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Abstract. The effective electrical conductivity of an aggregate, composed of
grains of various conductivities, is frequently estimated by the coherent
potential approximation, which embodies a local effective medium concept. It
is proved rigorously that this approximation is exact for a wide class of
hierarchical model composites made of spherical grains: the starting material 0
in the hierarchy is chosen arbitrarily, otherwise, material^ 1,2,... consists of
equisized spheres, say j-spheres, of arbitrary conductivities embedded in
material j — 1 . The spatial distribution of the j-spheres must satisfy a mild
homogeneity condition and their radius r7- must, asymptotically, increase faster
than exponentially with j . Furthermore, the minimum spacing, 2sp between the
7-spheres is such that the ratio si/rj diverges. On the basis of these and some
further ancillary conditions it is established that the coherent potential
approximation becomes asymptotically exact for the effective conductivity of
material j->oo. The results extend to other effective parameters of the
composites, including the thermal conductivity, dielectric constant and
magnetic permeability. In addition, the model composites and the proof of
realizability may be generalized to allow non-spherical grains.

1. Introduction

Various theoretical approaches have been developed to deal with the classical
problem of estimating the effective or average conductivity of a composite material
given the geometry of the composite and the conductivities of the components: see
for example, the reviews of Beran (1968), Batchelor (1974), Abeles (1976), Hale
(1976), Landauer (1978), Bergman (1978), and McPhedran et al. (1983).

One approach is to solve the field equations directly with the aid of a computer;
this has been successfully applied by McKenzie et al. (1978), Kantor and Bergman
(1982), and Sangani and Acrivos (1983), among others, to periodic structures such
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as an array of spheres embedded in a matrix of a second component. The
perturbation solutions developed by Brown (1955) and Felderhof et al. (1982) are
useful when the composite consists of a dilute suspension of inclusions in a matrix
or when the structure is arbitrary but the components have approximately similar
properties. Rigorous bounds have been obtained by three techniques: Hashin and
Shtrikman (1962), Beran (1965), and Prager (1969), among others, use variational
principles; Bergman (1978, 1982), Milton (1981), Felderhof (1982), and Golden
(1984) deduce bounds from analytic properties of the effective conductivity; and,
Tartar and Murat (1981) and Lurie and Cherkaev (1982) use the method of
compensated compactness. Many of these bounds for two-component composites
can be related to the bounds on Stieltjes functions derived by Baker (1969).
Typically, they require only limited information about the structure of the
composite, such as the volume fractions of the components. However, the utility of
the bounds generally diminishes when the conductivities of the components
become increasingly dissimilar, reflecting the fact that the precise structure of the
composite plays a correspondingly more important role. Renormalization group
theory and especially the concept of universality has been used to estimate critical
exponents characterizing the behavior of the conductivity in the critical regime
which marks the transition between a poor conducting composite and a good
conducting one. For a two-component composite, this transition occurs at the
percolation threshold when the components have strongly dissimilar conductiv-
ities. The critical exponents were estimated first by Kirkpatrick (1971), Seager and
Pike (1974), and Webman et al. (1975) using Monte Carlo methods on random
resistor networks and later by Stinchcomb and Watson (1976), Straley (1977), and
Solla and Ashcroft (1984) using real-space renormalization. For a recent com-
parison with experiment, see Grannan et al. (1981).

It should be pointed out that these same techniques extend to the closely
related, but more difficult problem of estimating the elastic properties of
composites. The vast literature in this area has been surveyed by Watt et al. (1976),
Christensen (1979), Willis (1981), McCoy (1981), and Hashin (1983).

It is often the case that of the various approaches outlined above only the
bounding method is applicable, but it yields bounds which are too wide to be of
practical use. In this situation the experimenter is faced with having to choose from
a myriad of approximation formulae, many of which rest on questionable
foundations. It is thus important to provide, if possible, a rigorous justification for
the approximation formulae used and to clarify the structures and the com-
posites for which a particular formula should give a reasonable estimate of
the effective conductivity.

Let us, for concreteness, suppose the composite consists of grains with various
finite, non-zero conductivities σ(ί) (i=l,2, ...,n) which are either compacted
together to form an w-component granular aggregate, or embedded without
significant contacts in a matrix of uniform conductivity σ(0) to form an (n+1)-
component suspension. One important class of approximation schemes for
estimating the effective conductivity, σ, of such materials are those based on an
effective medium approach. In these schemes the material in the vicinity of each
grain is treated as an effective medium with uniform conductivity. With the aid of
various further assumptions this leads to a number of different approximate
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expressions for <τ. The main examples are:
(i) The Coherent Potential Approximation (CPA);

(ii) The Iterated Dilute Limit Approximation (IDLA); and
(iii) The Average Field Approximations (AFA),

which have been suggested independently by numerous workers in many different
contexts. Landauer (1978) has given an excellent historical review of the first two
approximations which date back to Bruggeman (1935) and which Landauer terms
Bruggeman's symmetrical and unsymmetrical effective medium theories. A brief
derivation of the coherent potential approximation (or CPA) will be presented
shortly. The name stems from the use of the approximation in solid state physics
for estimating the properties of random alloys. Lax (1981) has given a detailed
account of the origins of the approximation in this field: see also the reviews by
Yonezawa and Morigaki (1973) and Elliott et al. (1974). The connection to
Bruggeman's approximation was recognized by Krumhansl (1973) and Hori and
Yonezawa (1975).

A description of the approximations (ii) and (iii) is beyond the scope of this
article. For recent discussions of the iterated dilute limit approximation, also
known as the "differential scheme," see the papers by Cleary et al. (1980), Sen et al.
(1984), and Sheng and Callegari (1984). The most interesting feature of the
approximation, first noted by Sen et al. (1981), is its success in reproducing an
empirical law due to Archie (1942) which predicts the effective conductivity of
porous rocks immersed in a conducting fluid. The significance of this result,
however, is not clear since the approximation was designed to apply to
suspensions of grains in a matrix, as described above, rather than to porous
materials.

The average field approximations were introduced by Polder and Van Santen
(1946) and are partly based on ideas due to Clausius (1879) and Bottcher (1945).
They are essentially mean-field theories and have been frequently applied to
estimate the elastic properties of composites. In this context they are known as the
"self-consistent estimates" and have been reviewed by Watt et al. (1976), Cleary et
al. (1980), and Willis (1981). Interestingly, both the CPA and the AFA give
identically the same estimates for the effective conductivity and elastic constants of
a granular aggregate composed of spherical grains. (These grains must have a
range of sizes in order to fill all space.) As a result of this coincidence the two types
of approximation are often mistakenly regarded as equivalent. The major
distinctions between the various approximations will be discussed in full detail in a
forthcoming article (Milton, 1984c): see also Berryman (1980) and Willis (1981).

Now, let us focus on the coherent potential approximation, which is the subject
of this paper. The following derivation of the CPA is based on an argument given
by Kerner (1956). Consider a granular aggregate and let ft denote the volume
fraction occupied by the grains of component i. Since the grains fill all space one
has

Σ/r=l (l l)
ί = l

Suppose now that the aggregate is injected with fluid of uniform conductivity σ(0),
which forces the grains apart to form a suspension of well-separated grains
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uniformly distributed in the fluid. In this process the material in the vicinity of each
grain is replaced by an "effective medium," namely the fluid. The basic assumption
of the CPA is that when σ(0) is chosen equal to the effective conductivity σ of the
aggregate then the effective conductivity σ' of the suspension remains almost
constant as one injects increasing amounts of fluid. In particular, let us examine the
limiting case in which the total volume fraction c occupied by the grains in the
suspension is very small. By expanding σ' in powers of c one obtains

σ' = σ(0)[l + cP(σ(0)) + *(c)] , (1.2)

which serves to define P(σ), henceforth called the average polarizabίlίty of the
grains in a matrix of conductivity σ. The grains of different conductivities are well
separated and so give independent contributions to P(σ). Thus P(σ) must be of the
form

P(σ)=ΣfiPi(σ), (1.3)
i=l

where the individual polarizabilities pt(σ) depend only on the conductivity σ(ί) of
component i, the conductivity σ of the fluid, or matrix, and on the shapes and
orientations of the various grains of component i. It is assumed that the
orientations of the grains are isotropic, i.e., not biased towards any particular
direction, since otherwise the polarizabilities will be tensorial rather than scalar
quantities. When the grains are spherical, the calculation of pt (σ) is a simple
problem in electrostatics whose solution was given by Maxwell (1873). One finds

p,(σ) = 3(σ(ί) - σ)/(σ(ί) + 2σ). (1.4)

From (1.2) we see that the variation of σ' with c, for c<| 1, is minimal when
σ(0)= σ * ' where σ^ is given by the root of the equation

P(σφ) = 0 (1.5)

and, in fact, specifies the coherent potential approximation. This defining equation
has a unique solution for σ ,̂ as proved below in Sect. 5. By our basic assumption,
σ' is practically independent of c when σ(0) = <τ, and this implies that the coherent
potential approximation, σ ,̂ is approximately equal to σ, the effective conductiv-
ity of the aggregate.

According to Landauer (1978), the CPA has become the most commonly
invoked approximation in the field. Note, however, that the approximation
neglects a number of sometimes important effects. Most significantly, it does not
include information about the packing of the grains, or possible correlations
between the conductivity of neighbouring grains. This is a consequence of the
effective medium approach and it is difficult to asses what restrictions on the
composite geometry are needed to ensure that the approximation gives reasonable
results. For this, among other reasons, the approximation has been the subject of
controversy, much of which has been summarized by Berryman (1980).

In this article we cast light on this problem by showing that the CPA is exact for
a wide, although somewhat special class of hierarchical model composites made of
spherical grains. These models, described in detail in Sect. 2, have a quasi "self-
similar" or "fractal-like" structure in that the composite appears roughly the same
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at different levels of magnification. Briefly, the starting material 0 in the hierarchy
is formed by compacting together n components in any fashion to fill all space, and
material j= 1,2,..., m is obtained by embedding in material (j— 1) a small volume
fraction cj<cj-ί of spheres, of uniform radius r} of the various components
i = 1,2,..., n, with centers spaced at least 2sj apart. The spatial distribution of these
spheres must satisfy a homogeneity condition H which prevents clustering on a
macroscopic scale. In the limit as 7*->oo the sequences of radii rp spacings, sp and
volume fractions c, must meet three conditions, A, B, and C, which ensure that
sj^>rj^>sj-1 a n d &at o n ly a negligible volume fraction of the starting material 0
remains in material j , whenj^l. This prescription allows for a large choice of
geometries at each level,;, in the hierarchy and, furthermore, can be generalized to
model composites with non-spherical grains: see the concluding remarks in Sect. 2.
A precise statement of the central result, Theorem 1, is given in Sect. 3: it implies,

limσ — σ*, (1.6)

where σ} is the effective conductivity of material j in the hierarchy and σ^ is the
coherent potential approximation. The significance and possible generalizations
of this result are addressed in Sect. 4, which includes a discussion of the suitability
of the CPA for estimating the conductivity of cell-materials, defined by Miller
(1969). The remainder of the paper is mostly devoted to establishing a set of
lemmas and propositions needed in the proof of Theorem 1: for further details, see
the opening remarks in Sects. 5 and 6. Finally, the theorem is established in Sect. 9.

