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Abstract. Spontaneous symmetry breaking in the presence of long range in-
stantaneous interactions is studied and the general mechanism underlying it is
clarified. A characteristic feature is that the algebraic dynamics does not leave
any essentially local algebra stable, i.e. variables at infinity get involved in the
time evolution of local variables, so that in each irreducible representation the
time evolution fails to be symmetric. For continuous symmetries, the Fourief
transform of the vacuum expectation value of charge commutators is related to
the energy spectrum at low momenta and a generalized Goldstone theorem is
proved which explains the generation of energy gap. This energy gap is further
shown to be governed by a "classical dynamics at infinity", equivalently by the
group generated by the effective Hamiltonian and the charge. Explicit examples
are discussed.

1. General Questions about Spontaneous Symmetry Breaking and
Energy Gap

The phenomenon of spontaneous symmetry breaking appears to be at the basis of
several collective effects in many body physics and it plays a crucial role in the
unification of elementary particle interactions. Soon after the realization of such
a mechanism, considerable interest was devoted to the characterization of the
general structures underlying it. The aim was to get both insight on constraints
involved in the use of such a mechanism and non-trivial dynamical information
on essentially non-linear (collective) effects, without relying on approximations
and/or perturbative expansions. The strongest of such characterizations was
provided by Goldstone's theorem [1], but it was soon realized that a precise
characterization of the hypotheses was crucial for the applicability of the theorem.
Actually, from the many examples of many body systems and from elementary
particle physics, it became clear that it was important to isolate possible symmetry
breaking mechanisms, which allow the evasion of the Goldstone theorem. The
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whole problem has been considerably clarified in the last twenty years: the
conditions of validity of Goldstone's theorem have been discussed at a high level
of rigour and clarity [2] and the "exceptions" to the applicability of the theorem
have been essentially identified in the prototypes of the quantum theory of
superconductivity and of the Higgs phenomenon.

A folklore explanation for the absence of Goldstone bosons is the presence
of long range forces, in the case of non-relativistic systems, and the presence of
gauge interactions in the case of elementary particle physics. In our opinion such
a cheap explanation does not go to the roots of the problem and it is in some
way unsatisfactory, especially for many body systems (it is known that long range
correlations do not forbid the applicability of Goldstone's theorem in the case of
relativistic quantum field theories). For gauge interactions, a more detailed
understanding of the Higgs phenomenon (at least at a perturbative level) has led
to identify the Higgs mechanism with some of its more perspicuous features like
the presence of gauge fields and the interaction with vector bosons, which "absorb
or eat" the would-be Goldstone bosons [3]. In this perspective, however, it is not
obvious to draw analogies between the Higgs phenomenon and superconductivity,
since the BCS model of superconductivity exhibits a spontaneous breaking of (/(I)
symmetry with an energy gap, even if the e.m. potential does not appear in the
Hamiltonian [4]. This feature appears also in simple field theory models, like the
Kibble model [5], and in the linearized Higgs models, once the gauge has been
completely fixed in such a way that positivity is preserved.
The above discussion suggests that:

1) The possible analogies between the Higgs phenomenon and superconductivity
must be discussed in a more general theoretical setting by identifying general
mechanisms, well beyond the folklore explanations,
2) A closely related problem is the characterization of the symmetry breaking
aspects of the Higgs phenomenon in the positive gauges; this appears also relevant
for non-perturbative controls about the existence of symmetry breaking order
parameters (in those gauges) [6].
3) More generally, the identification of a mechanism, which accounts for energy
gap generation associated to spontaneous symmetry breaking, without relying on
the particular ingredients of the Higgs phenomenon, and therefore with a more
general validity, is of interest both for many body theory and for (grand) unified
theories of elementary particles. Especially in the latter case, the appearance of
Goldstone bosons becomes a serious problem in the construction of realistic
theories involving global broken symmetries. This difficulty also appears at the
basis of the so-called £7(1) problem [7].
4) The phenomenon of energy gap generation associated to a symmetry breaking
order parameter may be connected in general with characteristic phenomena of the
dynamics of "condensates," as suggested by Kogut-Susskind's mechanism of seizing
of the vacuum [8].

