U3 =09 v (B3)
In terms of a 3 dimensional Lorentz signature metric n, of the standard
Minkowski form, diag(—1, 1, 1), a vector v, with components specified (up to an
arbitrary complex factor) by (B.3) can be seen to have squared length given by

0" =10°0" = — X[y — v/, (B4
and the image space metric (A.10) will be expressible as

_ e+ 2pdyl® | (dyl® _ [0 di? _ dodi® (B.5)

2
ds 4x2 X 05 oi

where the latter form is manifestly invariant under the SU(2, 1) transformations
that preserve the Minkowski form of the metric. In the pure vacuum case, for which
p is zero, this formulation reduces to the standard 2-complex dimensional
representation of the SU(1, 1) (=SO(2, 1)) symmetry group discovered by Geroch
[28] and recently discussed in a wider context by Sanchez [29]. The expression
(B.5) simplifies if we restrict the indeterminacy of v* by imposing a normalisation
condition of the form. —

v °=F1, (B.6)

where the upper, i.e. negative, sign choice can be seen from (B.4) to be necessary
when the inequality (A.14) holds (as a result of using a non-standard Ernst
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formulation based on a spacelike space-time Killing vector) whereas the lower, i.c.
positive, sign would be necessary if one were using the standard Ernst formulation
based on a timelike space-time Killing vector for which one would have X <0.
Subject to (B.6), the final expression in (B.5) reduces to

ds? = (£ 1z + 00,)dv*di® (B.7)

which agrees with (5.14) for the upper choice sign, resulting from (A.14). For either
choice of sign we can construct a hermitian matrix

¢ab’ — rlab' ¥ 25avb' , (B8)

which will satisfy s .
¢ b¢b'c = 5c > (B9)
and give dsz z_é_tr {(4) . d¢)2} (BIO)

in accordance with (5.8) and (5.14), but this matrix will only satisfy the positivity
requirement (2.16) for the upper choice of sign resulting from (A.14), for which (B.8)
will agree with (5.6).

It can be seen that if the Kinnersley transformation (B.3) were applied to the
metric (A.13) in the case of a standard timelike Killing vector based Ernst
formulation with X<0 we would obtain a symmetric space of the form
SU(2,1)/S(U(1,1) x U(1)) instead of the form SU(2,1)/S(U(2)xU(1)), and
although there would still be a Mazur identity of the form (2.11), it would no longer
satisfy the positivity condition (2.13). [This would not necessarily prevent the
solution from being unique: indeed in the strictly static case the more obvious
formulation leading to a harmonic mapping into a space with an (non-compact)
SU(1, 1) isotropy subgroup is ultimately equivalent to our present formulation in
terms of a harmonic mapping onto a space with a (maximally compact) SU(2)
isotropy subgroup.]

A convenient choice of phase gives an explicit expression for v,, subject to the
normalisation condition (B.6) as

Vo, v1,02) =3X|" (e~ L&+ 1,29). (B.11)
The product of the vectors vy,* and v,," arising from distinct solutions will have
the form
~3X —3w®P +iGY° + ByyyEo— BioiEryy)

Ur1iclro; = X (B.12)
where (in loose accord with our previous notation convention [5])
X=X X, X=X+ X5 (B.13)
and we have
W@ =(E®)*+(B®)*. (B.14)
Hence by (5.11) we obtain the trace of the deviation matrix in the form
XOZ 2X~ 02 04 Y® EBO_~E62
g (XOP+2RWOP +IyOl* + (YO +EBO-BEO? o

<X
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As a consequence of the boundary conditions (A.3)A.5) in the previous section, it
will satisfy

A4=0(1"%), %ﬁ— =0(173) (B.16)
as A— 00, and as a consequence of (A.12) to (A.16) it will be regular on the axis,
a4
= — = B.1
4=0(1), P o(1) (B.17)

as pu?—1 despite the vanishing of the denominator in (B.15). Regularity on the
horizon, oA
4=0(1), En =0(1) (B.18)

as A—c, obviously follows automatically from the requirement that the individual
variables E, B, Y, X, are regular since the latter remains non-zero there. It therefore
follows from the form of (A.1) and (A.2) that the Mazur requirement (2.17), or
alternatively [taking account of (5.17)] the Bunting requirement (6.49), will be
satisfied, and hence that the solution to the problem posed in Appendix A is
unique.
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