It should be noted that similar hierarchical models were first introduced by Sen
et al. (1981) as a basis for the iterated dilute limit approximation: their models are
described in Sect. 4. In that section we also discuss the well-known result of Hashin
and Shtrikman (1962), who have proved realizability of the CPA for granular
aggregates in which the grains are coated spheres, each with a core of component 1,
surrounded by a spherical shell of component 2. Our basic model composites, by
contrast, are not limited to grains of such special construction.

The main results of this paper were announced, in preliminary form, at a
conference (Milton, 1984a). There reference was made to a mild assumption, which
at that time formed the basis for the proof of realizability of the CPA. This
assumption, discussed in Sect. 6, has now been replaced by a rigorous proof for
model composites with spherical grains.

Note that because of the standard mathematical analogies, all the results
presented here extend to the effective dielectric constant, thermal conductivity and
magnetic permeability of the model composites. We do not consider realizability
of the CPA as applied to estimating the properties of random alloys. This has been
treated by Lloyd and Oglesby (1976), who generalize the ideas of Kraichnan (1961).

2. The Models

Consider an aggregate, or composite material, composed of a homogeneous
distribution of well-separated spherical grains of uniform size with a variety of
conductivities, surrounded by a sea of well-separated spherical grains of much
smaller size, which in turn are surrounded by even smaller-sized spherical grains
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and so forth. The material in the vicinity of a given sphere will be characterized by
length scales much smaller than the sphere size and so it is plausible that the
surrounding material can be replaced by a homogeneous effective medium. Thus
one might expect an effective medium approximation to work extremely well for
such a composite. This heuristic idea provides the underlying basis for the
construction of our basic model composites. The essential step is to consider
composites with inhomogeneities on widely separated length scales. This was first
suggested by Schulgasser (1976) as a way to obtain an immense variety of
composite materials for which the effective conductivity can be precisely
calculated: for a range of examples, see Schulgasser (1977a, 1977b, 1983), Milton
(1981), and Lurie and Cherkaev (1982).

Suppose n components, of character i = 1,2,..., n have conductivities σ(ί) which
satisfy the uniform bounds

0<σ <σ(0<σ+ < oo for all i. (2.1)

To construct a sequence of basic model composites with spherical grains, ranging
from material "0" up to material "m", where the integer m will ultimately be chosen
very large, we start by choosing the volume fractions/- of each component i, which
will be held fixed throughout. Then the n components are compacted together in
the proportions prescribed by the f{ to form a starting material "0" which fills all
space, as in Fig. la. It will be required only that the set of points lying within each
component i be measurable and occupy a volume fraction fi% The precise
construction of this starting material is unimportant, since it will occupy a
negligible portion of the final material m, when m> 1.

At the next stage we remove a volume fraction cx of the starting material 0 by
carving out non-overlapping spherical cavities of radius rx with centers spaced at
least a distance 2s1(>2r1) apart. The material outside the cavities is to be left
undisturbed. Then the holes are filled with basic spheres, or 1-spheres (each of
radius r^ofthe various compositions i= 1,2, ...,n to form the material 1 sketched
in Fig. lb. The basic spheres of component i occupy a volume fraction fic1 in the
material 1 and form a configuration, say χiΛ, which will be required to satisfy a
homogeneity condition, H, which is described below.

material 2
Fig. 1. Representative portions of the starting material, material 0, and two successive materials in
the hierarchy of our basic model composites with spherical grains. The composites sketched here
have two components (n = 2) labelled i = l and i = 2. The dashed lines in part (c) mark the
boundary, dΩ, of a test cube Ω
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This procedure is now repeated m— 1 times, as in Fig. 1, until one obtains
material m. In general, given the material j — \ (j = 2939 ,..,m) we carve out a
volume fraction cj<cj_1 of non-overlapping spherical cavities of radius r}-
(ultimately much greater than r^ x) with centers at least a spacing 2s/ > Irj) apart.
During this process the material outside the holes is left undisturbed. Then the
cavities (which may intersect some of the smaller spheres of the lower order radii
rί9r2, ...,rJ _1) are filled with another set of basic spheres of order j , i.e.,7"-spheres
(each of radius r}) of various compositions i= 1,2, .„,«to form the material^ The
7-spheres of component i occupy a volume fraction ff3 of the material 7 and form a
configuration χ u , which satisfies the homogeneity condition, H, which we now
define.

A homogeneity condition on the configurations χuj is needed to prevent the
clustering of spheres on a macroscopic level. Given a cube A of volume V(Λ) in
material j9 let J^ixij) denote the number of centers of 7-spheres in the
configuration χifj which lie within A. When the spheres are homogeneously
distributed and A contains a large number of them, one expects to find

u j J , (2.2)

where

foή (2-3)

is the average density over all space of j-sphere centers in χ( j . To ensure that this
holds with sufficient precision, the configurations are required to satisfy

H: The Homogeneity Condition. Given ε>0, there exists Nε9 independent of m,
such that for all i and j one has

(1 - ε)V(A)ρUj < JTj&x^ < (1 + s)V(A)QiJ, (2.4)

for all cubes A with volume

V(Λ)>NJQU. (2.5)

This enforces the relation (2.3) between Cp Vj and the mean density of j-spheres in
material j .

Note that if/c denotes the maximum packing fraction of hard spheres of equal
size, then the bounds

Cj<Mrj/sj)3<(rj/sj)* (2.6)

are necessarily satisfied for all;, since thej-spheres are spaced at least a distance 2sj
apart. Now, in order to embody in concrete terms the heuristic idea explained at
the beginning of this section, the decreasing sequence of volume fractions c-3 and the
sequences of radii Vj and spacings Sj are required to satisfy the three additional
conditions,

A: limr/s7. = 0, (2.7)

B: l imcf 3 r j + 1 /r j =oo, (2.8)
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and

C: lim £ C j = o o . (2.9)
m-*oo j= l

Condition A is quite strong and serves to ensure that they-spheres are, for large
y, well-separated from each other: it prevents any clustering of spheres on a
macroscopic scale. With (2.6), condition A implies

limc, = 0. (2.10)

Condition B ensures that the material) fory > 1, is effectively homogeneous on the
length scale of rj+i. It will be satisfied only if rj+ Jrj increases sufficiently rapidly
withy. A less-restrictive condition may suffice to replace B: however the proof
presented below would then have to be modified. Condition C is needed to ensure
that the original starting material 0 occupies only a negligible portion of the final
material m, when m > 1: otherwise, the conductivity of the starting material can
significantly influence the conductivity of the final material.

Many sequences exist which satisfy (2.6) and the conditions A, B, and C. Let
h{y) be any slowly increasing function of y, such as log(logj ), which diverges to
infinity less rapidly than y413 as y->oo. Then it suffices to choose sequences
compatible with the bound (2.6) which in the limit y'^oo have the asymptotic
behavior

cjK\h{j)Yiβ, (2.11)

where the exponents α and β satisfy

±>β^oc>O. (2.12)

Since the sequence of radii r7- necessarily increases faster than exponentially withy,
it is clearly prohibitive to physically manufacture high-order materials with m M :
the size of the basicy-spheres quickly reaches astronomical proportions. Neverthe-
less, these high-order materials are certainly well-defined from a mathematical
standpoint.

Note that we consider throughout three-dimensional Euclidean space:
however, all our considerations generalize directly to d-dimensions. Furthermore,
most of the analysis extends to model composites with non-spherical grains.
Briefly, these model composites are constructed as follows. The starting material 0
is the same as described earlier. To construct material y, given material j — 1, we
carve out of material y—1 a volume fraction cj<cj_1 of non-overlapping
randomly oriented cavities each shaped to exactly accommodate a single y-grain
chosen from a set ofy-grains that have various conductivities σ(i) (i = 1,2,..., ή) and
various shapes. They-grains are then inserted to fill these cavities, thereby forming
material y. Any y-grain, say g, is a compact set of points occupying finite volume.
The center and radius of the smallest closed ball which contains g uniquely defines
the grain center and radial extent of the grain. We require that ally-grains have a
uniform radial extent, r p with centers at least a spacing 2s 3 (> 2r7) apart in material
y. The sequences of volume fractions cp radii r5 and spacings Sj should be chosen to
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satisfy conditions A, B, and C. Furthermore, to help ensure that material m is
quasi-self-similar when m> 1, we require that for all;, the collection of -grains in
material; be a magnification (by a factor rjr^ of the 1-grains in material 1, having,
therefore, the same average polarizability, P(σ). Additional conditions are clearly
needed to replace the homogeneity condition H and ensure that the -grains in a
sufficiently large cube containing material; have average polarizability P(σ). It is
still not known what restrictions on the grain shapes are necessary: however, there
is no obvious barrier to generalizing all the analysis to grains with smooth analytic
surfaces.

3. Statement of the Main Result

As discussed in the introduction, the central theorem of this paper is that the
effective conductivity σm of material m approaches the coherent potential
approximation σ*, as defined by (1.5), when m tends to infinity. Now according to
the description of Sect. 2 the material m is not required to be homogeneous or
isotropic on any length scale. Thus some care is needed in defining what one means
by the effective conductivity. Let us deal with this before giving a precise statement
of the theorem.

In our analysis we will be concerned with averages of vector or scalar fields
taken over some region in space, say A. Here and below we let V{A) denote the
volume of A and if A is cubic we let L(A) denote the side length of A. Then, given
some function t(x) which is integrable over A, let

^ (3.1)

denote the average of ί(x) over A.
Consider a test cube Ω of side L(Ω), containing material m and let σw(x) denote

the local conductivity at a point x in Ω, with

σm(x) = σ(ί) if x is in component i. (3.2)

For each composite m, both σm(x) and l/σm(x) are measurable, bounded positive
functions on Ω and in fact are simple functions, i.e., they assume only a finite
number of values.

Now, given any vector Eo, let <ί(E0) denote the family of real-valued, square-
integrable and once-continuously differentiable, curl-free electric fields E(x)
defined in Ω with

J E()d = E o , (3.3)

and which satisfy periodic boundary conditions. Curl-free means the derivatives of
E(x) satisfy

FxE(x) = 0 for all xeΩ. (3.4)

Let <?(E0) denote the closure of <ί(E0) in the space of measurable square-integrable
functions on Ω. Specifically, we say E(x) e <?(E0) if E(x) is measurable and square-
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integrable over Ω and there exists a sequence of functions Ej(x) G S(EO),
(/= 1,2,..., oo) which converge to E(x) in the sense that one has

lim<[E(x)-E/(x)]2>β = 0. (3.5)
/-•oo

Note that the fields in #(E0) need not be differentiable, or continuous and may even
fail to satisfy the periodic boundary conditions.