A common unifying feature at the basis of the problems l)-4) is that the
corresponding field or many body theories are not formulated in terms of an
(essentially) local structure (like a field algebra, or an algebra of localized canonical



Symmetry Breaking 155

variables) stable under both time evolution and symmetry operations. The evasion
of Goldstone's theorem and the possible lack of Goldstone bosons may in fact be
traced back to this feature, in great generality. The aim of this work is to provide
a general framework for discussing the problems l)-4), which deals with dynamics
and symmetries in the absence of a local structure. This will allow us to characterize
the relation between spontaneous symmetry breaking and energy spectrum with
a "generalization" of Goldstone's theorem which completely account for the
phenomenon of energy gap generation.

2. Variables at Infinity Generate Energy Gaps

The generation of an energy gap associated to spontaneous symmetry breaking
can be understood in terms of general ideas, which are discussed in this section;
the construction of a general framework based on them will be the subject of
Sects. 3, 4.

An essential issue is that long range instantaneous interactions give rise to
effects with infinite propagation speed. As a result, if the interaction has sufficiently
long range1, the time evolution of initially localized variables involves infinitely
delocalized variables, essentially "variables at infinity"2. Typically, such variables
can be represented as ergodic means of localized variables. Equivalently, the general
feature is that the boundary conditions not only affect the correlation functions
(as in the standard short range case), but they crucially enter into the definition of
the equations of motion.

The appearance of variables at infinity in the time evolution of localized
variables may give rise to a transfer of charge from localized variables to variables
at infinity. As a result, the charge initially localized in a bounded region may leak
to infinity in a finite time. This gives rise to oscillations of the total charge measured
as the limit of the charge contained in finite volumes V, as K-> oo. The flux of the
charge at infinity is therefore non-vanishing. For conserved currents this
corresponds to non-vanishing commutators between the flux of the current at
infinity (~Jd 3 xdiv J(x,ί)) and localized variables, and therefore the charge
commutators Jd3x<[/0(x, t\ /!]> have a non-trivial time dependence. When the
charge generates a spontaneously broken symmetry, the associated energy gap is
explained precisely by the above time dependence.

The formalization of these ideas leads to the general problem of spontaneous
symmetry breaking in the presence of long range (instantaneous) interactions. In
the standard case (short range interactions and/or finite propagation speed), the
treatment is strongly simplified by the existence of an algebra jtf (of local fields or of
local dynamical variables) which is stable under time evolution and on which the

1 This phenomenon is much more general than the appearance of ergodic limits in the Hamiltonian

itself (as in mean field models) and in particular it occurs when the Hamiltonian involves (instaneous) 1/r

interactions (see Sect. 5 and ref. [19])
2 They can be identified with variables which can be detected by measurements which can be made

outside any finite region [9]. In the following we will in general call variables at infinity variables which

commute with any strictly localized variable
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symmetry is naturally defined3. This property is necessary in order to formulate the
symmetry of the time evolution, a condition which plays a crucial role in the
Goldstone theorem.

It is worthwhile to remark that the invariance of the (formal) Hamiltonian
yields the invariance of the finite volume Hamiltonian Hv (in general apart from
boundary terms). If the interactions have sufficiently short range (standard case),
in the limit K-> oo one gets a time evolution which leaves an algebra of (essentially)
local dynamical variables stable and is not affected by the boundary terms.
Therefore in the standard case the invariance of the formal Hamiltonian yields
the invariance of the time evolution of local dynamical variables.

The situation changes drastically in the case of long range interactions which
give rise to delocalized boundary terms in the equations of motion so that, in the
limit K-> oo, the time evolution does not leave an essentially local algebra stable.
This is what happens i) in general for many body non-relativistic systems with
long range potentials, ii) for spin systems with non-integrable interaction
potentials, iii) in gauge theories when formulated in terms of non-local variables,
which are necessary in order to describe charges obeying a local Gauss law [10].

