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Abstract. Using block spin renormalization group techniques, we rigorously
control the functional integral of a weakly coupled critical lattice φ4 theory in
four euclidean dimensions proving the infrared asymptotic freedom of the
model. This solves the infrared counterpart of and sheds some light on the
problem of existence of continuum renormalizable ultraviolet asymptotically
free models.

1. Introduction

One of the fundamental problems of Quantum Field Theory (QFT) is the existence
of non-trivial models describing couplings of fields and scattering of particles. Such
models do exist on the level of formal renormalized perturbation series, where
renormalization removes the ultraviolet (UV) divergences of the naive perturba-
tion expansion. The problem of non-perturbative existence can be viewed as
equivalent to a non-perturbative understanding of renormalization. Up to now,
the attempts at a non-perturbative control of the QFT models (constructive QFT
[23], exactly soluble models [26]), although very instructive, have failed to
produce quantum field theories in four space-time dimensions.

Much of our present understanding of the existence problem for QFT comes
from the Renormalization Group (RG) approach. The RG, in its most full-fledged
version [41] cast into the statistical mechanical framework in the euclidean space-
time, replaces the static point of view of renormalized perturbation theory by a
dynamical one. We try to see, mostly also perturbatively, how the local (euclidean)
field theory may be obtained from its cut-off non-local versions in which the source
of the troubles: the short distance (UV) singularities are regularized in order to
guarantee the existence of the model. One of the crucial concepts arising from the
RG approach is that of (UV) asymptotic freedom [25,35]: a model is UV
asymptotically free if its short distance asymptotics is non-interacting (free).
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Asymptotic freedom provides a self-consistency condition on the perturbative
approach to the local limit field theory. This is the reason behind a common belief
(not quite shared by us) that only asymptotically free models (or their transforms)
have a chance to exist in four dimensions.

Unfortunately, the simplest model of a renormalizable quantum field in four
dimensions, the λφ4 theory, turned out not to be (perturbatively) UV asymptoti-
cally free for λ>0 [38]. This raised serious doubts about the existence of a non-
trivial local limit for this case [41] confirmed by detailed studies [2, 3, 13, 14].
Today, although not completely excluded [15], positive coupling φ% quantum field
theory is generally believed not to exist.

Fortunately, the four dimensional non-abelian gauge theories, pure as well as
with not too many fermion flavors (QCD) provide text-book examples of
renormalizable, UV asymptotically free models [25,35,27]. This gives importance
to the non-perturbative study of renormalizability and asymptotic freedom.

In the present paper, we consider the infrared (IR) counterpart of the UV
problem presented above: a massless euclidean lattice theory which is IR
renormalizable (has a dimensionless coupling constant and renormalizable IR
divergences in every order of naive perturbation expansion) and is expected to be
IR asymptotically free: its long distance asymptotics is perturbatively free
(gaussian). Specifically, we consider the massless lattice λφ\ theory with Λ>0. We
could have also treated a model more realistic from the point of view of statistical
mechanics: the Landau-Ginzburg theory of the uniaxial dipolar ferromagnet
[10, 29] which exhibits a similar behavior, confirmed by experiment [1], in three
dimensions.

The massless φ4 theory presents in two ways non-trivial renormalization
problems. In perturbation theory, the λφ4 model with vanishing bare mass has IR
divergences in arbitrarily high order due to the self-energy diagrams [32]

Σ(p)

P-2

However, if we fix the physical mass to zero (the correlation length to infinity)
adjusting the bare mass appropriately (this may be viewed as IR renormalization),
then the mass insertions

Σ(0)

^ (2)

will subtract the self-energy diagrams turning them to

Σ(p)-Σ(0)

and will render the perturbative expansion finite. [In terms of the RG this is the
problem of relevant perturbations or the naturality problem. In U V renormaliza-
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tion it corresponds to a careful adjustment of the bare mass at large cut-off to get
an 0(1) mass at the 0(1) scale.]

The other, more fundamental, question is the IR divergence of perturbation
theory at vanishing external momenta. The RG predicts that the (rescaled) Green's
functions at large distances become those of the free theory.

The method by which we achieve a rigorous control of the weakly-coupled
massless-^4-theory functional integral is the block spin (BS) version of the RG
[28]. We split the integration into a sequence of steps. In step n, we fix the (rescaled)
averages of fields over cubes of size Π (nth block spins) and integrate out the
fluctuations of the averages over cubes of size L"~ 1. At the critical point, the nth BS
effective theory can be viewed as statistical mechanics described essentially by a
local φ4 interaction (plus irrelevant, approximately local corrections) with the
(running) coupling constant λn changing from scale to scale. The second order
perturbative computation gives

i), (4)

which results in

(5)

This expresses the perturbative IR asymptotic freedom of the massless φ\ theory.
The slow (logarithmic) decrease of λn is characteristic for the renormalizable
models with dimensionless couplings and should be contrasted with the (super-
renormalizable) behavior of the critical φ\ theory with d > 4, where λn = 0(L"(4~d)).

Our aim is to show that the corrections to the perturbative analysis which
evaluates the contribution of the fluctuations on the distance scale LM by expanding
it to the second order in the effective coupling λn of this scale are small and do not
change the qualitative picture of the IR behavior. This is not obvious since the
perturbation expansion is divergent. Note, however, that the Λ,M-perturbation
theory should be contrasted with the usual perturbative expansion in the initial
coupling constant (on all scales) which lacks self-consistency of the latter and
exhibits very non-uniform behavior of remainders. The bounds on the corrections
are obtained by carefully weighting the essentially perturbative contributions of
small fields against the non-perturbative ones of large fields. The big help in the
analysis is provided by good analyticity properties of effective interactions of the
BS fields in the field variables for which we can trade their bad analyticity
properties in λn. Finally cluster expansion techniques [24] are used to exhibit the
approximate locality of the BS effective interactions.

The present paper contains the proof of the convergence of the BS effective
interactions to zero at the pace predicted by the perturbative argument

[i.e. like 01- ) . In the limit n->oo, the distribution of the BS fields becomes
WJ

free (Gaussian). One can easily extend the present method to give the control
of correlation functions and of their massless decay, compare [18]. Existence of
logarithmic corrections to scaling [40] should be also confirmed by a straightfor-
ward analysis of the higher correlations. This way, we expect to bridge our work
with the UV problem, as in [2] the triviality of positive coupling continuum φ\
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theory was deduced from the presence of the logarithmic corrections to scaling in
the critical lattice theory (for all λ > 0).

However, there seems to exist a more direct UV application of our method. We
expect to be able to show the existence of the continuum euclidian nontrivial UV
asymptotically free φ\ theory for the (physical) coupling in the following region of
the complex (cut) plane

Imλ

(6)
Reλ

On the lattice, these theories may easily be written in terms of stable models which
are perturbatively UV asymptotically free. The control of the continuum limit is
very similar to what is done in the present paper: we only have to start very close to
the free theory and study the departure of the RG flow from it. All these models
seem, however, to lack the physical positivity (i.e. the quantum mechanical
interpretation in the Minkowski space). On the negative axis, there exist two
natural proposals for the theory. It is also easy to set up a stable physically positive
lattice version of the λ < 0 φ\ model. The latter probably does not have the UV
asymptotically free continuum limit, however.

In conclusion, our work seems to provide a right approach to the construction
of renormalizable asymptotically free models, both in IR and UV.

The non-perturbative control of a simple IR model having been achieved, we
may ask questions about the relation of the (renormalized) perturbation expansion
to the non-perturbative constructs. This is a more difficult problem. We hope to
produce a proof of the Borel summability of the perturbative expansion for the IR
φ\ theory soon. The renormalon singularities [5,30,34,39] of the Borel transform
of the expansion sit in this case on the negative axis and do not obstruct the Borel
summability although render its proof more complicated than in the super-
renormalizable case [12,19,33]. In general, we expect the renormalon singularities
due essentially to the slow change of the effective coupling λn from scale to scale to
be much easier to treat than the instanton ones [31, 9] which encode a detailed
information about the large field behavior of the effective interactions, see [20],
where we apply Ecalle's theory [11] of resurgent functions to the study of the
Borel-transform analytic structure for a simplified model.

These problems are not tackled in the present paper which is organised as
follows:

Section 2 sets up the BS RG formalism.
Section 3 contains the perturbative analysis of a single BS transformation and

studies its validity.
In Sect. 4, we discuss a general form of the effective interaction of a BS field

exhibiting its leading terms, approximate locality and analyticity properties.
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Section 5 describes how this form carries over from the BS interaction on scale
Lw to the one on scale LM+1. This is done by establishing a cluster expansion for a
functional integral over the fluctuations of the Ln BS fields about fixed Ln+1 BS
values.

Section 6 states expected bounds on the contributions of various terms to the
effective BS interactions inspired by the discussion of Sect. 3.

In Sects. 7-11, we show how these bounds carry inductively from one length
scale to the next one. This is the technical core of the paper. We estimate in turn the
local contributions to the new effective interactions (Sect. 7), the non-local small
field ones (Sect. 8), the quartic term of the interaction and the new effective
coupling constant (Sect. 9), the large field contributions (Sect. 10) and, at the end,
the quadratic terms of the interaction and mass and wave function renormaliza-
tions (Sect. 11).

The technical work is done in finite periodic volumes but with volume
independent estimates. This allows us to pass to the thermodynamic limit what we
do in Sect. 12. For the infinite volume theory, we localize the critical values of the
parameters (mass squared) of the initial theory. For the critical point of the model,
the IR asymptotic freedom follows from our inductive bounds of Sect. 6.

Finally in Appendix 1, we estimate the contributions of the second order
Feynman graphs to the change of the running coupling constant λn, crucial in

obtaining the & \ - 1 decrease of the latter.
\nj

In Appendix 2, we prove a simple fact, related to the Gleason's problem [21]
about functions of complex variables, used in Sect. 1 1 to control the mass and field
strength renormalizations.

The paper is essentially self-contained. Some of the earlier results concerning
the BS formalism are, however, quoted here without proof. The general idea and
much of the technical analysis we do is close to that of [17] (the renormalizable
case proves to be in fact not much more difficult and quite similar to the super-
renormalizable one, contrary to the gneral expectation). We try to avoid referring
directly to [17] being, however, more sketchy in arguments which were worked
out to greater detail there.

As we learn, J. Feldman, J. Magnen, V. Rivasseau, and R. Seneor expect also to
control the critical weakly coupled φ* theory using a version of the phase-space cell
expansion of [22] strengthened by the RG type of analysis.

2. Block Spin Renormalization Group

Let us consider a scalar field on the unit lattice φ = (φx), x e Z4. We shall define the
Hamiltonian of the system for φ with compact support by

=i Σ (Φx-Φy)2+^
<xy> * * x

(i)
where <xy> runs through unordered pairs of nearest neighbor points (i.e.
\x — y\ = 1) and — G^1 = A is the lattice Laplacian. Note that in (1) the quadratic
contribution to the Wick ordering of the quartic term has been separated from the
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mass term. We would like to control the Gibbs state (states) corresponding to (1)
with WQ = Wcrit(Λ-o) such that the correlation length of the model is infinite (physical
mass is zero). Our approach to the problem of the thermodynamίc limit will be
pragmatic. We shall first put our system in a finite periodic box A = (%LN)4 for L
even, N ̂  0 integers, and then, only after having done the whole analysis in finite
volume, we shall pass to the thermodynamical limit. In principle other reasonable
boundary conditions could be handled too at a cost of additional technical
complications but we expect that they do not produce different states.

It is convenient to identify A with ( — ̂ LN, ^LN~]4C%4, with the algebraic
operations taken modulo LN. Let us define the finite volume (periodic boundary
condition) Hamiltonian by

=i Σ
xeΛ

+X Σ Φl-6λ0 Σ GΛ

0xxφ
2

x+λ0 Σ
xeΛ xeΛ xeΛ

(2)

where the periodic boundary condition inverse covariance is

- Σ δ^+ξΛ-1, (3)

x, y E A (A denotes also the number of points in A). For convenience, we have also
regularized the zero mode of the periodic Laplacian by introducing ξ > 0 to make
(Go)"1 strictly positive (in the thermodynamical limit the ξ dependence is wiped
out). Note that for φ with compact support, 3?\φ)^>3?(φ). In the periodic volume
A9 we define the Gibbs measure as

, (4)
Λ

where

DΛφ=Πdφx (5)
xeΛ

and ZΛ is the partition function in A normalizing (4). In what follows, we shall stay
inside finite volume doing nevertheless volume independent estimates. This will be
crucial for the final passage with A to TL4. To simplify the notation, we shall drop
the superscript A on the finite volume expressions.