Next, given another vector Jo, let / (J o ) denote the family of real-valued,
square-integrable, divergence-free current fields J(x) defined in Ω which satisfy the
same conditions as the fields E(x)e<ί(E0) except that (3.3) is replaced by the
analogous condition

<J(x)>Ω=J0, (3.6)

and instead of (3.4) we require

F J(x) = 0 for all X G Ω . (3.7)

Likewise, let </(J0) represent the closure of </(J0) in the space of measurable,
square-integrable functions on Ω.

Then for non-zero Eo and J o one may define two effective conductivities for the
material m with conductivity σjx) by

σ,;(Ω;Jo)= inf <σmE E>Ω/|E0 |
2; (3.8)

E f ( E )

and

<?-(β;E0) = sup |J 0 |7<J J/<?m>Ω (3.9)
Je/(J0)

Note that if E(x) is in <?(E0) then λΈ{x) is in i{λΈ0) for all real λ and consequently
σ+(Ω,E0) must be independent of the magnitude of Eo. Similarly σ~(Ω, Jo) is
independent of the magnitude of J o .

The effective conductivities defined by (3.8) and (3.9) in fact, satisfy the
inequality

^(Ω,e)^σm(Ω,e), (3.10)

for any unit vector e. To see this suppose E(x) G <ί(E0) and J(x) G /(JO). Since E(x) is
curl-free, it must be the gradient of some potential Ψ(x). Then by applying the
divergence theorem (Kellogg, 1953) to the field Ψ(x)J(x) within Ω, and using the
periodic boundary conditions on E(x) and J(x), one finds

<J.E> β = J 0 E 0 . (3.11)

Through Schwartz's inequality this property extends to all E(X)G#(E 0 ) and
J(x) G / ( J o ) . Now the inequality

<(σmE-J)2/σm>β^0 (3.12)

is clearly satisfied and implies

/σm>Ω^0. (3.13)
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In particular, this holds if one chooses

E 0 = J 0 < J J/σm>Ω/|J0 |2, (3.14)

so that E o and J o are parallel. In this case (3.13) implies

<σmE E> β/|E 0 | 2 ^ |J 0 | 2/<J 3/σm}Ω, (3.15)

and the result (3.10) then follows from the definitions (3.8) and (3.9).
So far we have avoided the issue of whether the inlϊmum in (3.8) [or the

supremum in (3.9)] is attained by some optimal electric field Em(x) in #(E0) [or by
some optimal current field βm(x) in </(J0)ΐ and whether this field Em(x) [or Jm(x)] if
it exists is unique. Both these questions have been answered affirmatively and in a
very general context by Papanicolaou and Varadan (1982) and Golden and
Papanicolaou (1983). Their result applies even if there are Lebesgue spines
(Kellogg, 1953) and other pathological features in the geometry of the composite: it
is required only that σm(x) and l/σm(x) be bounded measurable positive functions.
The arguments of Papanicolaou and Varadan (1982), as applied to the present
problem, are presented elsewhere (Milton, 1984b). These arguments show that
there exists a unique symmetric tensor, the effective conductivity tensor σm(Ω), for
material m, such that if J o and E o are chosen with

J 0=σm(Ω) E 0 , (3.16)

then the field equation

Jm(x) = <τm(x)Em(x) (3.17)

is satisfied almost everywhere within Ω. Consequently, the definitions (3.8) and
(3.9) with (3.11) imply, for any unit vector e, the identities

<7+(Ω,e) = ee:σm(Ω); (3.18)

and

σ;(β,e) = [ee :σ m ( ί2Γ 1 ]- 1 . (3.19)

Furthermore, if the material m is macroscopically homogeneous and isotropic
then the tensor σw(Ω) becomes isotropic as L(Ω)-»oo, and hence one has

lim σ+(Ω,e) = lim σ~(Ω9e) = σm9 (3.20)
L(Ω)->oo L(Ω)-*oo

where σm is the standard effective conductivity: see Golden and Papanicolaou
(1983).

Now we may state the main result which proves that the coherent potential
approximation becomes asymptotically exact as the order m, of our basic model
composite becomes large.

Theorem 1. Given any δ >0, there exists an m0 such that for all m^m0 and all test
cubes Ω with side

Ξ C ^ 3 ( V m + 1 ) 1 / 2 , (3.21)
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one has, for any unit vector e, the bounds

* * (3.22)

where the coherent potential approximation σ^ is defined by (1.5).

If, for all m > 1, material m is macroscopically homogeneous, then this theorem
in conjunction with (3.20) clearly implies the result (1.6) stated in the introduction.

4. Discussion

Our basic model composites, described in Sect. 2, have two desirable properties.
First, their construction is such that one is free to vary the component
conductivities, σ{i), without altering the structure. Hence, the functional de-
pendence of the CPA on the component conductivities is realizable by a
composite with fixed structure. This explains why the approximation has the
correct analytic behavior, as a function of the individual σ(ί) (Bergman, 1978).

Second, the design of the basic model composites is such that we expect the
CPA to give accurate estimates of many other effective parameters besides their
effective conductivity: these include the effective elastic moduli, the complex
dielectric constant in the quasistatic limit, the effective Hall coefficient and the
effective magnetoresistance. Explicit estimates for these parameters have been
derived, using the CPA, by Zeller and Dederichs (1973), Korringa (1973),
Gubernatis and Krumhansl (1975), Berryman (1980), Stroud and Pan (1978),
Cohen and Jortner (1973), Stachowiak (1970), and Stroud (1975), among others.

The desirable features just listed do not necessarily characterize all model
composites with an effective conductivity for which the CPA formula happens to
be exact. Thus, Schulgasser (1976) has constructed a model of a polycrystal, called
model 0, with an effective conductivity that can be calculated exactly. (A
polycrystal is an aggregate of grains, of various sizes and shapes, each cut from the
same anisotropic perfect crystal, but placed in the aggregate with an orientation
that varies from grain to grain.) It was noted by Willemse and Caspers (1979) that
the conductivity of model 0 coincides with the CPA formula for a polycrystal
formed only of spherical grains. Model 0, however, is obtained by stacking
together thin rectangular slabs of crystalite, not spheres of crystalite. Hence the
model is certainly not a realization of the CPA in any reasonable sense. Thus there
is no reason to expect that the CPA formula will give an accurate prediction of, say,
the elastic moduli of model 0.

There is one special class of two-component granular aggregate which
readability of the CPA has been, in fact, established long ago. Hashin and
Shtrikman (1962), although they did not state their result this way, have proved
that the CPA gives an exact result for the effective conductivity, σ, of an aggregate
of coated spheres which have a variety of sizes ranging to the infinitesimally small
(in order to fill all space): each grain consists of a spherical core of component 1
coated by a spherical shell of component 2, and all the coated spheres have the
same ratio of core radius to outer radius. The reasoning of Hashin and Shtrikman
was ingenious. Consider a homogeneous "effective medium," say a fluid, of
uniform conductivity σ(0) = σ under the influence of a uniform electric field. We can
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insert coated spheres in the fluid without disturbing the surrounding field and
hence without changing the average transport properties of the composite. This
can be continued until all but a negligible volume fraction of the fluid is displaced
by coated spheres. Thus the basic assumption of the CPA, namely that the effective
conductivity, σ\ of the suspension remains constant as one removes (or injects)
fluid, is satisfied exactly, irrespective of the size distribution of the coated spheres
and of their placement in the fluid. Hence σ is given exactly by the CPA formula
(1.5), in which P(σ) is taken as the polarizability of a coated sphere: see Van de
Hulst (1957). In fact, σ was also found by Hashin and Shtrikman to coincide with
the Clausius-Mossotti approximation (see Landauer, 1978), which thereby
establishes the realizability of both this approximation scheme and the CPA. In a
different context, Stell et al. (1981) have established that the Clausius-Mossotti
approximation is exact for certain fluid models. Hashin and Shtrikman's proof of
realizability of the CPA extends to other related granular aggregates, including
assemblages of multicoated cylinders and spheres (Hill, 1964; Hashin and Rosen,
1964), assemblages of aligned, coated ellipsoids (Milton, 1981 Bergman, 1982) and
particular polycrystalline aggregates (Schulgasser, 1983). By contrast to our
models, the grains must be of very special construction to ensure that the insertion
of a grain in the effective medium does not distort the surrounding field. Thus any
grain of uniform conductivity is unsuitable, unless it happens to have the same
conductivity as the effective medium. While the coated sphere model is a
realization of the CPA for the effective conductivity and bulk modulus, this
property does not extend to the effective shear modulus (Hashin, 1962,1983). We
expect, however, that the CPA for the shear modulus of the coated sphere
assemblages (Smith, 1974; Christensen and Lo, 1979) is exact for a class of
hierarchical models, similar to our basic model composites, in which the j-grains
are taken as coated 7-spheres.

There are notable similarities between our basic model composites and the self-
similar models of Sen, Scala, and Cohen (1981) who take a fluid, of uniform
conductivity σ(0), and construct, by recursion, a hierarchy of granular suspensions
by inserting grains of rock of conductivity σ(1): suspension j consists of a small
volume fraction of basic 7-spheres of rock embedded in the fluid, if j= 1, or in
suspension (j — 1), otherwise. The hierarchy is continued until a desired volume
fraction of rock is reached. No restriction is placed on the sequence of radii, rj9 of
the basic 7-spheres. Consequently, the conductivity of these self-similar models
cannot be calculated exactly. Instead, Sen, Scala, and Cohen used the iterated
dilute limit approximation, discussed in Sect. 1, to estimate the conductivity of
their models. Initially there was no clear picture of what geometry is accurately
approximated by the IDLA. This issue was first analyzed by Yonezawa and Cohen
(1983) who concluded that the approximation is good for a geometry in which the
connectedness of the fluid is guaranteed all the way down to the limit of zero
proportion, of the fluid, while the rock remains disjoint. More recently, following
Milton (1984a), Sen et al. (1984) have suggested that the IDLA can actually be
realized exactly by taking appropriate limits in the self-similar models of Sen et al.
(1981): this can, in fact, be established by the methods we develop here (Milton,
1984b). The resemblance between these self-similar models and our basic model
composites suggests a connection between the IDLA and the CPA. Indeed, Norris
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and Sheng (1984) have noted, independently, that the IDLA when generalized to
multicomponent granular suspensions asymptotically approaches the CPA as the
volume fraction of the fluid vanishes.