It then follows that, in the case of long range interactions, the treatment of
spontaneous symmetry breaking, from an algebraic point of view, requires an
extension of the local algebra to an algebra stable under time evolution, which
will in general contain variables at infinity, and the definition of the symmetry on
such extended algebra.

The need of defining the symmetry on an algebra containing infinitely
delocalized variables gives rise to problems and to new phenomena, if one wants
the symmetry to be generated by a local current. In contrast with the standard
case, in the limit R-+CO the commutator \_QR,A^\ cannot give the total charge
associated to the variable At, if the time evolution of A involves variables at infinity,
and there is a transfer of charge at infinity. The point is that since QR commutes
with the variables at infinity the conservation of the total charge does not imply
that, in the limit K-»oo, the vacuum expectation value (v.e.v.) of the above
commutator is time independent.

In each fixed irreducible representation the picture is the following: the variables
at infinity are represented by onumbers and the time dependence of the v.e.v. of
the above commutators corresponds to the fact that even if the finite volume
Hamiltonians and the finite volume dynamics are symmetric, the infinite volume
dynamics of essentially local variables is not symmetric. The v.e.v. of the above
commutator represents the time evolution of the localized variable A inside a large
bubble of "infinitesimally transformed condensate." Such time evolution is non-
trivial essentially because, in contrast with the standard (local) case, the boundary
conditions at infinity affect the dynamics inside the bubble of radius K, also in
the limit of large R.

As a result, the charge oscillations discussed above can be described in terms
of "oscillations of condensates" which arise because the dynamics (equations of
motion) depends on the boundary conditions. Once they are fixed, the corres-

3 For example by using (equal time) canonical (and-) commutation relations
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ponding dynamics is trivial for condensates (corresponding to the state) with the
prescribed boundary condition, but it is non-trivial for condensates corresponding
to states with different behaviour at infinity. The frequences of the linearized motion
of condensates around the stable point yield the energy spectrum at zero momentum
associated to spontaneous symmetry breaking.

3. Algebraic Dynamics and Symmetries

An algebraic description of the dynamics4 of systems with long range instantaneous
interactions meets the following problems. From a constructive point of view, one
starts with a net of von Neumann algebras sίv associated to the finite volumes
V. Space translations α^ are naturally defined as automorphisms of the "local algebra"

The finite volume dynamics ofv are defined as one parameter groups of auto-
morphisms of Λ/0, or more generally of its norm closure j/. Typically oφ are
generated by finite volume Hamiltonians Hv affiliated to j^0; more generally ofv may
describe the dynamics corresponding to an interaction with an infra-red cutoff V.
The problem is to take the limit V -* oo.

For interactions with finite propagation speed, for any AEΛ/Q, ofv(A) becomes
independent of V9 for V large enough, and it defines the time evolution of as an
automorphism of j&0. More generally, for interactions with sufficiently short range
ofv(A) converges in norm [11] to an automorphism group of j/. For spin systems
with two-body interaction, the potential must decay faster than |Γ|~3 [11].

In the case of long range (instantaneous) interactions, in particular for spin
systems with potentials decaying slower than |3c|~3, the finite volume dynamics
ofv do not converge in norm and a weaker topology is needed. Physical
considerations would suggest that the expectation values <x.y(A) converge. The
convergence for any state over the algebra stf coincides with the weak conver-
gence with respect to the dual stf' , and it defines of (A) as an element of j/", the
universal von Neumann algebra of j/. In all interesting cases, however, the time
evolution for large V involves strongly delocalized variables, the expectation values
of which converge only if the states are sufficiently regular at infinity5.