In order to study the contributions of various distance scales to (4), we
introduce the block spin (BS) fields [28,16] φn = (φn

x\ xeAn = (L~nA)nZ4

9

n=l , . . . , JV, by

ft = z- 1/2L- 3" Σ Φ»x+, = z- 1/2(Cnφ)x , (6)
-l/2L"<y^l/2L»

where by C we have denoted the lattice operator with the matrix elements
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The factors zπ giving the (finite) wave function renormalization will be determined
later. The block spin fields are distributed with Gibbs measures given by effective
Hamiltonians

exp [ - 2Γ(F)-\ = exp [/ΠΛ] f exp [ - #($& δ(φn - z~ v2C"φ)Dφ

ι. (8)

Here ^fw's are normalized so that jf "(0) = 0, ζn _ x = zπ/zπ _ ί , (0 = z x , and /„ stands
for the free energy up to the distance scale L",

/„ = - \ log ί exp [ - #(φy] δ(z~ WC>φ)Dφ . (9)

It is a sum of contributions from scales Lfc, 0 ̂  fc < π,

fn="Σ L~*kδfk, (10)

<%= p l o g f exp[- jrk(Λ]5(Ck-
1/2CΛ^. (11)

If the interaction K=0 in (2) then (for zn = ζn= 1),

^W = K^|GW~V>, (12)

where

GΠ-CMG0C
+M (13)

(+ denotes the transposition). All the covariances Gn are versions of a massless one
(see [16]) and in the thermodynamic limit Λ.->Z4 converge with n to

Gmxy= ί a* ί ^(-^cont)'1^-^), (14)

where zίcont is the continuum Laplacian and Dx, Dy are unit cubes centered at

1l^> (15)

is the limit Hamiltonian, the massless Gaussian fixed point of the BS
transformation.

Still in the case 7=0, it is convenient to realize the random field φ distributed
with the Gaussian probability dμGo(φ) (G0 is the covariance of φ) as a sum of
independent contributions from different scales.

One can write for n = 0, 1, ..., N (see [16, 17] for the details)

G0xy = L-2n$nL-nχL-ny+ °Σ L~2k^kL-kχL-ky, (16)
k = 0

where &n = (^Λβ.y), &9peLΓnΛ9 and &~k = (̂ )̂, a?, ̂  e L"fcyl, are positive but not
strictly positive operators (kernels). &n has massless decay whereas 3~k have
massive ones (uniform in fc). The decomposition (16) corresponds to the one used
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in the heuristic momentum space RG, see [41], where one splits the momentum
region \p\<K into layers and scales:

f eip(χ-yϊp-2d4p = L-2n j eiL~np(x~y}p'2d4p
\p\<K \p\<K

+ "Z L~2k ί eίpL-k(χ-*p-2d4p . (17)
~

The degeneration of <&n and 2Γk is easily visible from the representations (see [16])

G^= Σ <,,Gw;cχw = «Gχ;) ?̂ (18)
x,y<=Λn

^L,= Σ ^k*xQxuΓkuvQyv^kyy=(^kQΓkQ
+^ΐ)^, (19)

x,yeΛk

u, veΛk

where Ak = Λk\LZ4 and

δxu if xφLZ4,

Qxu= -1 if xeLZ4 and -$L<xμ-uμ^L, (20)

0 otherwise.

(Notice that CQ = 0.) Kernels jtfn are independent, translationally invariant by
unit lattice vectors and have uniform exponential decay. Gn and Γk are strictly
positive operators. Γk do not depend on ξ, are translationally invariant by vectors
of LZ4 and also have uniform exponential decay. Moreover, there are two useful
relations, see [16],

ί dπ^nίκy = δxy, x,yGΛn, (21)

where the integral stands for the Riemann sum on L~nZ4 (here over the unit cube
Ώx centered at x) and

Σ *Cx = l (22)
xeΛn

The decomposition (16) can be used to realize φ distributed with dμGo as a sum of
independent contributions

where ψn = (ψl), &eL~nA, &k = (^k\ &eL~kΛ, are centered Gaussian fields
distributed with covariances &n and ̂  respectively.

By (18) and (19) we can write

V^"~ Σ ^nπxφtχ — (c^nφn)cc> (24)
X€Λn

and

u,veΛk

where φn is a ylw-lattice field distributed with co variance Gn and Zk is a Λk- one with
co variance 1. In fact substituting (24) and (25) in to (23) and using (20) and (21) one
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can easily show that in the realization (23), φn as given by (24) coincides with the BS
field (6) (for zn = 1) so that our notation is not abusive. As a byproduct, we obtain a
relation inverse to (24):

Φl= ί dπψl. (26)
ox

From (23) it follows that

(27)

and, since ψn+1 and 2£n are independent as well as φn+ 1 and Z", that the Gaussian
measures split:

dμGn(φn) = dμGn+1(φ" + 1)®dμι(Z") . (28)

Now let us pass to the perturbed case when FΦO. We shall rescale the fields by
substituting φn-^z^2φ", Z"-»zπ

1/2Z", tpn->zn

1/V> Jf"1-»zπ

1/2^". Hence (27) and (28)
become

(29)

and

dμβn(φ") = dμζn- lGn+ W+ 1)®dμ1(Z") . (30)

For the first effective Hamiltonian, see (8), we obtain using (29) and (30):

= exp [δf0Λ + \Ίΐ log(2πG0)] J exp [ - F(̂ )] «5(^ - Co ll2Cφ)dμGo(φ)

= exp[5/0vl + iTrlog(2πG0)]

• J exp[- F(L- Wί-'. + Z°)]5(^1 -^)

J exp[- ^(L-^φi-, + Z°)]d/ίl(Z0) . (31)

This way the first BS transformation has been expressed by the integral over the
fluctuations Z°.

From (31) we read off

• ί exp [- V(L~ W2^ . + 2£*)-\ dμ^Z^Kφ1 = 0) (32)

and

<5/0= - Trlog(2πGo)+ Trlog(2<o 'GJ- - l o g f exp[-

(33)
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Let us define the effective interaction F1 by

exp[- FXφ1)] =exp p(l -C0)Σί dx(d^2l

• ί exp[ - V(L~ 'α/V- ' - + ̂ ^(ZW = 0) . (34)

Co is chosen so that the subtraction in (34) removes the marginal j (dip1)2 term from
F1, see Sect. 10. Since, as was shown in [16] and [17],

Σί dx(d^)2 = (φ1 IGϊWy-ΰξΛ-1 (ΣΨΪ}2 , (35)
" \* J

we obtain from (32) and (34):

exp[-^V)]=exp[-i<WΓV>-rV)], (36)

where

^El9 (37)

with En being the orthogonal projection on functions constant on Λn. Gl differs
from G1 only by the value of the infrared regulator ξ.

Upon iteration of (31)-(37), we obtain

1|Gn-+

1

1l^
+1>-^+1(v"+1)], (38)

where

• J exp [ - F"(L- ̂  /2v£± ί. + #")] dμι(Z»)/(ψ"+ 1 = 0)
(39)

G Λ =£n

1G;+

1

1 +L2("+1»zn+1ξ£n+1 . (40)

Moreover

δfn= -

- -Llog J exp[- Fn(^]dμι(Z«) . (41)

This realizes the nth BS transformation as an integral over the fluctuation field Zn.
Our aim will be to show that the effective interactions Vn in the thermodynamical
limit converge with n to zero in a suitable sense.

Let us stress that the expression of the interactions Vn as functionals of ψn

rather than φn is not accidental. Due to the locality of the relation (29), it is much
more convenient to follow the dependence of Vn on ψn. In the next section we shall
also see that the φ" dependence arises naturally in the perturbative approach.
Before closing this section, let us list some of the (uniform in the volume) decay
properties of the kernels jtfn and Γn following directly by a momentum space
analysis of their explicit form,

'l«-*l, (42)
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^^^^^1), (43)

-^ (44)

(d denotes the gradient on L~"Λ, V the one on Λn),

^-χ| + e-^-χ|), (45)

(46)

for an L-dependent constant β. [In fact β can be chosen L independent in (42) to
(45) whereas in (46) it is &(LΓ 1).] Expressions (42), (44), and (46) were already stated
and proven in Appendix to [16] and Appendix 1 to [17]. Expressions (43) and (45),
which we find more convenient to use here, are proven the same way (separately for
^ - ^ 1 and \& —

3. Perturbative Approach to the Renormalization Group and Its Significance

Here we shall study the effective interactions in the leading orders of the
perturbation expansion. It has to be stressed that we shall not expand in the powers
of the initial coupling constant λ0 of the quartic term since such expansion is not
self-consistent already in second order. Instead we shall perform a perturbative
analysis (to the second order) of each BS transformation in terms of the effective
quartic coupling constant λn of the corresponding scale.

Let us start with an ansatz

Vn(ψn) = \m2

n j" d&(φl)2 — 6λnf d&&na.J\p%)2 + λn J d&(ψl)4

where m2e[-/ί^/2, /^/2] = /M, say, and

n-l

The second quadratic term in (1) contributes to the Wick ordering of the quartic
one. The sixth order term corresponds to the diagram with the middle line being
the sum of the propagators of the fluctuation fields ̂ k with k<n. Although
irrelevant (of negative dimension), this term has to be carefully taken into
consideration because it gives an 0(/l2) feedback to the quartic term in the new
interaction Fw+1, which has to be weighted against other (9(λ2) contributions.
Thus for Vn given by (1), let us compute F"+1 to order A2 in the perturbation
calculus. We shall show that, up to a mass term and irrelevant terms with negative
dimensions which do not contribute to the f ιp4 term in the next step, (1) reproduces
itself with λn->λn + 1 — απ/l2, where <xn = &(logL)>0. Hence the second order
computation exhibits the dynamics of the quartic coupling which does not change
under the linear approximation to the RG transformation: as opposed to the case
of higher or lower dimension, in dimension 4, f \p4 is a marginal (dimensionless)
perturbation. The L dependence of αn shows why the perturbation expansion in λ0
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is not self-consistent. Computing λn to the second order in λ0 is equivalent to
computing λ± to &(λ%) for L-»Ln. Now, even for very small λθ9 this would give a
large and negative result for n sufficiently large due to the logarithmic divergence of
o^ with L-+OO.

To simplify the notation, let us drop the index n and let us replace n + 1 by
prime. (2.39) gives

= ~ i(l - 0 Σ ί A*(3,VU2 + iίW J d*(Ψ'J2 - 6L2ζλ J at
μ

+ 6L2ζλ$dπ3~La;La!( ψ'a:)
2 + (ί)(λ2) terms quadratic in ψ'

/O4 - 72L4ζ2λ2 f da

- 36L4c2Λ2 ί
-48L4C2 A2

- 8L2ζ3A2 J d

- 8ί?C3λ2 J <ω L̂|,(φ;)3(φ;)3 + 0(λ5/2) (3)

The third and the fourth term on the right-hand side of (3) make up

-6αί^LO/C)2, (4)

since

^=^(^L^-^L^)5 (5)

see (2.16). The rest of the quadratic terms may be written as a sum of a relevant
mass term of dimension two ^(L2ζm2 + &(λ2J)$ (i//)2, a marginal (dimensionless)
kinetic term %(ζ — 1 + &(λ2)) J (δy/)2 and irrelevant (negative dimension) quadratic
contributions. This step, as well as its analogue for the quartic terms discussed
below, are in fact somewhat more tricky than usual since the kernels of the
expressions on the right-hand side of (3) have only ΊLd translation invariance while
living on L~nA. The precise way to circumvent this difficulty in extracting the "zero
momentum" or "p2" contributions to the diagrams will be discussed later. The
wave function renormalization ζ ofψ' will be taken as to eliminate the J (dip")2 term
from V. Hence 1 — ζ = G(λ2) and can be dropped from the other terms of (3) in our
approximation. The non-local terms of the fourth order in (3) can be written as the
local marginal expression δλ1 J (ipO4, δλ1 = (9(λ2\ plus irrelevant contributions of
negative dimensions,

Do Do

-36L4A2

Do Do

+48L4A2 I dvd^^β^. (6)
Do
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In Appendix 1, we show that the main contribution to the right-hand side for L
large comes from the third term corresponding to the bubble with two SΓ lines. The
bubble diverges like 0(logL) for L->oo. This term dominates for L^L the other
ones corresponding to the bubble XIX with one SΓ and one "harder" line or to
Q 9 with ^"or a "harder" propagator on the open line (the latter terms vanish

in fact). Hence 4C^ ̂  -δλ^Cl^ (7)

for some n-independent (but L dependent) constants C_, C+ >0. Altogether the
fourth order terms on the right-hand side of (3) may be written as

(λ + δλ1) f dx(φi)4 + irrelevant terms of order λ2 + Θ(λ5/2) , (8)

with δλ1 satisfying (7).
Finally, since by (2)

%.v = L2ΆL^ + L2rL^,, (9)

the sixth order term of (3) is

Summarizing,

7 V) = τ(L2m2 + 0((*)2)) ί dx(ιp'J2 - 6λ'ί

+ irrelevant quadratic terms of order (A7)2

-f λ' $dx(ψ'J* + irrelevant quartic terms of order (/I/)2

- 8(Γ)2 ί daάr^WJWJ* + 0((*)5'2) , (1 1)

where

(12)

It is clear that we could have added to V irrelevant quadratic and quartic terms of
order, say, &(λ3/2) and &(λΊ/4) respectively and six or higher order Θ(λ13/6) terms
without essentially changing the result of our analysis. From the form of the new
mass term in (1 1), it is obvious that we can find a closed subinterval J C / such that
for m2 going through it while other entries of Vn change continuously,
m/2 = L2m2 + 0((^02) sweeps /'= [ - (Λ93/2, (λ03/2]. This will allow us to choose in
an iterative procedure a sequence 70 D J7

0 D J'ό D . . . D J(

0

n) D . . . of closed intervals such
that for ml running through J(

0

M), m2 sweeps /„. Following [6], we locate the critical
mass of the infinite volume theory, w2

rit(Λ0), as the point of n JJ. For m^ = m2

Γit(/l0)
we can iterate our perturbative analysis. From (7),

for small λ, so that the assumption

(14)

carries through: the effective fourth order couplings λn should decrease like & ί -
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This shows the perturbative asymptotic freedom in IR of the critical φ\ theory.