One might hope to construct a version of our basic model composite entirely
with grains that are all perfect spheres, filling almost all space. This can, in fact, be
done without spoiling the analysis. We take material m and retain all the grains
that are complete spheres while we replace the remaining material (including the
basic spheres that were partly carved out in the process of constructing material m)
by a matrix of uniform conductivity σ(0), where σ~<σ ( 0 ) <σ + . The resulting
change in the effective conductivity is insignificant when m > 1, because the matrix
of conductivity σ(0) occupies a negligible volume fraction. By setting σ(0) = σ(ί) for
some i ^ l we obtain model composites with perfectly spherical grains of n— 1
components, embedded in a matrix of component i.

Our analysis shows that the CPA gives an excellent estimate of the effective
conductivity of material m when m^>l. This raises an important question: "To
what other classes of granular aggregates can one apply the CPA and be assured of
a reasonable estimate of the effective conductivity?" We will not provide a
complete answer to this; instead we limit our discussion to the suitability of the
CPA for estimating the conductivity of cell-materials. These materials, proposed
by Miller (1969), are constructed by dividing all space into cells of various sizes and
shapes and filling each cell independently with component 1 with probability
Pi =fu with component 2 with probability p2 =f2, and so on for all n components.
In practice a cell-material might be manufactured by compacting together a
thorough mixture of identically shaped grains of the components. Ideally, the
mechanical properties of the components should be similar so the grains are
equally distorted in the resulting material.

It seems natural to apply the CPA to estimating the conductivity of cell-
materials, since they fulfill a requirement proposed by Landauer (1952). Landauer
states that, for a two-component composite, an effective medium assumption will
be valid only if there is no correlation between the location of the two types of
grain. More precisely, grains of component 1 should not be preferentially
surrounded by either grains of component 1 or grains of component 2. Cell-
materials may be regarded as satisfying this condition, since the conductivities of
different grains are not correlated, by construction. (In our basic model composites
such correlations can be present, but the homogeneity condition, H, restricts their
form.)

Our basic model composites do not encompass cell-materials. Thus, suppose
the conductivity of the -spheres were chosen at random. Then there would always
be a non-zero probability that all 7-spheres in a large cube had the same
conductivity; but this would be incompatible with the homogeneity condition, H.
Nevertheless, by weakening the homogeneity condition, and by modifying the
statement of Theorem 1, one can enlarge the class of our model composites to
include cell-materials that realize the CPA: the details will be given elsewhere
(Milton, 1984b). The results for such models suggest that the CPA will be a better
approximation for cell-materials in which cells of comparable size are well-
separated, than for those in which cells of comparable size are adjoining.

Elsayed and McCoy (1973) and Elsayed (1974) have shown that the conductiv-
ity of cell-materials is influenced by the distribution of cell sizes and their packing.
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Whenever these factors play only a minor role, the CPA should work extremely
well since it is realizable. In fact, for any two-dimensional, two-component cell-
material with ft = / 2 =4, the effective conductivity is known exactly from duality
arguments (see Keller, 1964; Dykhne, 1970; Mendelson, 1975) and coincides with
the CPA: the packing and sizes of the cells are irrelevant.

One can explore the extent to which the effective conductivity is determined
only by the shape of the cells by applying the CPA to granular aggregates, in which
each "grain" consists of a. cluster of cells in a given configuration. Some progress
has been made by Sheng and Kohn (1982). If the cells are platelike then they can be
stacked together to form a laminate and statistically isotropic cell-materials can be
constructed from the laminate. Using this novel approach, Schulgasser (1976,
1977a, 1983) has shown that a wide range of effective conductivities are possible in
3-dimensions (but not necessarily in 2-dimensions) and so the size distribution of
the cells and their packings can be very important. Thus we expect the CPA will
not be reliable for 3-dimensional aggregates of platelike cells, unless similar sized
cells are well-separated. Hopefully, the CPA works better for cell-materials with
roughly spherical cells. The orientation of the cells does not matter and hence we
have less flexibility to construct cell-materials with a wide range of conductivities.

To summarize these considerations, the CPA probably provides a reasonable
estimate of the effective conductivity of (i) cell-materials that have a broad
distribution of cell-sizes with cells of comparable sizes being well-separated, (ii)
cell-materials that are 2-dimensional rather than 3-dimensional, or (iii) cell-
materials that have roughly spherical cells, rather than platelike or needlelike cells.
Similar conclusions have been reached by Landauer (1952, 1978) on the basis of
rather different arguments. There is a good reason to be optimistic: in random
resistor networks the CPA works remarkably well over a large range of volume
fractions, even in the extreme case where one of the components is non-conducting
(Kirkpatrick, 1971). In these networks the conductance of each resistor is chosen at
random. The networks are basically the discrete analogs of cell-materials.

Finally, we point out that since the CPA is realizable, one can confidently use it
as a tool for testing new theories and conjectures. For instance, any bounds on the
conductivity of cell-materials must be compatible with the CPA. Indeed,
Berryman (1982) has proved that the CPA for an aggregate of spheres lies between
the upper and lower bounds established by Miller (1969). Future improvements of
these bounds must similarly be consistent with the CPA unless a restriction is
placed on the packing of the cells or on their size distribution. For further
discussion of the significance of the realizability of the CPA, see Milton (1984a). Let
us now establish some lemmas and propositions needed to prove Theorem 1.

5. The Mapping Sequences

Here we deduce a few simple constraints on the behavior of the individual
polarizabilities pt(σ) and average polarizability P{σ) as a function of σ. Then these
are used to prove some basic properties of a special set of mapping sequences,
defined below, which play an essential role in establishing Theorem 1. At this stage
we make no assumptions about the grain shapes, beyond requiring that the
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polarizabilities pt(σ) and P(σ) be well-defined, scalar functions of σ, which in
accordance with (1.2) and (1.3) determine the effective conductivity, σ\ of a very
dilute suspension of the grains in a matrix of conductivity σ.

As first recognized by Bergman (1978) and proved rigorously by Golden and
Papanicolaou (1983), the effective conductivity <f, is an analytic function of σ with
singularities confined to the negative real axis, σ < 0. In fact, as discussed elsewhere
(Milton and Golden, 1984), σ'/σ is essentially a Stieltjes function of σ: see Baker
and Graves-Morris (1981) for a discussion of these functions. By (1.2) the average
polarizability P(σ), like σ\ must be analytic in σ with no singularities when σ is
positive. In particular the derivative P'(σ) = dP(σ)/dσ exists for all σ>0.

Let us define the dimensionless constants

K~ =min[-σP'(σ)] , K+ = max[-σP'(σ)] , (5.1)

where J is the interval [σ ~, a+], and σ ~, σ + are defined through (2.1). In Lemma 1,
below, it is established that P(σ) is a strictly monotonic decreasing function of σ
and so K~ and K+ are positive. Hence by (2.10) there exists an integer k0 such that

c, <(l/K+)min{il/31n((7+/σ")}, for all j^k0. (5.2)

Now for integers k^k0 and all j^k, let us introduce the mapping sequence,
{σf)+}jt=k, defined by the recursion relations

σfW if j =

ΞG/(σft) if

where the mapping functions Gf{σ) are defined by

G/(σ) = σ{l+C,.[P(σ)+^-<5]} (5.4)

and δ lies in the range

i (5.5)

but will ultimately be chosen arbitrarily small as in the statement of the theorem.
We have two major goals. The first goal, which is expressed in Proposition 1

below, is to prove that each mapping sequence converges to the coherent potential
approximation, σ ,̂ to within terms of order δ. The second and more difficult goal,
discussed in Sect. 6, is to establish that σ**)+ represents, for any vector Eo, an upper
bound on the effective conductivity σ^(Ω;E0), defined by (3.8), when m^fc>l.
Once these two goals have been achieved, it is simple to prove, as is done in Sect. 9,
that the upper bound in (3.22) is satisfied for m > k $> 1. The lower bound follows by
similar reasoning and thereby Theorem 1 is proved.

Some key properties of the polarizabilities, needed to prove Proposition 1, are
given in the following lemma and associated corollary. This lemma also serves to
establish the existence and uniqueness of the coherent potential approximation,

Lemma 1. The individual polarizabilities p{(σ) and average polarizability P(σ)
defined through (1.2) and (1.3) are strictly monotonic decreasing functions for all i
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and all σ>0. Furthermore, the defining Eq. (1.5) for the coherent potential
approximation, σ^ has a unique positive solution which lies in the range

σ~ <σ^<σ+ (5.6)

where σ~ and σ+ are defined through (2.1).

Integrating the bounds (5.1) from σ* to σ, where σeJ leads to the easily proved

Corollary. In the notation of Lemma 1 the average polarizability, P(σ), satisfies the
bounds

K~\\n(σ/σJ\<\P(σ)\<K+\n(σ+/σ-) for all σεJ, (5.7)

where K~ and K+, defined by (5.1), are positive constants and e/ = [σ~,σ + ] .

Proof of Lemma 1. Consider a dilute suspension of well separated grains of
component i, with polarizability pf(σ), uniformly distributed in a fluid of
conductivity σ(0). By the definition of pt(σ)9 this suspension has an effective
conductivity

* <0 = σ ( 0 )[l + cPi(σ{0)) + *(c)], (5.8)

where c is the volume fraction occupied by the grains in the fluid. Clearly, when
σ ( 0 ) = σo) there is no distinction between the grains and the fluid and so σ(i) must
then be independent of c. Hence the identity

ft(σ(j,) = 0 for alii (5.9)

is always satisfied.
Now the bound

Sσ{ΐ)/dσ{i) ^ (σ ( ί ) - σ(0))
2/c(σ{i) - σ ( 0 ) )

2 , (5.10)

established by Prager (1969), with (5.8), and the bound

(<*<«) ~ σ(0))/O(ι ) - σ(0)) ^ 3cσ(O)/[3σ(O) + (1 - c)(σ(ί) - σ ( 0 ))] , (5.11)

derived by Hashin and Shtrikman (1962) implies the inequality

dPi(σi0))/dσ(i) ^ 9σ(0)/(2σ(0) + σ ( / ))
2, (5.12)

which is, in fact, attained when the grains are spherical. Since p f(σ(0)) is
dimensionless, it can only depend on the ratio σ(0)/σ(ί), and so we have

SPi(σi0))/dσi0) = - (σ^/σ^dp^σ^/dσ^, (5.13)

which by (5.12) is negative. Hence the individual polarizabilities, pf(σ), are strictly
monotonic decreasing functions for all σ > 0. In conjunction with (5.9) and (2.1) this
implies,

Pi(σ-)>0, Pi(σ+)<0 for a l l z . (5.14)

It then follows from (1.3) that P(σ) is a strictly monotonic decreasing function of σ
with P(σ~)>0 and P ( σ + ) < 0 . Consequently, the equation P(σ5|ί) = 0 has a unique
positive solution satisfying (5.6). D
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Note this proof of Lemma 1 hinges on the positivity of the derivative 3σ(i)/3σ(ί).
One alternative and perhaps more instructive method of establishing dσ{i)/dσ{i) > 0
relies on an important result due to Bergman (1978). He shows this derivative is
proportional to the power dissipated in component i, which is clearly non-
negative, and in fact is positive (to first order in c) when (2.1) is satisfied.