As a matter of fact both for gauge theories and for many body non-relativistic
systems simple physical considerations indicate that the definition of the algebra
itself (of dynamical variables) makes implicit reference to a class of states. For
gauge theories, non-local field variables correspond to non-local morphisms of the
gauge invariant algebra, which describe operations like removing a charge at
infinity; this limit is expected to make sense only with reference to a limited class

4 All the mathematical details and proofs will appear in a separate paper, where we also discuss the
relation with other approaches [12]
5 A detailed discussion of (physically relevant) models which exhibit such phenomena is deferred to a

subsequent paper. Typical examples are the BCS model [4,13], the Kibble model [5] and a large class of
mean field spin models (see Sect. 5 and ref. [19])
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of representations of the gauge invariant algebra. For many body systems the
non-relativistic description makes reference to states which involve only non-
relativistic energies. In both cases it is therefore natural to associate to a system
an algebra of dynamical variables and a class of state F, which are at the basis of
the physical interpretation of such an algebra. In this perspective, it is natural to
require that oφ converges weakly with respect to the above class of states.

To define an algebraic dynamics in the infinite volume limit we need an algebra
9M and a time evolution a* which is a one parameter group of automorphisms of
9JΪ. An important issue is that such structure be uniquely determined by ofv and
the local algebra stf, so that the extrapolation involved in the infinite volume
limit does not require essentially new input with respect to the local structure. A
solution of this problem based on the above ideas is given in ref. [I]. The resulting
structure is defined by

1) a family F of continuous linear functional over jtf with the following properties:
1) F is closed under linear combinations, ii) F is norm closed and separating, i.e.
φ(A) = 0, VφeF, implies A = 0, iii) F is "stable under local operations" in the sense
that if φeF, also φAB( ) = φ(A-B\ with A, B<=Λ?, belongs to F. The positive part F+

of F is thus a full folium as in ref. [14]. These states can be taken to be normal
states when restricted to the von Neumann algebras stfv\
2) the von Neumann algebra 9PΪ constructed as the closure of stf in the weak topology
τF defined by F on sέ'. As an abstract von Neumann algebra $01 is defined by its
predual F;
3) a one parameter group αr of (τF continuous) automorphisms of 50ί, which on st is
the limit of the finite volume dynamics α'κ in the ultrastrong topology of 9W. As
shown in ref. (I), the family F of states can be chosen to be maximal.

This structure can be seen as a generalization of Kadison's definition of dyna-
mical system [15]; the essential difference is however that here α'* is not required to
be continuous on F in the weak * topology defined by jtf, This property is in fact
equivalent ([15] and ref. [I]) to the stability of j/ under time evolution and its failure
plays a crucial role in the explanation of energy gap associated to spontaneous
breaking of continuous symmetries.

The above mentioned discontinuity properties of α'* can be seen as the quantum
version, for systems with infinite degrees of freedom, of the phenomenon of
bifurcation in classical dynamical systems: in fact, on physical grounds neighbour-
hoods of states are naturally defined in terms of a finite number of measurements
of local dynamical variables, i.e. according to the weak * topology, and therefore
weak * discontinuity of the time evolution implies that states which give arbitrarily
close results of measurements at t = 0, may yield distant results at time t.

The above framework is rich enough to allow the algebraic discussion of
spontaneous symmetry breaking in the presence of long range instantaneous
interactions.

The first problem is the relation between symmetry and dynamics. Since a
symmetry β is usually given as an automorphism of jtf, which is in general not
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stable under time evolution, to give a meaning to the equation

βof = ofβ (3.1)

one has to extend β from stf to $R.
Furthermore, since in a constructive approach one is given the finite volume

dynamics ofv, it is important to know when the symmetries of oφ (i.e. symmetries
of the finite volume Hamiltonian Hv) are also symmetries of the infinite volume
dynamics of (Eq. (3.1)). As shown in ref. [I], in the framework discussed above,
given an automorphism β of ̂  which commutes with oφ, the family F can always
be chosen to be stable under β* and β*"1, and β can be extended to a (uniquely
determined) automorphism of Wt which commutes with of.