Summarizing: Our perturbative analysis carried over to the second order of the
effective coupling constant at each distance scale (to be distinguished from the
second order analysis in λ0) tells us that the effective interactions vanish in the limit
of long distances. The purpose of this paper is to prove this rigorously by providing
appropriate estimates for the perturbative and non-perturbative corrections to the
above arguments.

The problem with the perturbation expansion is that it is based on expanding
the right-hand side of (2.39) (or of its logarithm) into powers of V which, even if
given by (1) with small λ, becomes arbitrarily large in certain regions of the
functional space of the fields φ = L~1ζ1/2φi,-ι + 5Γ, namely, where |φ|>0(/Γ1/4).
Let us consider first small BS fields ψ', |φ'| < Θ(λ ~1/4). Still V becomes large if | Jf | is
large and the perturbation expansion for V in terms of powers of λ would diverge
[we may expect the behavior of the type of Θ(n\) for large order n, typical for φ4

integrals]. If we limit the functional integral in (2.39) to fields Z [and hence, by
(2.25), (2.42), and (2.46) also fields 3Γ\ with absolute value smaller than &(λ~1/4), we
may easily bound small corrections to the first perturbative orders using more or
less standard cluster expansion arguments to control the volume dependence of
the expressions. The corrections coming from the large values of Z will be shown to
always carry non-perturbative small factors β(e~ελ~ί/2) due to the small
dμ1 -probability of \ZX\ ^ Θ(λ~1/4). However, we have to know that as well as the
contributions of large fluctuations Z to F'(t//), also the ones to the first Taylor
expansion coefficients of V around t//=0 (e.g. to λ') are small. We shall guarantee
this by passing to fields \p and t// with small imaginary parts, |Imt/;|,
|Imt//| < &(λ~1/4) (i.e. in strips) and proving together with the bounds for small and
large Z contributions to F'ίφ') their analyticity in i//. Then the bounds for the
contributions to the derivatives of V at t// = 0 will follow by Cauchy estimates. As
far as the properties of V(ιp) for large ψ are concerned, we shall assume inductively
stability bounds for the large \p contribution to the Boltzmann factor e~V(ψ). They
will guarantee the strip-analyticity oϊe~v'(ψΊ and will assure that the small dμr

probability of large fluctuations Z is not affected for small ψ' by the interaction.
Of course small or large field values may occur simultaneously in different

space-time regions and our analysis has to take into account the space-time
relations ignored in the above discussion. Here we shall follow the spirit of [4]. The
crucial fact is that, although the recursion (2.39) does not preserve the locality of F,
it may be expected to preserve its approximate locality because the only new non-
locality present in (2.39) is due to the approximately local relation (2.25) between 3£
and Z. Hence we expect coupling of different space-time regions in (2.39) to be
exponentially decaying [with the correlation length being &(L)~] and shall use
cluster (high temperature) expansion techniques to exhibit the decay. The
expansion will allow us to perform the small field-large field analysis in an
essentially local way. This will be the topic of the next section. Let us stress the
contrast between (2.39) and the complete functional integral of a critical theory
with infinite correlation length. The success of the RG lies just in the reduction of
the latter problem to a sequence of high-temperature ones with bounded
correlation lengths.



Massless Lattice φ% Theory 21 1

4. General Form of Effective Interactions

In this section the inductive assumptions concerning the analyticity properties of
Vn are stated. Let us start by describing the sets of small fields i/Λ As introduced,
ψn = <$tfnφ

n, φn being the independent variables. Since the above relation is non-
local and it will be essential to trace the local dependence (and analyticity) of Vn on
ψn rather than on φn, we shall enlarge the space of small fields to a certain space of
complex φ"'s not necessarily of the form $ίnφ

n.
Let us pave LΓnΛ with the lattice of blocks A of size L^0 centered at points of

LN°Z4. LN° will later appear as the scale of the cluster expansion. A subset of LΓnA
being a union of blocks Δ will be called paved. For a paved set XcL~nΛ9 let

= {complex ψn =

for

for &

for

(1)

This will be the set of small fields on X. As we see, we have bounded not only the
values of ψn but also those of its derivatives and of the exponent 2/3 Holder
derivatives of the derivatives oft/;". Let us notice that for ψn = ̂ nφ

n, the first bound
of (1) with X = L~nA would imply the next ones [for C0 Ξ> C0(L), as we assume] due
to (2.26), (2.43), and (2.45). For more general small fields, we postulate these bounds
in order to guarantee the smallness of irrelevant terms of Vn in which derivatives of
\pn will appear, see below.

We shall inductively assume Vn(ψn} to be an even analytic functional on
Jf(L~nΛ) vanishing at zero. We shall also assume Vn to possess all the euclidean
symmetries of the unit lattice.

Let us denote by J^Op7) the fcth order of the Taylor series for Vn at zero and by
FlfcCvO the remainder of the expansion up to order fe-1. We shall take the
quadratic term of Vn of the form:

W) = X2 ί <Mv£)2 - 6A, ί <fe G^ίvΰ2 + Σ ί d^κ^(dμΨι - dμψ;) dvΨ; .
(2)

This specifies the form of the second order irrelevant terms. Notice the absence of
the J (dip)2 term entirely absorbed into the Gaussian measure by wave function
renormalization, as discussed in the previous sections.

For the quartic term in Vn, we put

λn j d^ir + Σ VMΨ") , (3)
Y

where V£γ(ψn) is the restriction to the diagonal of a quartic nonsymmetric form
V4γ(ψn

ί9 ψ"2, \p\9 ψty depending on the fields φ" defined on the paved set Y. ψn

4 enters
Ϋ4γ(ψl> •••> Vϊ) only through its differences at pairs of points. This guarantees the
irrelevant character of Σ KΓyOp"), to be contrasted with the marginality of

We could have written the irrelevant contribution to V£ in a more transparent
way as J dodJdud&difNn ΨΪΨΪψKψl — ψl)- The other form is preferable since
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we would not be able to extract satisfactory bounds for the kernels Nn. The twidle
in V4Y signals that these expressions do not contain the whole quartic contribution
to Vn.

Finally, for the sixth and higher order contributions to Vn, we assume

= - *% f dvd^(ψinΨy + Σn βy(ψn) , (4)

see (3.1) and (3.2). Even functionals V£6Y(ψn) are assumed to depend only on ψn

restricted to the paved set 7, to be analytic on 3 Jf ( Y) and to have the Taylor series
starting with sixth order terms.

In the next sections, we shall formulate inductive bounds for the building
blocks of the interaction Vn introduced here. For the time being it is enough if we
keep in mind that ml, Kn, λn, λ%, Qn, V£γ, and V£6Y are small and exponentially
decaying with the separation of the points of the kernels or of the points of the sets
Y, the second property expressing the approximate locality of V".

Now let us discuss the large field contributions to the Boltzmann factor e~γn.
First, notice that we may write

(5)
Y

where

(6)
(Aι,A2) AI A2

A1uA2 = Y'

This implies for the Boltzmann factor

= Σ Π(exp[-^4rJ"l)exp[-Λ,f (v")4]. (?)
{y«} «

Let us introduce the following convenient terminology. A paved set X will be
called connected with respect to a collection S of paved sets if each set of S lies
either in X or outside X and if X cannot be divided into two proper paved subsets
without dividing some of the sets of S. X will be called connected if it is connected
with respect to pairs of nearest neighbor blocks Δί9 Δ2 in X.

Now let D be a paved set in L~n A Let S be composed of connected components
(c. c.) of D and of sets of { Ya} . Let {Xt} be the collection of the c. c. with respect to S of

Yg\ intersecting D. Let us fix {Xt}. It is clear that the sum over {YΛ}

factorizes now to the sums inside each Xt and the outside sum. Thus we obtain
from (7)

exp[-F54(φ«)]= Σ Π0£(v*)expΓ-λ f A*(v£)4- Σ' ^4y(^)Ί, (8)
{Xi} ί \_ ~D Y C - u X f ~ J

where the sum over {Xt} runs through collections of paved disjoint sets such that D
C U Xt and each DnXt is a non-empty union of c.c. of D. In (8),

(9)
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with {Y^} running through collections of paved subsets of Xt such that Xt is
connected with respect to the c.c. of D and ϊ^'s. Notice that gχ.(ψn) depends only on
ψ"\X,

The main point of the partial resummation of the Mayer expansion (7) inside D
is that (8) remains valid also for fields which become large inside D. Given
ψn = jtfnφ

n for a real BS field φn, define D(ψn) as the smallest paved set such that

|^|<2C1K + W)1/4exp[1^αd(^ ~ W))] (10)

for α - εβ [for β see (2.42) to (2.46)] with some sufficiently small e > 0. Thus D(ψ") is
the set of points, where ψn becomes large but only exponentially fast with the
distance from ~D(ψn) (the last condition will take care of the exponentially
decreasing tails in the interfield coupling). The set of the large fields will be defined
as

®(D,X)= U (VΊ* + •*"(*)), (11)

where the union is taken over real fields φn such that D(ψn) is a subset of the paved
set D. Notice that although we have admitted arbitrary small fields φ", the large
fields have the original form ψn = e$tfnφ

n, φn real, up to a small field correction.
Notice also that

(12)

Indeed, for ψn = ̂ /nφ
n with D(ψn)tD,

Kl^Cifoo + n)1'4 if πφD (13)

by (10). Moreover

(14)

for x,^φD and C0^C0(L) by (2.43), (2.26), and (10). Similarly

(15)

for x,yφD and C0 large enough. Hence φne2jf(~D) [or more precisely
φ"Uj,e2jr(~D)] and (12) follows from (11).

For large fields, we shall not insist on the analyticity (or even on the existence
for complex ψn) of Vn(\pn) but will simply assume the analyticity of the Boltzmann
factor exp[-7"(φπ)] on @(D,L~nΛ) together with the representation (8) for
exp[- F|4(φ")], where gn£(ψn) are even functionals depending on ψn\Xi, analytic
on 2)(D, Xt). The precise stability bounds on g^. will be stated in Sect. 6. Here we
mention only that gn/. decays exponentially with the separation of points of Xi and
is bounded but not necessarily small.

For large fields, the relation (9) does not make sense any more but we shall still
have a relation between gn

x

D qnd g"/1 for D Dl^ easily following from (8). Namely,
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9χD= Σ Π^mexpE-F^yJ-υexpΓ-Λ, f (t//1)4], (16)
{Xi},{Y«} i * - I (D\Di)nX J

where we sum over collections of disjoint sets XtCX9 D1dXc^jXi9 DίnXi is a
non-empty union of c.c. of Dl and YΛc(X\uXd with X connected with respect to
c.c. of D, Xi9 and YΛ. Notice that (9) follows from (16) (and analytic continuation)
if we put D! = 0. Equation (16) also implies that if DnX = D1r\X then gβP and
gn

x

Dί coincide on &(Dl9X).

5. Local Analysis of the Renormalization Group Recursion

The proof that the general form of the effective interaction discussed in the
previous section is preserved by the RG transformation is based on a cluster
expansion argument for the fluctuation integral of (2.39).

Again in order to simplify the notation, we drop the sub-(super-) script n and
replace n + 1 by prime. Define

Z). (1)

As compared to V, see (2.39), W contains a constant term as well as a J (dip")2 one
and the field strength has not been renormalized in it.

The first step of the expansion for the right-hand side of (1) consists of localizing
the regions in which & field is large. This is done with the help of a partition of
unity

(2)

where p = (pM), ueΛn = Λn\LZ4, pu = 0, 1 , . . . , and χ^ is the following characteristic
function

Xp(Z)= Π X{(«oW/ 4pu^|Zul<(«o+»)1 / 4(pu+i)} (•*)
ueΛn

Notice that p = 0 selects small Z and hence (due to (2.25), (2.42), and (2.46)) small S.
Given p9 let us define the large 3£ region R by

Λ= U {LA:AcL-(n+ί)Λ,d(LA,u)<Wa-ίlog(pu+l)}. (4)
ueΛn

Thus Z can become large in β but only exponentially fast in the distance from ~ R.
Given set Dx, where the BS field \pf may get large and the set R of large

fluctuations JΓ, let us define the set D of large fields \p = L~l\p'L-i.