Remark. The lower bound (5.12) on the derivative δp, (σ)/5σ(i) given in the proof of
Lemma 1, and a similarly obtained upper bound, imply through (5.13) and (1.3) the
inequalities

9σ~σ+/(2σ+ +σ~)2<K-^K+ <l(σ-)2 + 2(σ+)2]βσ-σ+ , (5.15)

which prove K~ and K+ lie in the interval (σ~/σ+,σ+/σ~). This, however, is
incidental to the main proof: it suffices to note K+ ^K~ >0.

We are now ready to prove Proposition 1, which will accomplish the first goal,
namely to show the mapping sequences converge to σ% within terms of order δ.
Proposition 1 also provides some simple bounds on the mapping sequences
needed to establish Lemma 2 and Proposition 3, in Sects. 6 and 7.

Proposition 1. The kth mapping sequence σf =σf)+ defined in (5.3) satisfies the
uniform bounds

σ " < σ / < σ + , for all kj, (5.16)

and given δ in (0,-j), there exists an integer mγ{k) such that the inequality

is satisfied for all m^mγ{k), where the coherent potential approximation, σ^ is
defined foy (1.5).

Proof. The sequence σf is generated by the mapping functions G/(σ) defined in
(5.4). Hence our first need is to gain some insight into the behavior of these
functions in the interval J = [σ~, σ + ]. From the corollary to Lemma 1 and the
bounds (5.2) and (5.5) we have

±σ<G/(σ)<2σ, K~ < -σP\σ)<K + for σeJ, (5.18)

where P\σ) = dP(σ)/dσ. These inequalities with (5.2) imply that the derivative

*) (5.19)

is positive and less than 1, for σeJ. Thus in the interval J the function G/(σ)
preserves order and may be regarded as contractive on a logarithmic scale of σ.

By the definition (5.4) any fixed point, σ£, of G/(σ), apart from σ^ =0 or oo,
must satisfy

P « ) = - i J R r a , (5.20)

and from Lemma 1 and its corollary (and the restriction δ<^) this has a unique
positive solution for σ* which lies in the range

σ_<σt<σ+. (5.21)
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Moreover, because G/(σ) is a contraction in this interval, it maps any point
σ e [σ~, σ+] towards σ£, i.e., this fixed point is attractive. Now σ/ is the image of
σ/_! under the mapping G/ (σ), and so σf must be closer than σ/_ x to the attractive
fixed point at σ*. By induction on;, all points in the sequence lie between σ+ and
σ+. This establishes (5.16).

Note that (5.18) and (5.19) imply

Z 1 -frμc- ίapi-tcjK-), (5.22)

for all σeJ. Thus on a logarithmic scale of σ the map G/(σ) contracts all
distances in [σ",σ+] by a bounded factor: specifically one has

exp(-ic J X-), (5.23)

for ally^fcH-1. By induction on 7, one thus finds

|ln(σ>:)| < |ln(σ+/<)| e x p ^ l ^ ] , (5.24)

where by condition C, the sum

4fc)= Σ cj (5.25)
j=fc+i

diverges when m-> 00 at fixed fe. Hence there exists a constant m1 = m /̂c) such that

zίM

k!>(2/K-)ln[(4/(5)ln(σ+/σ-)], (5.26)

which by (5.24) and (5.21) implies

|ln(σ,£/σ+)|<i(5 for all m>m1(/c). (5.27)

Now from (5.20) and the corollary to Lemma 1 we have

| ln«/σj |<i<5, (5.28)

and finally, with (5.27) this gives

m<lcj\<iδ, (5-29)

which, since δ<^, establishes (5.17). D

Having established that the feth-mapping sequence, σj*)+, converges to the CPA
as m-xx) and δ->0, we now need to prove the mapping sequence bounds the
effective conductivity of material m when

6. The Mapping Fields

The second goal, stated in Sect. 5, is to establish that σj*)+, defined by (5.3),
represents an upper bound on the effective conductivity of material m, for
m>fe>l. This is made plausible, but certainly not proved, by the following
argument. For simplicity, suppose material;, for anyj>fc> 1, is macroscopically
homogeneous with an effective conductivity σy Furthermore, let us regard this
material as a dilute suspension of j-spheres, or in general 7-grains, occupying a
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volume fraction c7<ξ 1 in a homogeneous effective medium of uniform conductivity
σy_ 1. Then from the defining Eq. (1.2) for the average polarizability P(σ) we have

σj = σj^ll + CjP(σj- x) +*(cy)] , (6.1)

and since c,—>Ό asy->oo, this implies

σ ^ J for all j>k>l, (6.2)

where (5.4) defines the mapping function G/(σ). Now the proof of Proposition 1
establishes that the mapping G/(σ) preserves order in the interval ,/ = [σ~,σ+].
Also, by Proposition 1, we have σf)+ e J and the definitions (3.8), (3.9), and (3.20)
imply o^eJ. Hence the inequality σk^σ+ is satisfied and by induction on j we
conclude from (5.3) and (6.2) that the bound δj^σf)+ holds for allj>kρ 1. Any
reader who is content to accept this heuristic argument can jump to Sect. 9, where
Theorem 1 is proved. The main weakness in the argument is the unresolved
question of whether the material (j—l), surrounding the -grains in material), can
indeed be regarded as an effective medium of uniform conductivity when; > 1. This
assumption was the basis for an earlier claim of readability of the CP A (Milton,
1984a). It seems plausible, because of the large difference in length scales between r,-
and ry-! when; is large, but it remains to be proved.

A rigorous approach to the second goal is the focus of this and the next two
sections. Because of the technicality involved, we consider only those model
composites with spherical grains. The aim of this section is to construct, by
recursion, a special sequence of trial electric fields, or mapping fields, Ej™'fe)(x),
Έ%Lkl(x) down to E(x) = E[m'k)(x) defined in any test cube Ω of side L(Ω)^Lm in
material m, where (3.21) defines Lm. These fields, which are a subset of #(E0), are
designed to be successively better approximations to the optimal field Em(x). The
last field in the sequence, i.e., E(x), will serve as an excellent approximation to Em(x)
(down to length scales of order rk) when m̂ >fê > 1. Section 7 is directed towards
establishing some simple bounds on the spatial variation of the mapping fields
within special subregions of Ω. These bounds are needed in Sect. 8 to deduce an
upper bound on <<τwE E>β, which through (3.8) gives an upper bound on the
effective conductivity and thereby the second goal is accomplished.

Starting from the uniform field

Έ£-h\x) = Έ0 for all xeΩ, (6.3)

we construct the sequence of mapping fields using the recursion relation

*>) for ; = m,m-l,. . . ,/c+l, (6.4)

where the mapping functional !F maps Ejm k)(x) within Ω into an improved field by
adding appropriate combinations of dipolar and linear fields in the vicinity of most
of they-spheres. These dipolar and linear fields are truncated at a radius Sj from the
center of each 7-sphere to prevent any overlapping of fields due to different
y'-spheres.

The specification of the mapping functional 2F is quite involved. Let us begin,
for; = /c,..., m — 1, by dividing space into a lattice, SP>P of cubic cells, or>cells, with
the same orientation as Ω. Each -cell in J^ is an open cube of side length chosen as

, (6.5)
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bare
(j + l)-sphere
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Fig. 2. Illustration of the construction of the regions A^ and βj m) in the vicinity of a bare (/ +1)-
sphere located near the boundary dΔζl ± between two cubical (j + l)-cells each in A{$v The region
A^ excludes those j-cells which overlap either the (j + 1)-sphere or the boundary dAf$ί The
region Θf* encompasses all the j-security spheres and all the concentric basic -spheres Note
that Θf* is contained within Af* and that the various component conductivities of the basic j -
spheres have not been distinguished

which defines an intermediate length scale. (Evidently, for) > 1, L,- is much smaller
than the spheres of radius rj+l9 yet is considerably larger than the spacing between
the spheres of radius r,-.) Also let 77^m), as in Fig. 2, denote the open set of points in
material m that are within any y-spheres in Ω. Naturally, 77jm) does not include
those portions of anyy-sphere which were carved out in the process of constructing
material m.

The quasi-self-similarity of material m, when m > 1, serves as a basis for defining
the mapping fields. We construct, by recursion, special open subregions of Ω, Af\
and <9jm). The region Af^, required to define 6^m), is a collection of y-cells each
roughly similar to Ω: anyy-cell in Δf^ contains only material y, i.e., no portion of
Π\m) for any l>j9 and the definition is motivated by the fact that the field Ejm'fc)(x),
like the field Ej™'fe)(x) in £2, will be relatively uniform within the cell when m 5> k ̂ > 1.
The region 6^m) C A j m ) defines that portion of Ω, near selected basicy-spheres, where
mapping functional & will modify the field E^m'fc)(x). Specifically, Δf] and Θf] are
constructed as follows. We start by defining

A { ^ = Q\dQ9 (6.6)

where dΩ is the boundary of Ω. Now, suppose for some positive integer y <m one
has determined the region A j m ) . Then for eachy-sphere with center in A j m ) but more
than a distance Sj from the boundary Af\ call the concentric open ball of radius Sj a
j-security sphere: see Fig. 2. Thus everyy-security sphere will have a basicy-sphere
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at its core, but some basic spheres may be left bare with no associated security
sphere. This technique of using security spheres has been implemented in other
problems by Keller, Rubenfeld, and Molyneux (1967) and Kohler and Papani-
colaou (1981).

Let Θjm) represent the open region consisting of all points (in Δf^) that are
within any of thej-security spheres. Now, construct the region Δψlu through the
recursion relation

Af}x = #}_ x(Af >)\#}_ ̂ Πf^dΘf^dΔfϊ), (6.7)

where iVj^Λ) denotes the open region comprised of all -cells which intersect any
bounded region A. [Note that, because each j-cell is open, #}(/t) is generally a
disconnected region, although its closure is connected if A is connected.] As
illustrated in Fig. 2, Aψ}x is constructed from #}_ i(^m )) by excluding those (j — 1)-
cells which overlap the basic j-spheres or which intersect either the boundary of
one of the ̂ '-security spheres in <9jm) or the boundary of one of the y-cells. This
ensures that A j m ) contains only material j .