(5)

Notice that if ιp'e^LS}(D',L~(n+1)Λ) and Z is in the support of χ^ then

ψe%®(D9LrnΛ). (6)

Indeed

-nΛ). (7)
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Moreover, by (2.25), (2.42), (2.46), (3), and (4),

Σ e~^~"\zn\

^ 0(1) (n0 + π)1/4 e " ~ ^ ACiOio + n)1/4 ~ (8)

for Cv ̂  C^L) so that % e^0(Λ, L~M) C τ^(£, L~M). Thus after inserting (2)
under the integral of the right-hand side of (1), we may express the integrand
exp [ - V(ψ)~] = exp [ - V2(ψ)~] exp [ — V^ 4(tp)] using (4.2) and (4.8) with D given by

(5).
This way we obtain

= Σ Σ ίΠ<£(V>)expΓ ~im2 Jd^
p {xt} i I

ψ.-d.wdjp-λ j

- Σ V>4Y(ψ)~]χf(Z)dμι(Z). (9)

Let us localize the irrelevant quadratic term of F,
~ μ,v

by writing it as Σ ^2γ(vO> where 7 is the smallest paved set containing
Y

cε,?f,ce + L~neμ and ̂  + L~neμ. Mayer expanding

expΓ- Σ V2Ύ- Σ V>4Y] for all i
L IΓ^A:I yc~i7 j f i J

under the integral of (9), we obtain

Σ ΣίΠ^(ψ)
σ«) (y/i) '

V*-Σ Σ

where Γα are not contained in a single Jf f and 1̂  do not intersect
We still have to decouple the non-locality of the right-hand side due to the

kernels ̂ QΓ1/2 = M relating the fluctuation fields 2S and Z, see (2.25). Let { Uk} be
the partition of the volume LΓnA into unions of blocks LA(AcL~(n+ί}A)
connected with respect to Xi9 Y^ Yβ and the pairs of the nearest neighbor blocks
Lzl1? LA 2 such that LAίcR. The reason for taking this "collar" around R will
become clear in a moment. Define

(11)

where (for xUk being the characteristic function of Uk)

Σ Sw(χϋkJlχϋk + χUk'J?χϋk) . (12)
k<kf
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Notice that for (skk.) = 0, Jί* does not couple different Uk. We shall admit complex
skk> with

Vk,y]9 (13)

where r will be chosen later. Notice that for x e Uk,

, (14)
fc'Φfc

where for kf < k, we have put skk> = sk.k. Following (8), we show that the first term on
the right-hand side is in -^^(Rk9Uk)9 where Rk = RnUk. Let us consider the
second term. Proceeding again like in (8), we notice after the fourth step that for
u e Uk.9

k.)9 (15)

(since for ueR \x — u\*zd(u9 ~R) by the construction of I7fc's) and conclude that

I^J^KΛfio + ii)1'4 (16)

for CΊ^C^L, r). Similarly, we show that

I^L-^y/h-^iCoQK + n)1/4 for v,^eUk (17)

and

for a!,y,ίr + L-"eί,y + L-"β/16l7t (18)

[note the crucial character of the limitation of the points to a single Uk in (17) and
(18)].

Altogether, we infer [using also (7)] that for v/e£ί0(D',L~(II+1M) [or

and ιps e 9(LD'vRk9 Uk) . (19)

We shall use the following formula [24] interpolating between 5 = 0 and 5 = 1
expressions:

(20)

where the sum runs over graphs Γ (collections of pairs k<k': called in what follows

lines), dsr= Π #{[o, i]}fe)ds/5 ^Sr^(s)= ΓΊ ~^~^(s) an(l in ^e argument of J^
'

on the right-hand side of (20), s^ are set to zero for
Splitting Γ into the connected components, we may rewrite (20) as

(21)
{̂ r) y

where { ŷ} is a partition of {C7k} and

with the sum running through the connected graphs on Φr S(Φy) = 1 if Φy is
composed of one Uk.
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Applying (21) to (10), with s-dependence introduced according to (11) and (12),
we obtain

Π (exp [ - Pzr.M - 1) Π (exp[ - fW,M - \)χ^Z)dμί(Z} . (23)

But the integral on the right-hand side of (23) decouples and the sums factorize
over the sets °UΊ = (J Uk. For the later, one of the crucial observations is that for

XtCUk we may replace g^ψ8) by gff'^ψ*), since ιpsε@(LD'vRk, Uk) and D
r\Uk = (LD'u#k)n Uk9 see the remark following (4.16). Also, for the factorization of
Σ over %y it is important that together with LA ^ C Rk, we have included into Uk all
p

the nearest neighbor blocks LA2. Otherwise we would encounter the non-
factorizing condition that %ynR is a c.c. of R.

Let us introduce paved sets XycL~(n+ί)Λ such that LXy = %y but admitting
X'y = A only inside D'. We can rewrite (23) as a partition function of a polymer
system with (disjoint) polymers Xy:

exp[-^/(φ/)]=ΣΠ(?5i(vOexpΓ- Σ WΪ(vO (24)
TO y I Ac~D'

The polymer activities are given by

Σ Σ
ίx. } (yα) {

im2 J
LX' LX'

• Π (exp[- F2Γα(vs)] - 1)Π (exp[-

•expΓ Σ W^ίvOl, (25)
\_ACX'\D' J

where p = 0 outside LX', R = R(p)C LX' together with all blocks LA having nearest
neighbors in R, D = LD'uR, X{ are disjoint subsets of LX' and each DnXt is a non-
empty union of c. c. of D, DnLX' C u-Yί9 7α C LX' but not in a single Xί? Yβ C Uf "\
(u-Ϋj) and °U is the partition of Uf 'into unions of blocks LA connected with respect
to Xi9 Ya, Yβ and pairs of nearest neighbor blocks LA19 LA2, LA1CR. In (25)
ψs = L~1ψ/

L-ι. + JίsZLX^ where ZLX, vanishes outside LX'. We recall that X' can
be equal to a single block A only of it lies inside D'.

The contributions of the single A clusters outside D' are gathered in

-im2 f A*(V£)2 + 6λ ί άaMJyfy
LA LA

Σ v2γ(ψ°)-λ ί ^(v°)4- Σ iWv0)];̂ ^) !̂̂ ).
YCLJ LJ YCLA ~ J

(26)
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It should be clear (see the precise estimates in the next sections), that W^ip*) as well
as the polymer activities Qχ'(φ") exist and are analytic for y/efLjf(zl) and
ψ' e \L3)(Ώ\ X") respectively.

For t// small (D' = 0) in ̂ Ltf(X') put Q^'(ψ") = £xO/0- In this case the activities
QX, will be small and exponentially decaying with the separation of points of X'.
We may exponentiate the right-hand side of (24), see e. g. Sect. 1.3 of [37], obtaining

(27,

where for Y bigger than Δ,

»W)=- Σ ΣΠ^(OΠβ^(vO (28)

In (28) yc runs over connected graphs of lines f joining vertices {1, ...,Ξ},
) = - 1 if X'f_ nXf+ Φ 0, where / = (/_,/+) and zero otherwise. The sum in (28)

will be shown to converge and give again small Wyζφ') with exponential decay in Y.
Using the Taylor expansion, we write

= W'(0) + W£(v>0 + ΪW) + W± 6(φO

= Σ (Wffl + ws^vO + wϊΛvO + ̂  βr(vO) (29)

For a general set ScίΓM, denote by S the smallest paved set containing S. Let us
write for the quartic terms of W

= Σ
A = Yf Δ Y:(L-1Y)~=Y'

= Σ if^(φ;)4+^(v')+r(v'). (30)
A-T

contains the &(V^6) and &((V)2) contributions to W4

/

y(φ/) As we shall
show below,

Σ^4/y(ψ') = ̂ ί^(^)4+Σ^(ψ/), (31)
Y Y

where Wβ, as I^y, possess the expected properties of K£y(vO (in particular, they
are irrelevant).

The extraction of the marginal term δλ$(ψ')4 will be described in detail in
Sect. 9. Here let us only mention that (31) cannot be written as
W^(ip") = J dcεδλγ(cε) (φ^)4 + W^'rOpO? if only this still holds approximately up to
exponentially decaying tails.

Let us come back to (24) for i// e \L2(D\ L~ (n + 1}A). We shall now extract from
W'ζφ') the constant and the quadratic term as well as the part of the non-local
quartic one. The latter, after reshuffling it according to (31), will be reinstated back
in a moment.

Let us then introduce

exp[- WίA = exp[- W} expΓ^/(0) + Wζ+ Σ Λϊrl (32)

By (24) and (29),

ΔC~D'
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Let us define the interior X of a paved set X as the union of A CX which do not
touch blocks A C ~X. Mayer expanding exp |~Σ W(0) + W£y) + Σ $ϊrl , the sum

LΓ y J
running over the paved sets 7 which do not lie entirely in the interior D of a single
c.c. D oϊD'nX and resumming the clusters of this expansion outside the large field
region D', we obtain

{X,} I ίX'γ} y

•expΓ-Λ I (γ>04- Σ H2+ Σ (K?(0)+WSr)+ Σ Wϊ/l (34)
|_ vXι\D' AC~vXι YC~uXι YC~vXι J

Here J?j runs through the collections of disjoint paved sets such that D'nXt is a
non-empty union of c.c. of D', D'Cu-Ϋj, Jfy are disjoint and J

-f = Σ Σ Σ
{X;} {y«} {}>} y α

Π(exp[Λϊr,]-l)expΓ- Σ W2 + A J
β L ACX\D' X\D'

ϊr,]-l)expΓ- Σ
L ACX\

Σ Σ.(TO+wk+^V)l (35)

where Xy are disjoint, 0φD/n^Cu^J no YΛ and no Ϊ^(C-3Γ) lie entirely in the
interior of a single c.c. D of D'nX and X is connected with respect to X'r Ya, and

Yβ
In (34) we may exponentiate the sum over {X'y} :

(36)

see (28). Inserting (36) to (34) and using (29) and (30), we obtain

-^ ί (Ψθ4- Σ &&- Σ

Now, using (31), we shall reinstate the factor expΓ— Σ ^yCvO removed in
- 4̂], see (32). L y

= Σ Σ Σ Σ M'Π(exp[-fi&J-l)
(X,} {r«J {Yβ} {Yv} I α

• Π(exp[- Wί6rt] - l)ΓΊ(exp[- W?rJ

•expΓ-A J (ψγ-δλί(ψγ-Σ Σ, W
L ~D' Dί YCDί

(38)

where we have partly Mayer expanded the non-local terms in the exponential. In
(38), Ya, Yβ C ~ uXt and no Ύy lies entirely in the interior of a single c.c. of D'. Fixing
the clusters of the expansion on the right-hand side of (38) intersecting D' and
exponentiating the outside sum, we shall obtain

ί (Ψr- Σ (tiβ+tiβ+wί6~D' r c ~ u X j -
(39)
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where {X}} runs through the collections of disjoint paved sets such that D'nXj is a
non-empty union of c.c. D'jt of D' and D'

ST= Σ Σ Σ Σ ΠCΠ(eχp[-^U-DΠ(eχp[-^>4]-i)
{Xl} σ«} {Yβ} ffy} I « β

6A f (ι//)4~Σ Σ, #ίί| (40)
'̂̂  Dί rcDί J

with Xly Ya, Yβ, and Yy as in (38) except that they lie in X and X has to be connected
with respects to them.

We still have to deal with the second order contributions to W£. In fact we shall
show that for ψ' = j/'φ\

'̂(t/O + 6(A + δλ)ζ J dxyjtfj2 = i(L2m2 + δm2) J d^(φ;)
2 + ±

+ Σίda«iy(L4lC^ + 5X£p(aχ-δMVpa¥φ;. (41)
μ,v

Now choosing the wave function renormalization
1 (42)

[as will be shown |<5c| ̂  &(λ114) and hence 1 1 - ζ\ ̂  (P(A7/4)], we may rewrite (41) as

-6(λ + δλ)ζ2 J dvΨJwtf + i(i - 0 Σ ί ̂ (5X)2

μ

+ C Σ ί d^(L4K^ + δK%) (dμ^ - dμψ'Jdvψ'y . (43)

Now for FaCφO with ψ' = rf'φ', we shall get from (2.39) and (1),

^(φO = i«2/ί A*(vD2 - 6A'f d^^ίvΰ2 + Σ ί d*drK'£(dμΨ'φ - dμψ'Jdvψ^
μ,v

(44)

provided that we define

(45)

(46)

ζ. (47)

By definition, we shall extend (44) to any LΓ(n+i)Λ fields ψ' obtaining this way (4.2)
with πι-»n+ 1.

For the quartic term F4', we obtain from (2.39), (1), (30), and (31)

F4'(V0 = TO J/ V) = α + <5^K2 ί ̂ (vO4 + C2 Σ flϊkvO
y

+ C2 Σ ^KvO = λ'\dv(y'^ + Σ v^ψ') , (48)
r y

where we have set

%r = C2(^ + fl#) = C2^V - (49)
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Equation (48) reproduces (4.3) for nt-»n+ 1. Similarly

Vίβ(ψ') = W>β(C1/2V;/) — ~8(^02ί d&djfΆ^ (ψΌΪ)3 (ψ')3 + Σ V>eyO^O? (50)&V * y Y

where

This gives (4.4) for n\-*n + 1. As we shall see, (49) holds e.g. on 3jf (L~(Π + 1)Λ) and
the contributions on the right-hand side have the desired analycity properties
(which should be clear already now).

For large v' e.g. in ®(D', L~(n+l}A\ (2.39), (4.6), (1), (39), (49), and (51) give

= Σ Π0£V)expΓ-Γ ί A*(V>D4- Σ ^
{X,-} 7 [ ~D' YC~vXj

where

(53)

(52) is (4.8) for nι->n+ 1. Again ̂ ' are analytic on 3)ψ, X).
Equations (44), (48), (50), and (52) show that the general form of the effective

interactions described in Sect. 4 reproduces itself under (2.39). It is a straightfor-
ward exercise left to the reader to show that (4.16) also holds for n\-^n + 1, compare
Appendix 2 of [17]. In the following sections, we shall see how inductive bounds on
various contributions to the effective interactions carry through (2.39), and shall
show that they behave in accordance with predictions of Sect. 3 [e.g.
Λπ = β?((n0 + w)~1)]. This will establish the IR asymptotic freedom of the weakly
coupled lattice critical φ^ theory.

6. Inductive Bounds for the Effective Interactions

Small Fields

For a paved set X, by &(X) we shall denote the length of the shortest tree on the
centers of the A blocks building X and, possibly, other points of the (periodic)
continuum.

The quadratic irrelevant term of the effective interactions will be controlled by
means of the estimate

J2)], (1)

(2)

(3)

where a = εβ is the same constant which appeared in (4.10).
The effective coupling constant will be bounded by

f o r O < C _ < C + , C+ = C+(L).
For the irrelevant quartic contributions, we assume
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for φϊ, φ2, ψl e Jf (7) and ψl satisfying the bounds defining Jf (7), see (4.1), except
the first one for its absolute value [we recall that V^ψl, ..., ψ%) depends only on
the differences of φϊ at pairs of points of 7].

Finally V^6Y(ψn) are analytic on 3Jf (7) satisfying

(4)

The choice of powers of (n0 + n) ~ * = 0(ΛΠ) in (1), (3), and (4) has been dictated by
convenience. We could have respectively chosen &((n0 + ri)~2), &((n0 + ri)~2),
@((n0 + ri)~ 1), and &((n0 + ή) ~ l) as well since the main contributions to Kn and V£γ

come from the second order graphs Q and XCX and to V^6Y from the third
order graph | | | . The factors exp[ — αJS?(Y)] in our bounds exhibit the
approximate locality of Vn.

large Fields

We assume that the large field contributions gϊP(ψn) to the Boltzmann factor
exp[— V£4(ψny] are analytic on 3(D,X) satisfying there

^(φΌl^expΓCalDπXI-^1/2 J dv\ψl\2 + 20λn f d^(lmψl)4-a^(X)~]9
|_ DnX DnX J

(5)

where C2 = C2(L, JV0) and for a paved set 7, | Y\ denotes the number of the A blocks
building Y.

The choice of (5) is one of the crucial contributions into the analysis of the non-
perturbative corrections to the effective interactions (besides the idea to use the
analyticity in the field variables instead of the one in coupling constants). Let us
notice that (5) has a chance to iterate: f (lmψn)4 goes more or less through the RG
recursion unchanged and Λ,Π

1/2 J \ψn\2\-+(L2$2 + β(λj) f \ψn+1\2, which in the large
field region and for large C1 [see (4.10)] should match the increase of the constant
term C2\DnX\ providing even a contractive factor which will be used to control
the combinatorics of the cluster expansion.

At the initial step of the iteration when V(φ) is given by (2.2), K%v

xy = 0, V4Y = 0,

ί expΓ-Λo Σ Φf] i f X i s a c . c . o f D ,
oj, I L M J (6)

9x ( 0 otherwise. W

Choice of n0 corresponds by (2) to a choice of λ0 (the bigger n0, the smaller λ0).
Writing λβ/4φx = a + ίb with real α, fc, we obtain

, (7)

so that (5) for n = 0 clearly follows for C2 ̂  C^ (L4N°).
We shall always assume that L^L, N0^N0(L), C0^C0(L), C2 ̂  C2(L, N0),

Ci ̂  C^L, ΛΓ0, C2) and n0 ̂  ή0(L, JV05 C0? C1? C2). The initial ̂ 4 interaction given
by (2.2) has the form described in Sect. 4 and for small λ0 > 0 satisfies the inductive
bounds.
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The Main Technical Result

that we want to prove is the following: Suppose that Vn has the properties
described in Sect. 4 and fulfills the bounds of the present section with ml e /„
Ξ[ — (n0 + n)~3/2, (n0 + tt)3/2]. Then Vn+ί has again the same properties with

1 except for the new mass squared which satisfies

/4). (8)

7. Inductive Step: Estimation of the Local Small Field Contribution
to the New Effective Interaction

We shall start the proof of the above stated result from the analysis of WΔ, see (5.26).
W'Δ carries the main contribution to V ' .

Let us assume that φ'ef LjΓ(/4) and let VLΛ(\pQ) denote the argument of the
exponential on the right-hand side of (5.26). We recall that

ZU for xeLA.Σ
uεLΔ

Let

dv(ZLΛ) = 0(ZLA)dμ1(ZLA) .

(1)

(2)

It is straightforward to see that for Z in the support of dvLΔ, ψ° e 3jΓ(LJ). We
shall compute WΔ perturbatively. Let us denote

Thus

< - >, = \ - exp [ - ί

= - J
o at

0)] dv(ZLΛ)/S exp [ - ί̂ (ψ°)] dv(ZLΔ) . (3)

e-ε(Wo+w)1/2), (4)

where <; . . . ;XT denotes the truncated expectation and the subscript at &( — ) points
to the order of the expression in t// [we use the weak definition of Θ( — ) which does
not exclude ^(-)]

In estimating the expectations on the right-hand side of (4), we shall use the fact
that tfW^kL^ψ) ig an expression of order g; fc in φ which is bounded on Jf(Lzl) by
C, then, "since ^.JLde^((n0 + n)~1/4) Jf(Lzl),

- Ofc" J ί
dk

"^"1 Σ

Ul ..... UksLΔ

π-M dt.ί. ΞO

.Ui } π z.f
ί=l

(5)
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where we have used the Cauchy estimate to bound the t derivatives. Loosely
speaking, the integral on the right-hand side of (5) contains at least k/2
contractions of pairs of Z fields and each such contraction yields an additional
0((«0 + «)~1/2) factor as compared to the bound for the expression on Jίf (LA).

Let us start the estimation with the first term on the right-hand side of (4)

o = ΪL2m2 J dvWJ* - 6L
A Δ

Δ ueLΔ Δ

+ Σ
YCLAl

+ Σ Σ <z2y0v4Y(L-1

ψL-1.,...,^.u,...,^.u,...,L-1ψ'L-1.)l^ί<j^4u<=LΔ l 3

ueLΔ Δ Δ

ueLΔ Δ Δ

Ί2L6λ2 Σ <ZU
uι,...,U4eLΔ Δ Δ

-48L6λ2 Σ <ZUl...ZUAyo$d
uι,...,U4eLΔ A A

• ̂ ŝ ̂ WvO2 + <n.>olV' = o (6)

We shall estimate various terms of (6) with the use of (5). Note first that the
kernel Ά satisfies the following bound

ί da> J dy\&^\£ ΛΣL2«-» j <fe j dyl^-^-^l
Δι Δ2 k = 0 Δi Δ2

A2) ]
ΠΣ L2*~» J d* \
fc = 0 AI Δ2

n

(7)

where we have used the uniform exponential decay of ̂  following from (2.19),
(2.42), and (2.46). Inequality (7) and the inductive bounds of Sect. 6 give

1/2) (8)

on small fields. Thus, by virtue of (5), the constant in (6) satisfies

(9)
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Let us pass to the quadratic contributions to </^i,j)0 Using (6.3), we obtain

Σ V V /Z2\ V (J~l

/ . / . \Λ/U/Q Y^Y^ju
YCLA i<j ueLA l J'

(10)

(one Z contraction provides additional &((n0 + n)~ί/2)). The quadratic contri-

bution from Σ <P>6yOP°))o is
YCLA

YCLA dt2

and by virtue of (6.4) and (5) is bounded by &((n0 + n)~5/3) (there are at least two Z
contractions here). The last but one and last but two terms on the right-hand side
of (6) are, with the use of (8), bounded by

(12)

The quartic contribution from Σ <^>6y(V;0))o is

YCA

-Σ^
Λ \ ^ A+^f

t = 0

and is bounded by (9((n0-\-n)~116} (at least one Z contraction).

The remainder of Y <F>AV(tp0)>π is
YCA

5! YCLA o dt

Since by (6.4)

2/3 (14)

for AΓ0 ̂  N0(L) and since the constant, quadratic and quartic contributions to this
expressions were bounded [using (5)] by $((n0 + n)~13/6), &((n0 + ri)~5/3) and
β ((n0 + n) ~ 7/6) respectively,

^ (̂ 4 + 2) (n0 + n) - 2/3 (1 5)

(all the time for t//e|LJf (zl)).
Finally, let us notice that <Π^Mί)o are given by their gaussian values with

0(ίΓε("0+")1/2) corrections. Denoting '

Σ ΫL^φ'L-^ftΆM, (16)
YCLA

Σ V*J.L-1ψ'L-1.)=tiβ(ψ'), (17)
YCLA
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we may summarize the above discussion by writing
2 ί d*(ιp'J2 - 6L2λ J dvlf^ψ'J2

A A

+ 6λL2 Σ
ueLA

A ueLA A A

-48L4Λ2

ueLA A A

A A

The second term on the right-hand side of (4), — \<C^LA\^LA)Ύ^ is treated
similarly as the first one with the additional use of the fact that i^LΔ(L~ VL- 0 (i e

Z = 0 term) does not contribute to the truncated expectation. A straightforward
analysis yields

-36L4A2

uι,

-48L4A2

Uι,

+ 48L4A2 Σ ί
ueLA A

-8L2A2 Σ J^ίdy^L«^ιr.(vJ3(vp3 + ί'i6((«o + »)~1). (19)
ueLA A A

Equation (19) has been obtained by writing 1^LΛ as

# 2(("0 + "Γ 1/2) + ^4(1) + ̂  2^ ̂

accounting explicitly for some contributions involving the first two terms and
estimating the others with the use of (5) which implies that ^k((n0 + ή)p);

0ι((np + Ό*)>o is a sum of 0J(n0 W
+*~1/4(k+'~m))

Finally, let us consider the contribution of the third term on the right-hand side
of (4). Let us notice that since for t//ef LJf(zl) and for Z in the support of dv,
\i^LΔ\^&(l\ when estimating non-vanishing terms </;7';fcXΓ, we may undo the
truncation and replace the < \ expectations by the ί = 0 ones, provided we replace
the integrands by their absolute values and multiply the whole expression by &(l).
Thus we easily see that

3/4) (20)

(in fact the last term can be replaced by &^β((no + n)~ί) since the leading third
order contribution to it comes from the diagram -fff- which can be exhibited by
integration by parts).
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Gathering (4), (18)-(20) and denoting

[cf. (2.19) and (2.25)], we obtain

0o((»o + »Γ ') + ΊL2m2 J ̂ (K)2 - 6L2ι f dvv
Δ Δ

+ 6L2λ ί <fe t̂aM)2 + W&ψ') + Θ2((n0 + n)

+ λ J AzKvO* - Ί2L4λ2 f dπ J dy Jx^
zl ^ 1 / 1

-48LU2 J d
Δ Δ

-48L4!2 J dv
A

+ 48L4A2 J dv
Δ Δ

- 8L2A2 J da>
Δ Δ

vp3+ ̂ 6J(vθ (22)
zl 1̂

forφ /eUf(2l).In(22)

-3/4). (23)

Clearly analyticity of WΔ on |LjΓ(zl) also follows.
By (23) and (15),

I Wί 6,(φOI ̂  (̂ 4 + 3) (n0 + n) ~ 2/3 (24)

on
This ends the estimation of WΔ. Let us notice that (22) contains the same terms

of the second order in λ as (3.3) except for the localization of the "hard"
propagators, ̂  = ̂ QΓQ+^+\-^χLA^QΓ1/2χLAΓ

ί/2Q + ̂ +χLA. We shall recover
the missing non-local parts of them in the non-local contributions Wy, Yή=A.

8. Inductive Step:
Estimation of the Non-Local Small Field Contributions
to the New Effective Interactions

In the present section, we shall estimate the small field (D/=0) polymer activities
ρ^ίφO for φ' e iLjf (X*) ( C iL®(0, X')\ as given by (5.25). We shall be somewhat
sketchy, since the analysis is straightforward and has been done in detail for the
(Vφ)* model in Sect. 5 of [17] with comparison to which the present case is only
slightly more tedious.

First notice that for D'=Φ,D = Rm g%t((ps) appearing under the integral on the
right-hand side of (5.25): ψs can be large only if the fluctuation field ZLX> is large.
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Consider the terms of the expansion with R φ 0. For g%t((ps) we shall use the bound
(6.5). Since we would like to bound the s-derivatives occuring in S(U) by the
Cauchy estimate, we have admitted complex values of s, see (5.13). This might seem
dangerous as the factor exp [20/1 f (Im ψs)4~\ gives a term exp [0(Z4)] potentially

L RnXi J

non-integrable in R. But [see (5.11), (5.12), and (5.14)]

(1)

(2)

(3)

For the mass and Wick ordering quadratic terms in (5.25), we easily get

expΓ-im2 ί dπ(ψsJ2 + 6λ f d^^(ψsJ2~]\
|_ LX' LX' J|

1) Σ ̂  (4)

and hence by virtue of (5.19) is bounded,

Thus (6.5) implies

ueLX'

By (4.12) and (5.19), 2£* (as well as ψ'L- 1.) is small, i.e. bounded by 0((n0 + n)1

outside .R. Hence

expΓ-A J
L LX'\R *'

) ί
LX'\R x'

Σ Z2

U~.
ueLX'

(5)

Also, by (7.22),

exp Γ Σ Wίll = exP \λ ί (VOLΔCX' J L χf

Furthermore, since Y^CLZ^, and consequently (again by (4.12) and (5.19))

) (6)

(7)

and
(8)

Finally, we have to treat the V2Y(φs) contributions under the integral of (5.25).
Since Y might intersect R, they need a careful treatment. It is convenient to use the
following general relation.