As defined here, ©Jm) and Δf* represent open regions in space. It is also
convenient to regard Θf^ as a collection of y-security spheres and Aψ* as a
collection of j-cells: for this purpose Ω\dΩ is defined as an m-cell. Since Ω was
chosen with L(Ω)^Lm9 we have

L(Γ)^Lj forany -cell ΓcAf\ (6.8)

the bound being attained when j Φ m.
We may now define a sequence of fields E^m'fc)(x), and thereby implicitly define

the functional J^, as follows: recall from (6.3) that E<™'k)(x) is the uniform field Eo,
and use the recursion relation

Ep\\x) = E f >k)(x) + VΦf >k\x), (6.9)

where the perturbing potential Φjm'fc)(x)is zero outside Θf\ and is an appropriate
combination of linear and dipolar potentials inside Θfl Specifically, for each
7-security sphere Σ in <9jm), let

EΣ = E^k\xΣ) (6.10)

denote the field Ejm'fe\x) at the center, xΣ, oϊΣ. Next, introduce a system of spherical
coordinates r, 0, and φ with the origin at x^ and with polar axis in the direction of
EΣ. If the basic y'-sphere concentric with Σ has conductivity σ(/) set

for

for ^

where the constants Ff;k\ F£'2
fc), and F{j;k) are chosen to satisfy the conditions

(6.12)

, (6.13)

f 3

k ) + } ) > ( 6 1 4 )
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and σfl\ is defined in (5.3). The first two conditions here ensure continuity of the
potential Φf1^ on r = Sj and r = Vj while the last ensures that the radial component
of σm(x)E^'ϊ)(x) would be continuous across the boundary r = r^ if Ejm'fe)(x) were
uniform and the material (/ — 1) were homogeneous with conductivity σfl\. One
may replace (6.14) with some other condition: the form chosen is motivated by the
expectation that when δ is small and m >j$> k$> 1, the field Ejm>fc\x) can be treated as
homogeneous with an effective conductivity of σfl\. Solving (6.12)-(6.14) gives, via
(1-4),

/ή)-Pi(σfirj], (6.15)

Wj (6.16)

Φ=[l-«ί' (6-17)

This completes the definition of the field Ejm'fc)(x) for all j between m and k. It
remains to check that E(x)==E[m'k)(x) is in the set #(E0) of curl-free electric fields
defined in Sect. 3.

From the recursion relation (6.9) and the definition (6.3) of Ej™'fe)(x), it follows
that

E(x) ΞΞ E£m'fc)(x) = VΨ^\x), (6.18)

where the potential

^ w ) (x) = E o x + Σ Φ^k\x) (6.19)
j = k+l

is continuous and piecewise differentiable to any order within Ω: hence E(x)
belongs to #«E(x)>β). Now by definition we have

Φ^k\x) = 0 for all xφΘj9 (6.20)

and consequently Φ$m'fc(x) vanishes on the boundary of Ω. Then by applying the
divergence theorem, the identity

)>Ω = 0 (6.21)

is obtained. In conjunction with (6.18) and (6.19) this implies

<E(x)>Ω = E 0 , (6.22)

which establishes E(x) is in <?(E0).
The local field E(x) = E£m'fc)(x) in certain isolated regions within Ω can be

immensely large compared with E o when m > k > 1. Although this calls for caution,
it should not be cause for great concern since the optimal electric field, defined in
Sect. 3, can be unboundedly large near singularities even in quite simple
geometries, such as a regular array of square prisms: see for example, Milton et al.
(1981) and Sόderberg and Grimvall (1983).

Note the construction of the mapping fields can easily be generalized to model
composites with non-spherical grains. The -cells and -security spheres are defined
by the same procedure, only now eachj-security sphere is concentric with a^-grain
of radial extent r7 : for a description of thej-grains, see Sect. 2. We require, as before,
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that potential Φjm>fe)(x) vanishes outside the region ΘfK Inside any -security
sphere, say Σ, we set

Φf >k)(x) = -xΈΣ + % f c ) (x), (6.23)

where (6.10) defines EΣ and Φ£"/}(x) is the solution to the following Dirichlet
problem: the boundary condition Φ(™£k)(x) = xΈΣ is imposed at the surface of I1,
and within Σ the potential is required to satisfy

p $ = 0, for all XGΣ, (6.24)

where the effective conductivity function σfL'k)+(x) takes two values inside Σ9

namely the conductivity of the -grain concentric with Σ when x is inside that grain,
or otherwise σkl1 when x is in the surrounding material (/ — 1). Through (6.3) and
(6.9) this specifies the mapping fields for model composites with non-spherical
grains.

The choice of conditions (6.14) and (6.24) was motivated, in part, by the
expectation that the mapping field Ejm'^x) can be treated as uniform within the
7-security spheres when m>j>k$>l. This expectation is confirmed in the
following section for model composites with spherical grains. The results are
needed in Sect. 8 to prove, by induction, that σ<*)+ bounds the effective
conductivity when

7. Tempering of the Fields

The field E/x) = E^m'fc)(x), as defined recursively by (6.9) with (6.3) has variations on
many scales, ranging from lengths of order sm down to lengths of order rr The
broad aim of this section is to establish, for each j-cell in the region ^ = jjm ), and
thereby for each j-security sphere, bounds on the magnitude of these field
variations. [Outside the region Aj9 the field E ; (x) may be discontinuous, but this
will not harm the analysis.]

The central result is contained in Proposition 2 below, which provides a basic
bound on the gradients of the field. The principal consequences of this bound are
given in the corollary to Proposition 2. The balance of this section is taken in
proving the technical Lemma 2, which is used in the proof of this proposition. This
lemma establishes simple bounds on the variation of the potential Φf1'^) within
eachy-security sphere. For brevity we drop the superscripts (fc), (m), and (m, k) on
σf)+, Πf\ θf\ Δf\ Ejm'fc)(x), and Φf>k\x).

Lemma 2. Given any j-security sphere Σ9 let

Σ = Σ\dΠj (7.1)

denote the region within Σ excluding the surface r = rj of the concentric basic
j-sphere. Then there exist positive constants w~ < 1, w+ > 1 and v0, depending only
on the ratio σ~/σ+, such that the following three uniform bounds are satisfied within
Σ: the first pair are

wΊEjl < \ΈΣ+VΦJx)\<w+\ΈΣ\, (7.2)
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where ΈΣ and the potential Φ/x) = Φjm'fc\x) are defined through (6.10) and (6.11); and
the other bound is

\\VVΦfiL)\\<vo\ΈΣ\/rj9 (7.3)

where

| |T| |= e_sup_Jee':T| (7.4)

denotes the norm of a second rank tensor T.

Proof Choose the same coordinates (r, 0, φ) within Σ as in the definition of Φ/x).
The derivative of Φ/x) can be calculated from (6.11), and thereby one finds

(EΣ+VΦj)2 = |EΓ|2[(1 +FX +F2/r3)2 sin20

+ (l+Fx-2F 2 /r 3 ) 2 cos 2 0] for rj<r<Sj, (7.5)

= \ΈΣ\
2(l+F3)

2 for r<rj,

where Fx = Fffi, F2 = Ff2\ and F3 = Ff^ are the constants entering the definition
of Φ/x). Since these constants satisfy (6.12)-(6.14) we have

(1+FX+ F2/ή) = (σ(i)/σ/_ J(l + Fx - 2F2/ή) =l+F3, (7.6)

where σ(ι) is the conductivity of the basic j-sphere which Σ encloses. Now by (5.16)
of Proposition 1 and from the bounds (2.1) on the component conductivities σ(0,
one obtains

σ-/σ+<σιl)/σϊ-1<σ+/σ-, (7.7)

which through (7.5) and (7.6) imply

(σ-/σ+)\l+F3\<\ΈΣ+VΦj(x)\/\EΣ\<(σ+/σ-)\l+F3\ (7.8)

for all x e ί .
Before finding bounds on 11 + F31, let us examine the second derivatives of Φ/x)

within Σ which, from (6.11), are given by

~-6cos0/r4 -3sin0/r4 0

-3sin0/r4 3cos0/r4 0 (7.9)

0 0 3cos0/r4_

for ΐj<r< Sj,

= 0 for r < rj.

The matrix here has eigenvalues which all lie in the interval ( — 6/r4,6/r4), and this
implies that within Σ the uniform bound

|ee-PΓΦ/x)|<6|F2 | |E,|/r4 (7.10)

is satisfied for any pair of unit vectors e and er.
Now the expressions (6.15)-(6.17) for Fl9 F 2 , and F3 give

\F2\ = \ήVt(σt- JI/13 - (rJ/s^σjL ±)\, (7.1
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and

|1 + F 3 | = |3 -ft(σjt 01/β - {ήlήMσj- ,)\. (7.12)

By Lemma 1, pf(σ) is a monotonic decreasing function of σ. Together with (1.4) and
the bounds (7.7) on the ratio σ(i)/σ/_ γ this leads to

3 σ 7 σ + < 3 - A « - i ) < 9 / 2 , (7.13)

which when inserted in (7.11) and (7.12) implies

\F2\<ήσ+/σ~ (7.14)

and

2σ~βσ+ <\l+F3\<3σ+/2σ~. (7.15)

Substitution in (7.8) and (7.10) proves (7.2) and (7.3), provided one chooses

w-=f(<τ7σ + ) 2 <l, w + = f ( σ + / O 2 > l , vo = 6σ+/σ~, (7.16)

which are all positive constants depending only on the ratio σ~/σ+. D

The above lemma does not generalize to model composites with non-spherical
grains that have corners, edges or similar sharp features. The potential Φ/x) is
singular at these points and furthermore lE^+FΦ/x)! and ||FFΦj(x)|| become
unboundedly large as the singularity is approached. This is probably insignificant
provided the fields remain bounded over most of Θ^K

We are now ready to prove that the field E7 (x) is relatively uniform within
each j-cell in the region Δψ* [defined in (6.6) and (6.7)].

Proposition 2. There exists a constant υl9 depending only on the ratio σ~/σ+, and an
integer kί such that for m^j^k^.kί one has

Ήj+i far all x e Γ , (7.17)

for any j-cell ΓcA^, where the norm is defined by (7.4) and

Ej{Γ) = Ef>k)-(Γ)= inf |Ef >k\x)\. (7.18)

This means that the spatial variation of the field E/x) within the -cells in Aj is
tempered as j decreases from m (which may be as large as one desires) down to
k^kv Furthermore, (7.17) implies the following, rather technical

Corollary. In the notation of Proposition 2, one has

l E / x J - E ^ t J E J s / r ^ for all xeΣ (7.19)

for all m^j^.k^ku and for any j-securίty sphere, Σ, where EΣ is the value of the
field Ej(x) at the center of Σ. Further, for any j-cell ΓcAf^ one has

£;(Γ)-£r(Γ)</3t ; 1 £r(Γ)L / / 0 + 1 , (7.20)

where (6.5) defines L3 and

£/(Γ) = Ef^(T) = sup lEf'^x)!. (7.21)
xeΓ
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Proof of Corollary. According to (7.17) and the definition (7.4) of the norm ||T||,
the bound

|e F[e' E/xfll < vγEj{Γ)lrj+ x (7.22)

is satisfied for any unit vectors e and e'. Now consider any two points x', x" e Γ, and
choose e parallel to x'-x" and e' parallel to E/x') —E/x"). Then by integrating
this inequality along the line joining x' to x" one finds

/x^^Mj-ίDlx'-x^l/Γj+i, (7.23)

which implies (7.19) and (7.20). D

Proof of Proposition 2. To establish a proof by induction, suppose (7.17) holds for
some7>fc+1, for all -cells ΓcΔp and consider any (/— l)-cell Γ'c4/-i By the
definition (6.7) of Δ^ l 5 Γ must be a subset of some j-cell Γ C A } and either (i) Γ is
inside one of the j-security spheres, say Σ, or (ii) Γ is outside the region Θj occupied
by the -security spheres.