Lemma. If \pε2(D,X} and YcX, then

(9)
\

where, as always, Dx denotes the unit cube centered at x.

ί Ivή
Πx I

J
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Notice that in particular if 7nD = 0, (9) implies that 3)(ΐ>, JQ|yc0(l)Jf (7)
which is a weaker version of (4.12).

Proof of Lemma. By the definition (4.11) of ^(D, X),

ψ = j/φ + ψ, (10)

where D(^φ)cD and ψ e Jf (JΓ). Now for & e 7,

Σ a-"--*'!^!
xeΛw

~"">-3e| J
xeDnA"

3" + ""'Σ
jc^DnX

Σ e-"d<y * > ί M + (9((n0 + n)1/4), (11)

where we have used in turn: (2.42), (2.21), (4.10) together with the fact that ϊorxφD
nX, d(x, ~D)^d(x,X) and smallness of ψ. Similarly we show that for ^,^e Y,
\(jtfφ)a. — (stfφ\\l\& — y\ is bounded by the right-hand side of (9) as well as ^d^φ)^
- (dμstφ\\l\a-#\21* if additionally & + L~neμ and ̂  + L~neμ are in 7 Equation (9)
follows now from the definition (4.1) of jf (7).

Let us see how (9) works. Since on Jf (7)

(12)

see (4.1) and (6.1) and since, by (5.19), \pse^(Rk, Uk) then, for 7c Uk, (9) implies

xeRk

• Σ πpl-βd(Y9x)-βd(Y,yϊ] f |φs| J IvΊ- (13)
Λ;,yeKk Dx Dy

Now if 1̂  is not in a single Jf f (or in a simple c.c. of β), then

d(x, ~ Rk) Z d(Y, x) + X(YΪ + <P(1) (14)

and

d(y,~RJZd(Y,y) + X(YJ + β(l). (15)

Hence, since φ5 ε 3>(Rk, Uk),

exp[-^αd(yβ,x)-Ίfeαd(yβ,y)-iαJSf(yβ)] J |φs| J |φ |g<P((π0 + n)1/4)(16)
D* Dj,

and

(17)

(18)
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For other terms V2Y(ψs) appearing in (5.25), namely, those with YcXi9 we get
from (11) applying the Schwartz inequality

(19)
xeR

and

Σ Σ V2y(ψs} ^((no + nΓW + ̂ no + nΓ^ΪΣ f
I ί YCXi xeR

Σ Z2

U. (20)
ueLX'

Gathering (3)-(8), (18), and (20) and using the Cauchy estimates to bound the
s-derivatives of S(̂ ) of (5.25), we obtain

Ifa l ̂  Σ Σ Σ Σ Σ Π (r- ' exp[- $βd(Uk, C7t,)])p {Xi) σ..} w rc={(t,t'» <*,t')

Σ ZZ^MZ^). (21)
ueLX'

It is straightforward, compare formula (5.38) of [17], to show that the sum of terms
with pφO on the right-hand side of (21) [for r>f0(L,ΛΓ0)] is bounded by

(22)

The non-perturbatively small factor @(e~
ε(no+n)ί/2) comes from small Gaussian

probability of large Z. For pΦO the integral on the right-hand side of (21) is

bounded by ί?/^expΓ — ε(ft0 +
 w)1/2Σ#ΠV This allows us also to control Σ and

V I « \) p
provides a decay factor in the size of R which together with the other decay factors
allows us to extract, say, exp[ — ^αJ£?(ZJΓ)] out of the whole expression. This
factor is bounded in turn by (9(l)exp[-^(L)αcSf(Z/)], where, by taking L^L0,
we have replaced &(L) by 7. Sums over [Xt}9 { Ya}, { Yβ}9 and Γc are controlled by the
remaining decay, and other small factors.

Let us consider now the terms of (5.25) with p = 0. Their analysis is very similar
to that of (7.4). The only substantial difference is that we usually stay in a big
volume, with Π eχp[ — iβd(Uk, C7fc/)] coming from the s-derivatives through the

fc'fc'
Cauchy estimates and the tree decay factors of F2Γα or F^4y/J [together with the
connectivity constraints imposed on the sums in (2.25)] providing the desired
decay factor exp [ — 7a^(X/}'] for the contributions to Qx>(ψ'). As in (7.22), some of
the terms of the lowest order will be listed explicitly. Thus we list

a) the quadratic terms linear in λ produced by a single s-derivative (no YΛ, no

Yβ),
b) the quadratic irrelevant terms coming from a single YΛ contributing

V2γΛ(L~v/φf

L-^ (no s-derivatives, no 1 '̂s),
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c) the quartic terms coming from a single Yβ contributing V6Yβ(ψs) with at most
two s-derivatives and no Y^

d) the quartic terms proportional to λ2 coming from the contributions with no
Ya and no Yβ and s-derivatives hitting at most twice the exponential of the local part
of V(ψs\ partially cancelled by terms of a) multiplied by the terms
6L2/ίJd^^L^Lίr(t/4)2 coming from the expansion of exp [W£],

e) the quartic irrelevant terms coming from a single Yβ contributing
V4Yβ(L~ίψ'L-ι.) (no s-derivatives, no YΛ's),

f) the sixth order terms proportional to λ2 coming from the contributions with
no YΛ, no Yβ and s-derivatives hitting at most twice the exponential of the local part
of V(ψs\

g) the sixth order terms coming from a single Yβ contributing V6Yβ(L Vί,-1-)
(no s-derivatives, no 1 '̂s).

The terms which are not listed are of higher order and we shall extract from
their sums explicit powers of (n0 + ή)~ 1 using an analogue of (7.5) (one contraction
again produces an extra &((n0 + ή)~112). Let us denote for ΐ = 2, 4

fi&V)= Σ Vπ(L-yL->.), (23)
Y : ( L - i Y ) - = Y '

compare (5.30), (7.16), and (7.17). A straightforward analysis sketched above (we
leave the details as an exercise) results in the following representation for QX'(φ/)
into which the pΦO contribution bounded by (22) has been also absorbed:

-6L2λ Σ J^^2L^(V^2-^
( A ι , A 2 ) A ι

2 Σ ί d* f
( A ι , A 2 , A 3 ) A ι A2

A2

\Λ*\
AI A2

+ 36L4λ2 Σ ! d* !
(Aι,...,A4) AI A2

+48L4A2 Σ id*!
( A ι , . . . , A 4 ) AI A2

-48L4!2 Σ id*!
Λ2

7/6) exp [

+ 8L2!2 Σ ί d* J
( A 1 , A 2 ) A 1 A2

έ 6((n0 + «) - 3/4) exp [ - 7αJ?( Y)] (24)



232 K. Gaw^dzki and A. Kupiainen

for ip' e^ LjΓpΓ), where in the sums (At) are such that vAt = X' [if there are none
such (Jf), the term does not appear],

Σ
5! r :(L-'r)-=ro

As in (7.14) and (7.15), for ip'e^LJf (7), we have

-«^(Γ)], _
-7«*(y)] , (26)

where the factor L3 is due to the presence of at most L3 7's in the sum of (25) with

It is instructive to compare (24) with (7.22) or (3.3) to find out that it contains,
besides the non-local terms of the second order in λ missing in (7.22), also a term
corresponding to a disconnected second order perturbative diagram (the third
quartic term).

Given (24), (5.28) implies a similar representation for Wy (with Y φ zJ), compare
(5.54) of [17]. The difference, besides the change X't->Y9 consists of the
disappearance of the perturbative quartic term corresponding to the disconnected
diagram cancelled by the Ξ = 2 contribution of (5.28) and of replacement 7α->6α [a
fraction of the tree decay factors is used to bound the sums on the right-hand side
of (5.28)].
Thus for φ'

+ 6L2λ Σ
(Al,A2)Al

("o + »)" 5/4) exp [ -

-72L4!2

(Λ

-48L4A2

(£

-36L4λ2

u

-48L4λ2

(Λ

U..E.

tιΣΔ

U.ΈΛ

u Σ .

ί rf» .

J.Ή
$ d& $

4) ^i ^2

ί da? ί
4Ml J2

ί <fe ί
7/β) exp [ -

^ A *LccLtf\τ &/ \τ&
A2

(28)

where the sums over (A() are restricted by requiring that uz);= K



Massless Lattice φ\ Theory 233

Notice that the quadratic terms linear in λ, quartic ones linear and quadratic in
λ as well as the sixth order contributions proportional to λ2 on the right-hand side
of (7.22) and (28) are localizations of the corresponding terms of (3.3) (with ζ = 1).
For the last term of (28), we have

(29)

on iUf(Y). Thus, by (26),

Of course the analyticity of Wγ on ̂ Ljf (Y), and hence also of W^ 6Y follows. Since
z\-^z~6W^6Y(zψ') is an analytic function, we infer from the maximum principle
that by restricting ourselves to φ' e 4jf ( Y) we gain an additional factor (4L~ 1)6 on
the right-hand side of (30). So, for L big enough,

(31)

on 4jf(Y). By virtue of (7.24), this holds also for Y=Δ. Estimate (31) expresses
the irrelevance of the sixth and higher order contributions to the effective
interactions.

9. Inductive Step: Extraction of the New Effective Coupling Constant

Here, we present the treatment of the fourth order contributions W to W^. This is
the most important but also the most technical part of the argument.

By virtue of (5.30), (7.22), and (8.28), W^γ(φ^ [on iLJf(Y)] are given by the
quartic terms of second order in λ on the right-hand side of (7.22) or (8.28)
respecti vely,j)lus 04(£n0 + w) ~ 7/6) exp [ — 6αJS?(Y)]. Let us denote these contri-
butions by W^.γ and Wβ respectively. It is easy to see that

(1)

on ^LJf(Y). We have to represent W^=^W^Ύ as a sum of a local quartic
Y

interaction and of approximately local irrelevant quartic terms as in (5.31). This
will be done in several steps which might look technically complicated and not
quite natural but which guarantee good bounds on the obtained expressions. At
the begining, let us polarize H^O//)? ί = 1> 2, producing a symmetric quartic form

(2)
ί ί = 0

By the Cauchy estimate,

I^ΦyOPi? •-"> V 4)! = ̂ (0*0 +w)-1) eχp[~6αJSf(Y)] (3)

and

for ιptGJf (Y). Introduce symmetric kernels

Λ y x ... x = %(0(^^ , - - -, Jf'x ) (5)
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Since by virtue of (2.42), (2.43), (2.45), and (4.1),

(6)

(7)

and

. (8)

If v/= j/V, then Λψ are the ̂ '-kernels of $(\p'). We also recall that in this case
Φx = ί ψ'> see (2.26). For a general φ', we shall write

-j^'φO* (9)

where for x e Λn

ψx= ί Ψ- (10)

Notice that because of (2.22)

V^ — (X'φOc* = V4 — Σ J f ' a t x ί ^Vy=Σ ^«x ί d^(ψ^ — ψ'), (11)

so that ψ'—<stf'ψ' depends on t// through its differences at pairs of points only. We
may write

W^γ(\pΓ)= Σ Λγχι XtΨxί -ψx

Xl,...,X4

4 m

The second term on the right-hand side of (12) will be shown to be irrelevant due to
the dependence of ψ'—jtf'ψ' on differences of φx only. The first term will be
transformed into

4

where

Mψx= Σ ΛψXX2X3X4 (14)

Proceeding further, we rewrite the first term of (13) as
4 /4\

x Ώx i=l \ij x Πx

Thus, gathering (12), (13), and (15), we obtain

~* 4

> Σ
i = l

+ Σ
l,.

/4

I / X L-\x I ψ'i = ψ

,06)
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where we have written the irrelevant quartic term as a four-linear (non-symmetric)
form restricted to the diagonal into which ψ4 enters only through its differences at
pairs of points. The different irrelevant terms on the right-hand side of (16) depend
also on fields φ outside Y. We shall localize this dependence by writing

(17)

(18)
AnY =

(note special localization of ψ4 — £/'ψ4 which uses (2.22)). After localizing the
irrelevant terms on the right-hand side of (16), we shall gather those in which the
union of the localization squares A is P into W4\Ύ^P(\p\, ...yψ4) (do not get
confused about the superscripts: W4

2 gathers non-local contributions from W4

= W? + W4

2). With J^rO//) = W4

2

γγ,(ιp\ . . ., t//), (16) becomes

W4Y(ψ')=ΣδλYx j (t/)4 + Σ fiϊΪΓ'ίvO. (19)
jc Dx Γ'DY

It is easy to notice the x-independence of

(20)
y

Indeed since W possesses all the unit lattice euclidean symmetries, so does W4, and
hence Σ ΛYx x . Since Σ W4Y (given by the quartic 0(/l2) terms of (3.3) with ζ = 1) is

Y '" Y
also symmetric, so are ΣΛYxι X4. But Σδλψx= Σ ^X2JC3X4, which is x

Y '" Y X2,X3,X4,Y

independent due to the translation invariance of Σ ΛψXltttX4. Using also (2.22), it is

easy to show that δλ1 defined by (20) coincides with δλ1 of (3.6). For δλ2, (8) yields

\δλ2\^(9((n0 + nΓi3/β), (21)

so that δλ2 is small correction to δλΐ = Θ((n0 + n)~2) in δλ = δλ* + δλ2.
Upon defining

^(Vi— Vi)= Σ ^y'ίvi,-.^;) (22)
YCY'

and
W£(y',...,ψ'), (23)

(19) and (20) imply (5.31).
We still have to bound W4Y'(ψΊ, ..., ψ4). Suppose that φ'l5 \p'2 and ψ'3 e

and that ψ4 fulfills all the bounds of (4.1) defining jf (7^ except the first one for |φi|.
Notice that by virtue of (2.42), (2.43), and (2.45), for i= 1,2, 3,

(24)
and

Λ/'χ^φί e 0(1) exp[- Mi ̂ )] ̂ (Ό (25)
For « e Y and

γ))*>= Σ ̂ xxer Dx

.l^ Σ KJ(k-x| + l) ί dylvi.-vy/b-yl^0((no + »)1/4) (26)
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Furthermore, for «, y e Y and \ce—p\^l,

Σγ J

^ Σ

+ Σγ

-̂ |) ί
Ux

y/h - y I ̂  0((»o + »)1/4) (27)

The same holds for \x—y\>\ due to (26).
Finally for «, y, ̂ iΓ^1^, ̂ +L-(n+1)eμeX, since

(d,ω)β = Σ (dX'X ί d*(V^-viJ+ Σ

Thus

and similarly we show that

(28)

(29)

<P(l)JT(y) , (30)

(P(l) exp [ - ίβd(Y, Ay]Jf(Y) . (3 1)

From (3), (4), the assumptions on φj, (24), (25), (30), and (31), it follows that the
contribution to Hζ'yyΌ//ι, . . ., v^) coming from the first term in the brackets on the
right-hand side of (16) is bounded by 0((n0 + ri) ~ l) exp [ - 6<*&(Y')']. From (7) and
(8) in turn, we infer that the contributions of the second and the third term in the
brackets are estimated by 0((n0 + n)~1)exp[-5αJS?(y/)].

Altogether
|^y^

/

1,...,φ;)|^(P((n0 + n)-1)exp[-5α^(r)] (32)
and

(33)

for ψ'i E Jf (y), i= 1, 2, 3, and ^4 satisfying the bounds defining Jf (Y7) except the
one for |ι/;4|.

For the other irrelevant quartic contributions to W^ one has

where in the first bound we have used the fact that there are at most if Y's with
52(Y) — ̂ (70? and f°r Ψ* satisfying the second and the third inequality of (4.1) for
n+1, Lφ^-i. almost satisfies it for n (this produces the additional IT1). In W±Ύ

= W^Y+Wίy the second term is a small correction. Expression (33) and the first
inequality of (34) show that the bound for W±γ contracts with respect to that for V4Y

if L is big enough:

(35)
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for ip 6 Jf( 7) for i = 1,2,3 and φ^ satisfying the defining bounds of JΓ( 7) except
for the first one. This demonstrates the irrelevant character of these terms.

As for the marginal contribution, (21) shows that our perturbative analysis of
the change of the effective quartic coupling performed in Sect. 3, see (3.13),
essentially remains valid:

c=1 (36)

10. Inductive Step: The Large Field Bound

In this section we shall show how the large field bound (6.5) iterates. Let us start
with the estimation of ρ£(vO as given by (5.25) with D'φ0 [for \p' t\L3)φ, XJ\.
The main difference as compared to the D' = 0 case treated in Sect. 8 is in the
contribution of Π dxfy*)* which becomes more subtle to estimate when ψ' is large.

ί
On the other hand, we shall need only a rather rough upper bound and tracing of
powers of (nQ + ri)~l contributed by the expansion outside the large field region
will not be necessary.

First let us notice that, since D^LD'UR,

C2 Σ \DnXA ^ L4C2|D'n *Ί + C2\R\ . (1)
i

Furthermore

and, by (5.11), (5.12), (5.14),

ί ^(ImφsJ4^20L-4AΣ ί
nXj i DnX

Σ Z2

U, (2)
ueLX'

(3)

where we have used the smallness of Imψ' and \ΐΆ2£s = \VR.2£S

2, see (5.19). Thus

201 Σ ί (Imφs)4^2(u \

114 Σ Zϊ. (4)
weLJC'

Inequalities (1), (2), and (4), together with (6.5) give

Π 9D

Xi(ψs} ^ exp WCilD'nZΊ + 0(1) \R\ + (P((π0 + n)

Z2

u+20λ J (Imφ04-αΣ^(^)Ί, (5)
' D'nX' i
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which replaces (8.3). In turn (8.4) is replaced by

J2 +

1) f

expΓ-im2 J
LX'

J
LX'

D'nX'

Σ Z2Ί,
ueLX' J

(6)

(8.5) by

expΓ-A J
L

and (8.6) by

expΓ Σ
\_ACX'\Df

-A fχ'\D'

ί

(7)

(8)

For V^4Yβ terms, (8.7) and (8.8) still hold since YβCLX\D. The V2Ύ terms are also
estimated identically as in Sect. 8. Namely (8.13H8.20), except for the last
inequality of (20), remain valid if we change Rk to Dk = (LD'u#)n Uk and R to (LD'

7. Hence (8.17) and (8.18) still hold and

Σ Σ V2Y(ιps) f

(9)

Substitution of (5)-(8), (8.8), (8.18), and (9) to (5.25) gives [on ̂

k # I ^ Σ Σ Σ Σ Σ Πrc

• exp \UC2\D'nX'\ + &(\) \R\ + &((n0

-iL2!1'2 J |φf + 20A ί

4) \X'\

β J α

J exp Γ(P((«o + n)

J

|ψ'2

(10)

for C2 ̂  C2(L, JV0), the sums being controlled as for ς?x,.
Let us pass to the estimation of the large field contributions g'f to

exp[-ΐ^4], see (5.34) and (5.35). By (7.22) and (8.28),

') exp [-60^(7)], (11)

(12)
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the last on jf (y). Proceeding as in (8.13H8.20), we show that for i// e ̂ L@(D\ X'),

|PF2yJ^^((n0 + n)~1/2)exp[-5aJ^(y)] (13)

for Ya not in the interior of a single c.c. D of D'nX and

Σ Σ wίγ ^^((wo + nJ'^l-yi + ̂ ίCno + n)"1) ί |φΊ2- (14)
ί)ί f CD;-

Now, on jf (y),

(15)

Hence by virtue of (8.9), on

(16)
i=l Πx.

Again for Y not in the interior of a single c.c. of D'nX, the exponentially decaying
_ 4

factor exp[— ̂ α^f(7u{xj)] can be used to match the growth of Π ί |ψ'l» and
i = l Dx.

another one to bound the sum over xt. Thus on \Lζ$(D', X),

iΛϊy^^Λo + ̂  ^expC-SαJSfίY)]. (17)

Using (8), (10), (8.24), (13), (14), and (17), we immediately infer from (5.35) that on

D'nX

+ 20A
D'nX D'i YCDί

. (18)

We have not estimated the quartic contributions W±Y with Y within D[ since their
main part will be canceled in the next step reinstating the quartic terms of W
missing in W^4.

Let us then pass to the estimation of g'χ' given by (5.40). Since YΛ and Yβ lie
outside D\

(19)

[see (9.34)] and [see (7.8), (7.22), (7.44), (8.28), and (8.30)]

I Wί 6Yβ\ £ 0((n0 + n) ~ 1/2) exp [ - 6α^(^)] (20)

on %L2ι(D'9X). Furthermore, (9.33) implies

(21)

again on \L@)(D', X}, in the same way as (15) implied (17). Finally, we shall have to
estimate

Σ »iV-A*ί(v04- Σ w& (22)
YCDί Dί YCDί

on \L9)(D', X). Let \p' = j/'φ'+ip'e%L&(D', X) with φ' real, D(2L~ W^O C D'
and ψ'€^Ljf(X), see (4.11). Via multiplication by an appropriate smooth
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function being 1 on Z) and zero outside Di9 we may replace t// by a globally defined
function ψΈ&(l)tf(Λn+l) coinciding with t// on Z) . Clearly

n+1), (23)

and coincides with φ7 and /)-. Thus the values of (22) on φ7 and ω7 are equal. Now,
by virtue of (9.20) and (9.22),

(22) (α>0 = Σ t4

7

y(ωO-Σ Σ δλτx J (ω7)4- Σ WfirW. (24)
ycflί y xei>i Πx rcrci)<

Insertion of (9.19) into (24) gives

(22) (ω7)- Σ Σ δλ7x ί (ω7)4- Σ Σ <51Yjc f (ω7)4

YCDί x£ΰί Πx r£ί>< jceί)ί Πx

+ Σ 0?y'(ωO (25)
yc£<

r:>y:y'cί>ί

On the right-hand side, we have only tail terms localized in bigger sets than D .
As by (9.7), (9.8), and (9.14),

\δλγx\ ̂  0((n0 + n) ~ 2) exp [ - 5^(Y U {T})] , (26)

we can use part of the tree decay factor to match the growth of ω7 inside D7 in the
first two terms on the right-hand side of (25). The third term is estimated as in (21)
with the use of (9.32), and the constraint that Ύ' does not lie in the interior of a
single c.c. of D7. This way we show that on ^L3)(D', X),

|(22)| ̂ ((tto + nΓ1)!^. (27)

Expressions (18) to (21) and (27), when inserted to (5.40), yield

f
D'nX D'nX J

(28)
on \L3)(pf, X). The analyticity of g'ξ' on this set clearly also follows.

Inequality (28) is almost what we want, see (6.5), except the growth of the
constant in front of \Ό'r\X\ (field independent perturbation is relevant). In the
remainder of this section we shall show how to bring this constant down to C2

using the extra strength of the quadratic expression. Roughly speaking, on D'r\X,
\pf is at least of order 0(0^ + n)i/4) so that -^L2/ί1/2 J |y/|2 should provide

_ D'nX

— &(C]\D' πX\) constant cancelling the growth of C2 for large CΊ The problem
with this argument is that first φ7 may be big in D7 but does not have to, and second,
even if it is big in absolute value, at some point it could contribute little to the L2

norm.
Let us fix v/ e ̂ L2(D\ X) with ψ' = j/'φ' + ip7, f real, D(SL~ ls/W = D\ C D7,

t// e^L$f(X). If we take D\ as a new D7, the first difficulty will be avoided. By a
version of (4.16) for g'£\ which the reader will easily establish following the lines of
Appendix 2 of [17],

= Σ Π0

(29)
(D'\Di)nX
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where

Wί4Y=Wίy+ Wί6Y= W£+ tiβ+Wί6r, (30)

and Xi are disjoint, D\r\Xc uJf f, YΛcX\vXi and X is connected with respect to
c.c. of D', Xi and Ύa. Notice that using (29) would be dangerous for establishing the
analyticity oϊg'£'(\pf) since D\ depends on t//, but once this is done, we shall employ
it to improve (28). Inequality (28) for g^\(ψ/) and the Wγ estimates easily imply

ί M2

D'inX

+20λ J (Imt//)4

BΊnX

But by (6.7),

J \φ'\2

(31)

(D'\Di)πX (D'\B'ι)nX

+ 20λ j (ImψO4]- (32)
(D'\Dί)nX J

Hence

f \ψ'\2+20λ f (Imφ04

D'nX D'nX

(33)

We still have to show that the second exponential on the right-hand side of (33)
is bounded by 1, i.e. that whenever |t//| gets large it contributes sufficiently to the L2

norm. Here we shall use crucially the fact that i// is equal to si'φ' plus a small
correction ψ' and that dμjtf' is a bounded exponentially decaying kernel.

Let us rescale Cx and n0 + π out of the problem by introducing

= 2IΓ 1 CΓ HWO + π) ~ 1/4φr - (34)

Notice that Di is by definition the smallest paved set such that

|^VΊ<2exp[1

ίoαd(x, -Di)] , (35)

see (4. 10). Define for AcX

(36)

\ (37)

CA=sup\dψ"\. (38)
A

Let

A^l}. (39)
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Since somewhere in D\r\X, \^fφ"\ ^2 (otherwise D\r\X would be empty and we
would be done), and since \ψ"\ < 1, Z)'Φ0. We have the following estimate for CΔ

= 0(1) Σ ί d'φ"
Ώx

J exP[-/WOMO]5j' + C3, (40)

where we have used (2.43) [or (2.44)], (2.21) and the smallness of φ". Let

D;= U Δ,
ΔeD':CΔ^2C$AΔ

D'2 = D\D\. (42)

Since on Δ CD\ the derivatives of \p" are bounded by the supremum of \ψ"\9 \p" has
to contribute sizably to the L2 norm:

(43)

Hence

<P(1) Σ B2^ Σ ̂  (44)
JCDΊnX ACD'i

For JcDi, we use (40):

. (45)

Upon squaring and summation over ΔcD'2, this gives

Σ
ACD'2 ACD'2

A',A"CD\nX

Since by (35)

\DΊnX\£0(l) Σ Iog4(l+^), (47)
ACD'

(44) and (46) imply

1/2 ί M2, (48)

where 0(1) is C1 independent. Thus for C1 ̂  CΊ(L, N09 C2), we obtain from (33)

'• J |tp/|2 + 20/l J (Im^-α^y)] (49)
D'nX D'nX
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Since $P'(v>0 differs from the final g'x'^ψ") only by the wave function
renormalization φΊ-»ζ1/2φ', see (5.53), (49) will yield directly the inductive bound
(6.5) for nι->n+l.