Consider case (i) first, where Γ'CΣcΓ, in which Σ denotes Σ less all points on
the surface of the concentric 7-sphere. Since by definition Ej is less than the
magnitude of E/x) at the center of Σ, our hypothesis implies

i JE^I/r^ for all xeΓ,Γ. (7.24)

In conjunction with (7.3) of Lemma 2 and the inequality

II VEj_ x(x)\\ < II FE/x)|| + || PFΦ/x)II, (7.25)

which follows from (6.9) and (7.4), this implies

\\VEj^{x)\\ ^{vo^v1rjlrj+1)\Έ,Σ\lrj (7.26)

for x e Σ and hence for x e Γ. By the corollary, (7.17) implies the bound (7.19) on
\ΈΣ — E7{x)| for xeΣ. Substituting this and (7.2) of Lemma 2 in the inequality

|E,_ t(x)| + |E Σ -E/x) | >\ΈΣ + VΦjix)\, (7.27)

as obtained from (6.9), gives

|E,._1(x)|^(w--ί;1syr;+1)|EI | for xeΣ. (7.28)

Now combining (7.26) and (7.28) we obtain

(w- -ϋiVΓi+i)ll^-i(χ)H ^(vo + vSj/rj+JEy.^n/rj, (7.29)

and this holds for x within any (/— l)-cell Γ' contained in any 7-security sphere.
In fact, (7.29) is true for x within any (j — l)-cell Γ in Δ}_ v To see this note that

in case (ii) the potential Φ/x) is by definition zero within Γf and consequently,
(7.25), (7.17), and (6.9) imply

i < / < / + 1 for xeΓ ' . (7.30)

Now condition B with (2.6) implies

lims/r,.+ 1 = 0 , (7.31)
j
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and so there exists an integer k1>k0, where (5.2) defines k0, such that

Sj/rj+ί<i(w~)2/(υ0 + w-) for all j>k1. (7.32)

Then by choosing vί = 2v0/w~, we ensure that the inequality

v^w' -vιsj/rj+ι)>v0 + v1sj/rj+1 (7.33)

holds for aΆj>k1. Since Sj>rj we conclude from this and (7.29) that if (7.17) is
satisfied for some j>kx and for ally-cells ΓcAj9 then it holds withy replaced with
y - 1 . Now the field Ew(x) = E^1' k)(x) is by definition uniform and so (7.17) is indeed
satisfied wheny = m for any m-cell Γ c Am. Finally, by induction ony the proposition
is proved. G

8. Bounds on the Effective Conductivity

We still need to accomplish our second goal, namely to prove the feth mapping
sequence σ^)+ bounds the effective conductivity of material m when m>fe>l.
Consider anyy-cell Γ in the region A fι\ defined by (6.6) and (6.7), when m^y'^ fe > 1.
We have established through Proposition 2, that the field Ejm>fc)(x) is relatively
uniform within Γ and, as noted in Sect. 6, Γ contains only material y. In many
respects, the materialy and the field E^m>fc)(x) within Γ can be regarded as similar to
the material m and the uniform initial field E^' k ) within Ω. This similarity suggests
one might establish by induction that σf)+ is an upper bound on the effective
conductivity of material y. This is done in proving Proposition 3, below. The
fundamental result is contained in the corollary to Proposition 3, which in
conjunction with Proposition 1, provides the basis for proving Theorem 1.

In addition to the results of Sect. 7, two lemmas are needed to establish
Proposition 3. First, Lemma 3 gives a set of elementary bounds on rjs^ sJLj and
other simple ratios, fory > 1. These bounds result from conditions A and B and the
monotonicity of c ; . Their significance becomes evident in the proof of Lemma 4
and Proposition 3. Next, we require estimates of the number of barey-spheres and
y-security spheres intersecting any given y-cell Γ in Af1^. this is provided by
Lemma 4, which rests on the homogeneity condition, H.

Lemma 3. Given δo,δ1, . . . , (5 5 >O, there is an integer k2(δ0,δί, ...,<55) such that the
following bounds hold for

rj/Sj < δ0, Sj/Lj <δl9 Lj_ JLjCj <δ2, (8.1)

V ίSj/ή < δ3, Lj/rj^cj < δ4, (8.2)

ή/cμlj<δ59 (8.3)

where L^ή^Tf^)1*2 (see (6.5)J.

Proof. Conditions A and B [(2.7) and (2.8)] imply that given δ0 and ε o >0, there
exists a k2 such that

rj/sj<δ0 and rj/rj+1cfl3<ε0 (8.4)

hold for all y^/c2 — 1. Now choosing

^ (8.5)
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suffices to establish the bounds (8.1) to (8.3) for all j ^ k2. To check this, recall (2.6)
and note that the inequality cj^1<cj< 1 implies

( V JLjcj)2 < (r,_ 1/rjcf_\)(rj/rj+ ^ ) , (8.6)

which together with (8.4) and (8.5) establishes Lj_ι/Ljcj<δ2. The other bounds
follow by similar reasoning. D

Besides providing bounds needed in Proposition 3, the next lemma shows that
the j-security spheres greatly out-number the bare -spheres (i.e., those basic
7-spheres not embedded in any -security sphere) within the region Δf^ when;> 1.
[Recall that A j m ) is defined through (6.6) and (6.7).] This suggests that the influence
of the bare spheres on the effective conductivity of material m is negligible when
m>ί.

Lemma 4. For anyj-cell Γ C Δψ\ let Nψ(Γ) denote the number of jsecurity spheres
in Γ that contain a basic j-sphere of component Ϊ, and let NU)(Γ) denote the number of
bare j-spheres that intersect Γ. Then for any εϊ>0 one has both

u j , (8.7)

where ρifj is defined in (2.3), and

NU\Γ) S 3ε1cjV(Γ)/2πή, (8.8)

for all i and allj^k^s^, where k^ε^ is sufficiently large.

Proof. Let Γ~ and Γ+ denote the two cubes that have the same center and the
same orientation as Γ, but with sides

L(Γ-) = L(Γ)-2s, , L(Γ+) = L(Γ) + 2s;, (8.9)

unless L(Γ) ̂  2s p in which case Γ~ is defined to be empty. Now, any basic j-sphere
in Γ is the core of aj-security sphere if and only if it is centered in Γ~. Furthermore,
any basic sphere of radius r,- which intersects Γ must be centered in Γ+. These
considerations imply

Nγ\Γ) = ̂ r-(Xi,j), N^\Γ)ύΣiί^'rΛXiJ-Jrr-(Xι,j)'], (8.10)

where ^r-iXuj) a n d «^r+to, j) denote the number of basic 7-spheres of component ί
centered in Γ" and Γ+. From Lemma 3 and (6.8) we have

for all j^k2(δ0,δu...,δ5\ for any δo,δu ...,<>5>0. Hence by applying the
homogeneity condition H within the cubes Γ~ and Γ + we deduce the bounds

and

( l _ ε ) 7 ( Γ ) ρ . . < ^ r + ( χ . . ) < ( l + ε ) ( l + 2 ( 5 1 ) 3 F ( r ) ρ , . (8.13)

are satisfied for all j ^ fc2 provided

(8.14)
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where Nε is defined through H. Let us choose

ε = 4<51=min{l,ε1}, δ5 = (3βπNJminfi9 (8.15)

and for concreteness we set δ0 = δ2 = δ3 = δ4 = oo. This implies

( l -ε) ( l -2^ 1 ) 3 >l-5ε 1 /6, (l + ε)(l + 2<51)
3<l + 7ε1/6, (8.16)

and, using (8.3), we have

V(Γ)ρiJ>2Nε for all jtk2. (8.17)

Since δί < ^ it follows that (8.14) is satisfied. Finally, by combining (8.10), (8.12),
(8.13), and (8.16) and choosing fc3 >k2(δ0, δu ..., δ5\ we establish the lemma. D

We now prove Proposition 3, which provides a fundamental bound on
<σmE E>Γ for any /-cell Γ in Δf\ The bound is suggested by the following heuristic
argument. If E(x) is a good approximation to the optimal field and σf is indeed an
upper bound on the effective conductivity of material; within Γ9 then one expects
<<7WE E>Γ ̂  σ/ <E>£. Now (6.9) implies <E>Γ = <E, >Γ, and since E/x) is relatively
uniform within Γ we conclude <E>^«<EJ Ei/>Γ. This provides a basis for
asserting

Proposition 3. // the fields E(x) = E[m'k)(x) and E/x) = Ef>k\x) are defined
recursively through (6.3) and (6.9) and the sequence σf)+ is given by (5.3), then one
has

E, > r , (8.18)

for any j-cell ΓzΔψ\ provided m^j^k^k4, where k4 is sufficiently large.

By taking; = m and Γ = Ω\dΩ in this proposition, and recalling from (6.3) that
Em(x) is the uniform field Eo, we deduce

( ^ E E ^ ^ σ ^ ^ E o l 2 when m^fc^fc4. (8.19)

Hence we have the following corollary which, with Proposition 1, provides the
foundation for Theorem 1.

Corollary. The effective conductivity σ^(Ω;E0) for any test cube Ω of side
)^Lm containing material m (see (3.8) and (3.21)J satisfies

, (8.20)

provided m^k^k^, where kA is sufficiently large.

Proof of Proposition 3. As before, we drop the superscripts (m), (fe), and (m, k).
Suppose we are given εl9δθ9δl9 ...,δ5 e(0,^). Then let m and k be chosen so that
m—l^/c^max{fc1,/c2,fc3}, where kuk2(δ0,δu ...,δ5) and fe3(ε1) are specified
through Proposition 2 and Lemmas 3 and 4. Now to establish a proof by induc-
tion let us assume the inequality

<σmE E > r ^ / E , . ^ -Ej.^r (8.21)

holds for any (j— l)-cell Γ ' c ^ -i, for some; lying in the range m^j^ik+l. Our
aim is to establish that the bound (8.18), which has the same form as (8.21) but with
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Fig. 3. A /-cell, Γ, in AJm) containing a /-security sphere, one whole bare /-sphere, and part of
another bare/-sphere. The five regions ΛliΛ2,...,Λ5 needed in the proof of Proposition 3 are
labelled by the hatchings. The region Ajfϋ^, not marked explicitly, encompasses Λ5 and the portion
of AA lying outside the basic/-spheres. Note that the figure is schematic in two respects: first, the
number of/-security spheres in Γ will greatly outnumber the bare/-spheres that intersect Γ when
j> 1 (see Lemma 4); second, the regions Λ1,Λ2,...,Λ5 are collections of open (/—l)-cells, that
exclude the boundaries of these cells Thus Λx is not actually connected, although the figure
suggests otherwise

jf—1 replaced by/ and Γf replaced by Γ, is satisfied for any/-cell ΓcAj9 when
εl9δθ9δl9...9δ5<ξl.