11. Inductive Step: Mass and Wave Function Renormalization

By (7.22) and (8.28), with the use of (3.5), the second order contribution to W can
be written as

γ

where on tf(Ύ\

Il^'frφOI ̂  ®(n0 + nΓ5/4) exp[- 6α^f(7)] . (2)

Notice that by virtue of (7.16) and (8.23)

Σ ^2y(v?/) — If Σ ί d&d^K^L (dnψ'0 — Bμψ'p)dvψp. (3)
Y u v

Let us introduce

y

for

\ζ-l\^&((n0 + nΓΊ/4) (5)

We shall limit ourselves to ψ' = j/'φ' only.
It is easy to see using (2) that

^2'(ψ
/)= Σ IM, (6)

x,yeΛn+ i

where Ixy = Iyx possesses the unit-lattice euclidean symmetries and

|/,,| ̂  0((n0 + n) ~7/4) exp [ - 5φ - y\] . (7)

As shown in Appendix 2, we may rewrite (6) as

fiϊ(φO=i«m2Σ(β)2+ Σ Σ ̂ ΛίM, (8)
jc μ, v ^,y

where

l^m2|^^K + n)-7/4) (9)

and Jlxy is again symmetric and satisfies the bound

|Jrj^^((^o + ̂ )~7/4)exp[-2α|x-};|]. (10)

asφ'x= J φx,
D*

^m2 f (φ02-i^2 f (φ'-β)2. (11)
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But for ίz e D x,

Ψ'«-Φ'X = Ψ'*- f v'=Σίd*»£Λv£ (12>
CU μ

where we can choose r£y supported by ^eD^ and with all the unit-lattice
euclidean symmetries. Hence

-ί<5m2Σ ί (V'-^)2

= -iδm2 Σ Σ ί dc
μ,vχ,y

(13)
μ,v x,y

where (by (9) and (2.44))

l^y^^(K + n)"7/4)exp[-jS|x-y|], (14)

and Ĵ ,, is also euclidean symmetric. Setting

J = Jί+J2, (15)

\fre can rewrite (8) as

Now

^;=Σί^A^ϊVl, (17)
V

where

Λ^β = 0 for μ Φ v , (18)

and for μ = v, ΛJJ^ is a lattice version of a function whose μ-derivatives is 1 on Dx

and -1 on Ώx+β:

^ = 0 for a^D^uD,^. (20)

These (tensor) functions are again euclidean symmetric and moreover

ί^^=ι = Σ^ (21)
X

Substituting (17) to (16), we obtain

ΪW) =i<Sm2 ί d*:(ψ'J2 + Σ ί dπd&δK^d^'J^ , (21)
μ,v

where

y jμvfoμ Ly
2^ Jxynμxcc"vy
χ , y
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δK^ has all the unit-lattice euclidean symmetries. By virtue of (10), (14), (15), and
(23),

\δK%\ ̂  &((n0 + n) ~ 7/4) exp [ - 2α \π - „ |] . (24)

Using (21) and the symmetries of J, we obtain

f faδKZ = Σ J&ty, = ΣJμ

xo = Ίδcδ"v (25)

(for non-symmetric interactions we could get a matrix which is not proportional to
identity on the right-hand side). Clearly

7/*). (26)

Thus, we may give (22) the following form

(27)
μ,v

Equations (1), (3), (4), and (27) imply (5.40). Due to (26), (5), and (5.42) are
compatible.

Now (5.46), (6.1) for n, (5) and (24) yield easily (6.1) for n\-+n + l. Relations
(5.45), (9.36), and (5) produce (6.2) for nι->n + 1 as well as (5.49), (9.35), and (5) do
(6.3) for n-+n+l. Form the definition (5.50) and (7.22), (8.28), (3.2), (8.31), with the
use of (5), (6.4) with ni-w + 1 also follows.

This proves the small field inductive assumptions for the new effective
interactions. Similarly (10.49), by virtue of (5.52) and (5) do the large field ones
given by (6.5) with nι->n+l. Finally from (44), (5), and (9), (6.8) follows. This
completes the proof of the Main Technical Result (see the end of Sect. 6).

12. Thermodynamic Limit and Infrared Asymptotic Freedom
of the Critical Point Theory

Up to now, we have worked in finite periodic volumes. Nevertheless our estimates
were volume ίndepenent. This makes the thermodynamical limit fairly simple.
Define the sets tf(X) and ®(D, X) of small and large A = 2£4 fields as before but
whith finite sets X in (4.1) and with finite sets D, X and compact support φ in (4.11).
Since the kernels sin and Γn in finite volumes are periodizations of the infinite
volume ones satisfying the bounds of the end of Sect. 2, it is easy to see that infinite
volume (1 — ε)^(D, X) is contained in the finite volume ̂ (D, ̂ )'s for large volumes
(we recall that periodic Λ has been identified with an Z^-block in Z4). Suppose now
inductively, that n£, K^, λn, V^Ύ(\pn\ V^6Y(ιpn) and gn

x

D(ιpn) satisfy our inductive
assumptions and converge when yl/Z4, the latter two for ιp"e3Jf(7) and
ψnE(l-ε)@(D,X) respectively. From analycity of F4

M

y, V£6Y and gn

x

D and the
uniform bounds, also their almost uniform convergence follows. Wγ + i(ψn+ί) and
gn

x

+ίD(ψn+1) depend on the volume through V$ and gn

x

D and through the kernels
Jln entering their arguments. Using the almost uniform convergence of Vy and
05? together with the convergence of Mn and the dominated convergence
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theorem, we infer the convergence of W?+i(ψn+1) and <%+liV+1). From the
latter, the desired convergence of m2

+1, Kf+1^, F4

w

y

+1(φw+1), V^(φn+ί) and
9x+1D(ψn+ί) with the volume follows. We also see easily that these objects are
continuous functions of the initial parameters m% and Λ,0 provided that the
previous scale ones where.

Let us notice that, under our inductive assumptions, for ψn = stfnφ
n and φn with

compact support, Vn(ψn) exists in the thermodynamical limit and satisfies (4.2)-
(4.4) or (4.8) depending on whether ψn is small or big. For the infinite volume
weakly coupled φ4 theory, we shall choose the critical point by setting ml
= mcrit(^o) with the latter in nJ(

0

M), where

τ(n+l)r τ(n)r Γ Γ C J — Γ *7~3/2 w~3/21JQ L /o ( ---- LJQLiQ — \_-riQ , H0 J

is a sequence of the closed intervals of the values of m2, chosen inductively [with the
use of (6.8) and the continuity in WQ] so that ml sweeps /„ = [ — (n0 + n)~3/2, (n0

+ n)~3/2] when w2, runs through J(

0

M). At the critical point, all our effective
interactions satisfy the bounds of sect. 6, and clearly

Vn(ιpn) - >0 (1)
«->oo

for ψn = £/nφ and φ with compact support. This establishes the IR asymptotic
freedom of the weakly coupled critical lattice φ\ theory which is the main result of
the present paper.

A reader of [18] will also understand that an easy extension of the present
method allows rigorous treatment of correlation functions of the model which
have a massless decay. We plan to come back to this problem in order to exhibit
the logarithmic corrections to scaling [40, 7, 8] and in the context of the UV
asymptotically free negative coupling theory.

As to whether our work provides a general tool to treat renormalizable
asymptotically free models (first of all the UV problem of the gauge theories), we
leave the jugement to the reader (and the future).

Appendix 1

Here we shall establish (3.7) for δλ1 given by (3.6). Consider first the third term on
the right-hand side of (3.6). We shall derive lower and upper bounds for

- )̂ (i)
Do

For a lower bound (recall (3.5))

(1) = ZΓ4 J έMdyί^, )2

LDo

LDo LDo LDo LDo

"" j d& f d^(^M )2 —2[~L~4 I d& }
LDo LDo |_ LDo LDo

•ΓiΓ4 J ^ f ^L-4^^^-,^-,/]1/2.
|_ LDo LDo J

(2)
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But

IT8 J a* ί ^M+1L-w,-v)
2= ί da> ί d^n+1^

2^Θ(l) (3)
LDo LDo Do Do

with 0(1) L independent. On the other hand [recall (2.21)]

L-4 J fa ί dtfG^^L-* Σ ( ί d<* ί
LDo LDo x,yeLDo\Dχ Dy

_Γ-4 v^ (ft \2_τ-4 ^ v^
— L, 2^ \Vnxy) —L, 2.1 ~^2 2-

4 1 ~ *
= L Ϊ Σ Π - Σ Gn(p-q)Gn(q)

μ \

4± Σ _J L
^ λ2 £-1 ι_ ^ι2 ι^ ι2

(4)

where in the fifth step we have used the uniform bounds for the Fourier transforms
Gn(p\ see Appendix of [16]. Equations (2)-(4) give immediately

(l)^0(l)logL. (5)

To get a similar upper bound, take for simplicity L = ϋl

0 with L0 = &(\) (say L0 = 2)
and m large. Denoting explicitly the L dependence of ^~, we have

m-l
<^-(L) _ v-ϊ r-2/^(L0) /^\
^kπp— L, M) ^fem + ZLo^LόV W

Thus

Z.DO

z=o

1 = 0
= (P(l) logL . (7)

This establishes the desired upper bound for (1).
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As for the other contributions to δλ\ the first term on the right-hand side of (3.6)
becomes for L (—>££,

/«— 1 m— 1 \
I /7/v> I /7χ*x I V τ2(n — k)m v~* r— 21 U/-(LQ) 1
J UΛ,]U^\ ^ J^IQ ^ ^0 <s km + lL^-Wm-la^n-tym-l I

Do \fc=0 1=0 ° ° /LDo
m- 1

* Σ LQ ^nm + fLό^L^V

|(8)| ϊ &(l)λ2 "Σ mΣ

(9)
i = l

The other terms on the right-hand side of (3.6) vanish. Indeed by (2.19) and (2.21),

ί

as CQ = 0. Equations (3.2) and (10) imply also that

ί dx£nL = Q. (11)

This way, (5), (7), and (9) show that for L = E^ with m large,

-&(l)mλ2^δλί^-&(l)mλ2,

from which (3.7) follows.

Appendix 2

For 7X>, given by (11.6) define

φ(p}= Σ e~ipxI0x.
xeΛn

φ(p) is periodic in each pμ with the period 2π and, due to (11.7) is analytic for |Impμ|
<|α. Equations (11.8)-(11.10) are corollaries of the following result giving a
solution to the Gleason problem [36].

Lemma. Let f ( p ί y .",Pd) be a function analytic for \Impj\<a, periodic in each pμ

with period 2π such that

Sr° *- '=»•' ..... *-•
Then there exist functions fμι,,,μk(p) with the same analyticity and periodicity
properties satisfying

f(P>= Σ Π(e-ip"-l)fμί...μk(p).
μι,...,juk j=l

fμι...μk

 can ̂ e taken linearly depending on / and such that for each 0 < a1 < a2 < a,

sup |/μι...μk(p)|^C(d,fc,α1,α2) sup |/(p)|.
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Proof. Define f(zi9...,zd) analytic for e~a<\zj\<ea by

Again

Notice that by the Cauchy formula,

* '-^ih2-^ for /=o,ι, . . . , fc-ι
Bzμι...dzμι

249

(5)

(6)

)= σ_ ( <Σ σ

σ μ =±i

... ί

(7)

dl = e
d

Π

(the integrals over \z\ = ea ε are counter-clockwise and the ones over \z\ = e a+ε are
clockwise). Clearly fσ(v) are analytic functions for \vμ\<ea and for ί = 0, 1, ...,/c,

sup
Bυμι...dΌμι

sup (9)

But, Taylor expanding, we may write

fc-i ι
^(ϋ)= Σ - Σ -"^ y π (t? -

Z - Ω / » „ „ 5t; δt; /-1 μj'Z-O t. μι,...,μz uυμι...VUμι j-1

' /•/ 1 \ i < -̂rf

(10)

or

r,...)Z^)= Σ Σ
μι...μι

C- μ ι,... fμkO

In the first sum on the right-hand side of (11), we may expand

k-l-l

(12)
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Hence (grouping the terms in a somewhat arbitrary way), we obtain

fc-l /

1 = 0 μι,...,μι l'" l j=l J

+ Σ fσμί...μJίzι,. ,zύΠ(zμj-V (13)

with fσμί_μk(z) analytic for e~a < zμ < ea linear in /and satisfying (4) with C-»2~dC,
say. Upon the summation over σ of (13) the lower order terms (l<k) must vanish
and hence by (7), we obtain

/(*)= Σ /μι...μk(*)Π(*μ,-l) (14)

f°r fμί...μk— Σ^μι...μk This completes the proof of Lemma.
σ

We apply Lemma with k = 2 to f(p) = φ(p) — φ(0) where φ is given by (1). Let

-l)φμv(p) (15)
μ.v

and put

(16)

W*,= -r— Σ ^-^». (17)
^LM+1 p<=2πL-N + n+lπ4

~π<Pμ=π

The symmetry properties of J^xy may be guaranteed by averaging

over the lattice rotations and reflections. Equation (11.10) follows from the
uniform bound for φμv(p) for |Impμ|<2α.
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