Hence consider any/-cell ΓcAj. Those (/—l)-cells that intersect Γ can be
subdivided into various classes, according to whether they lie within the region Θj
occupied by the/-security spheres (see Fig. 2), or overlap the region Πj\Θj occupied
by the bare /-spheres, or intersect one of the boundaries dΓ9 dΠj or dΘ}. The
distinction is clearly important, and so we define the five disjoint regions (sketched
in Fig. 3),

Λt =

Λ3 =

Λ4 =

j_ t(dΓ)9 Λ2

- ί(dΠjvdΘj)']\(Λ1vΛ2),

i- 1(θjf]\(Λ1uΛ2uΛ3),

and

(8.22)

(8.23)

(8.24)

(8.25)

where # ] _ X(Λ) is the region occupied by all the (j — l)-cells which intersect a set A.
We will prove that the first three regions occupy an insignificant volume fraction of
Γ when j > 1. The important contributions to <σwE E>Γ come from the last two
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regions, which are subsets oϊAj_ι^jΠj. The portion of Γ not covered by these five
regions is a set of zero measure and so

<<?mE E> r = [K(Γ)] - ' f U(Λt), (8.26)
1=1

where

U(Λ)=$σm(x)\E(x)\2dx. (8.27)
A

Our aim is to find appropriate upper bounds on the U(Λt).
Note from Fig. 3 that the regions Λί9 Λ2, Λ3, and 77, lie outside Δj_l9 as defined

by (6.7), and the potentials Φh(x) [see (6.9)] vanish there for all h satisfying k + 1 ̂  h
^/— 1. Hence we have

E(x) = Ej_1(x) when xeΛίvΛ2vΛ3vΠj, (8.28)

and consequently derive

+ / 2 (8.29)( Λ ) ( / i ) Σ
1=1 1=1

where £/_ ± = E< ™f +(Γ), defined by (7.21), is an upper bound on |E,._ x(x)| within Γ.
The region Λί is confined to within a distance L, _ x of the boundary 3Γ, which

has an area 6[L(Γ)]2. But the side L(Γ) satisfies L(Γ)^Lp (6.8), which with
Lemma 3, implies

(8.30)

The region Λ2 overlaps the bare 7-spheres which intersect Γ and is confined

within a distance y3Lj-ί of these spheres. Hence we have

V{A2)^n{rj + j/3L, _ x ) 3 JVω(Γ), (8.31)

where NU\Γ) denotes the number of the bare 7-spheres intersecting Γ. Then
Lemma 3 and the inequalities δ3<^ and rj<Sj yield

Wθ<i (8-32)
Substituting this and (8.8) in (8.31) gives

V(Λ2)^\5zγCjV{Γ). (8.33)

The region A3 is confined to within a distance γ3Lj-ί of d(Θj\Πj). Now the
volume of a spherical shell of radii r±a is less than 12πr2α. By (8.32) we have
r,.—j/ΪL/-! >0, and we obtain

^ lή + s ? ) ^ . x , (8.34)

where Ni = Nψ{Γ) is the number ofj-security spheres in Γ which contain a basic
7-sphere of component i. Then the bound (8.7) on Nt and Lemma 3 (and the fact
that βi,^ 0<i) imply

V(Λ3)^60δ3CjV(Γ). (8.35)
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We have thus shown that the regions Λl9 Λ2, and Λ3 occupy together an
insignificant portion of Γ when εl9 δ2, and δ3 are small. From (8.29) we thus get

£ t) S δ6σ
+(E+_ tfcjViΓ), (8.36)

where δ6 = Θ(εl9 δ2, δ3).
To find bounds on U(Λ4) and U(Λ5) consider the effective conductivity

function
σ/_1(x)Ξσf_ r ( x ) = <?m(x) if x e ϋ , for some I2j,

otherwise,

σfl\ being defined by (5.3). [This effective conductivity function is the local
conductivity which results when the portions of material (/'— 1) in Ω are replaced
by an effective medium of uniform conductivity σfl\.'] Now Λ4 and Λs are
comprised of (/'— l)-cells lying entirely within either 77, or 4/-1 By hypothesis the
inequality (8.21) holds for any (j- l)-cell ΓcΔ^u and from (8.28) we have E(x)
= E7 _1(x) within 77,. These considerations imply

j ' = 4,5, (8.38)

where

U+_M) = ί σ;_1(x)|Ej_1(x)|2dx. (8.39)
A

Since Λ4 is confined inside they-security spheres, let us consider any -security Σ
which lies within Γ and has a basic j-sphere of, say, component i at its center. The
triangle inequality and the expression (6.9) for E,_ x(x) imply

|E, _ Λx)! S |E/x) - EΣ\ + \EΣ + FΦ/x)|, (8.40)

where EΣ is defined by (6.10). By squaring this bound and using Lemma 2, the
corollary to Proposition 2 and Lemma 3, yields

FΦ/x)|2, (8.41)

for aΆxeί = Σ\δΠj. The integral

{ ( 8 . 4 2 ){
Σ

can be evaluated analytically using (8.37) and (6.11) within Σ. Specifically, by
applying the divergence theorem or by direct integration, one obtains

I(Σ) = σ/_ x [l + 3Fί-]\EΣ\
2V(Σ), (8.43)

where Fί =F(^ depends both on the individual polarizabilities, pf(σ), and on the
ratio rjsj [see (6.15)]. We have chosen δ0 <\ and consequently Lemma 3 and the
uniform bound |p f(σ)|^3, which follows from (1.4), enable us to deduce

3F! < (ή/ή) [pfct-1) + 45g] (8.44)

In combination with (8.39), Proposition 1 and the inequality (2.6), this implies

[//_ t ( ί ) ̂  σt.^mi) {1 + (ή/sj) [pXσ/-1) + <57]}, (8.45)
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where δΊ = Θ(δo,δ1δ4). The same analysis can be repeated for every /-security
sphere within Γ and these security spheres cover all of Λ4. Thereby one proves

U(Λ4)ύσjL 1(El)2 Σ f πNt{ή + rjQtfσjL x) + <57]}, (8.46)
i— 1

where Nt = N\j)(Γ), is the number of j-security spheres within Γ that have a basic
j-sphere of component i at their center.

Next consider Λs: it lies entirely within Δ^ l9 but is outside Θy Hence we have
<x+_ χ( x) = σ+_ 1 and Ej_ x(x) = E/x) for all x e Λ5, which when substituted in (8.39)
results in the simple bound

ί//_ Ms) ^ σjL γ{El)2 V(Λ5). (8.47)

Since Λ5 does not intersect any of the j-security spheres the inequality

V(Λ5)ZV(Γ)-ΣfrNtf (8-48)
i= 1

must hold, and through (8.38) we obtain

ϊάEf)2[F(Γ)-Σ^πiV^J. (8.49)

Now combining (8.46) and (8.49) and using the bounds on
established in Lemma 4 (and the fact that \pt(σ)\<3)9 we deduce

5) ί σ/_ γ
σ/_ x) + <58]} V(Γ), (8.50)

where δs = Θ(εuδΊ). This together with the inequality £/_ 1 ^(2 + w+)£/, which
follows from (8.40) and the bound (7.2) in Lemma 2, may be combined with (8.36),
(8.26) and Proposition 1 to give

; ; J ; }, (8.51)

where δ9 = Θ(δ& δs). The corollary to Proposition 2, and Lemma 3, yield

(8-52)

in which Ej =Ej{Γ), [(7.18)], represents a uniform lower bound on |Ej(x)| within
Γ. Furthermore, the inequalities |Pί(σ)|<3 imply |P(σ)|<3? and so we deduce

<σmE.E>Γ^σ/_1{l+c i[P(σ/_1) + δ 1 0 ]}<E r E,> Γ , (8.53)

where <51O = 0(<54,<59). Choosing εl9δo,δl9...,δ5 so that δlo<^K~δ, where (5.1)
defines K~, ensures through (5.3) that

σ/_1{l + ci[P(σ/_1) + (5 l o]}<σ;, (8.54)

is satisfied. When substituted in (8.53) this gives (8.18) as desired. Finally, the
identities σk

+ = σ+ and E(x) = Efe(x) imply (8.18) is true when j = k. By induction on
j , Proposition 3 is established. D
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9. Proof of Theorem 1

The proof of Theorem 1 is now easy. The corollary to Proposition 3 and
Proposition 1 clearly imply that the upper bound (3.22) in Theorem 1 is satisfied
when fc^fc4 and m^m^k). The lower bound (3.22) on σ~(Ω;e) is obtained by
similar reasoning, outlined below. Then, recalling (3.10), Theorem 1 is established.

To establish the lower bound, we start by constructing mapping sequences
σjfe)~ using the recursion relations

of-^o- if j=k

= G;(«Jί»i) if

where the mapping function Gj{σ) is defined by

G j » s σ { l +c,[P(σ)-iK-ί]}, (9.2)

in which P(σ) and K~ are defined through (1.2) and (5.1). These sequences, like the
sequences σf)+, converge to the coherent potential approximation, σ ,̂ to within
terms of order δ. In fact, by applying the argument of Proposition 1, we find that
the inequality

*•(!-«)«#" (9.3)

holds when m^m^k), provided m f̂e) is chosen so (5.26) is satisfied.
Now, to show that σ(m)- is a lower bound on σ~(Ω; Jo), when m^fcM, we

introduce a special sequence of current fields, Jjm'k)(x), defined for m^j^k.
Starting from the uniform field J^'fc)(x) = J o the sequence of fields is constructed
using the recursion relation

Jff(x) = Jf' fc)(x)-Qf' fe)(x) for m ^ / c + 1 , (9.4)

where the perturbing current field Qjm'fe)(x) is zero outside Θf] and is a suitable
combination of linear and dipolar fields inside anyj-security sphere. These fields
if Λ\x) are a subset of/(Jo), defined in Sect. 3, and J(x) Ξj[m'k)(x) is designed to be
a good approximation to the optimal current field, Jm(x). By following the
reasoning of Sects. 6-8 we finally deduce that

<J'J/σm}ΩS\J0\
2/σ^- (9.5)

is satisfied when m ̂  fc ̂  fc4 and fc4 is sufficiently large. In conjunction with (3.9) and
(9.3) this establishes that the lower bound (3.22) on σ~(Ώ,e) is valid when fc^fc4

and m^m^k). Consequently, the chain of inequalities in (3.22) are true for all
m^m0, when m0 is chosen with πiQ^m^k), where fc^max{fc4, fc4}. This proves
Theorem 1. D
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