Similarly, as shown in ref. [I], the covariance of ofv under space translations
α~ implies that α~ defines an automorphism of Wl which commutes with of.

In the standard discussion of the phenomenon of symmetry breaking an
important condition is the approximation of the symmetry β by "localized"
automorphisms βR of the local algebra j/,

βR(A)=URAUR

1, AE^ (3.2)

with UR in some local algebra. Typically, for one parameter groups βλ, λeR,

UR = expiQRλ (3.3)

with the charge QR affiliated to some j t f v .
In contrast with the standard case, however, automorphisms βλ of Wl cannot

be approximated on Wl by localized automorphisms βλ

R of the form (3.2) with
UR£Wl, (not even in the weak topology), unless βλ is unbroken in all the
representations defined by the states of F, as shown in ref. [I].

More generally (ref. [I]), when variables at infinity get involved in the time
evolution of elements of j/, βλ cannot be generated by a local charge on an
algebra stable under time evolution. This provides a natural mechanism for evading
the existence of Goldstone modes in the presence of spontaneous symmetry
breaking: essentially the equation

δ(At) = limlQR9AΛ (3.4)
R

does not hold.
Many possible reasons by which Eq. (3.4) may fail have been discussed in the

literature. An attempt to trace the failure of Eq. (3.4) back to general properties,
when QR is the integral of a conserved current has been made by Swieca [16],
who emphasized the relevance of locality, in the form

lim |x"[y41 ?,5 f]=0, n = 2,V/4,51ocal. (3.5)
|λ|->oo

In fact, in this case, if Eq. (3.4) holds at t = 0 (as can be checked by using canonical
(anti-) commutation relations) and the current at t = 0 is local, i.e. y0(/), ji(f) are
local, then the current conservation yields Eq. (3.4), on a state invariant under
time translations, using that β commutes with αr. This analysis however appears
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more as a weakening of the hypothesis of the Goldstone theorem, rather than an
identification of the basic mechanism for the generation of an energy gap. This
problem becomes more evident if one takes into account the relation between
condition (3.4) and the fall off of the potential (essentially pc|3K(x)-»0) given by
a semiheuristic argument by Swieca [16, 17]. The first point is that for sufficiently
long range interactions the definition itself of the algebraic dynamics requires
special care. For example, for spin systems with two body interactions, if the
potential is not integrable (essentially |;c|3K(x)-/>0), αr

F does not converge in
norm [11] and the dynamics does not exist in the C*-algebraic sense. Furthermore,
the relation between the fall off of current commutators and the large distance
behaviour of the potential requires a more detailed analysis than that provided
by Eq. (3.4). In particular, the integrability of the charge density commutators
would by itself suggest n = 3 in condition (3.4), and by Swieca's argument
|3c|3F(x)-> 0, as |jc|-»oo; for spin systems this would imply that ofv

converges in norm as K-»oo, i.e. the standard case of local dynamics. Now, if
\~x\3V(x)-/>0 as pc|-»oo, the definition of the dynamics as given in Sect. 3
becomes relevant, and furthermore one has to distinguish between the validity of
Eq. (3.4) for commutators of j0 and of jt. If the current is local and conserved,
then the property,

J d3 x < [/Ό(x, ί)» ̂ ] >o = indep. of time,

is equivalent to

However, this condition is not equivalent to Swieca's condition for the potential
(namely |3c|2F(;x)->0), since j-t may involve space derivatives of fields. In fact, if i-t

contains a space derivative of the fields, as happens in most non-relativistic cases,
the critical power for the fall off the potential for the failure of the above condition
is V(x) ~ pc |~ 1 (Coulomb potential). If the current is conserved but jt at t = 0
is not a local operator, as happens in many spin models, then already a potential
decreasing as | c | ~ 3 may lead to a failure of the above condition.

In a pragmatic point of view, the failure of the Goldstone theorem has been
identified with the condition

lim
K->oo

but clearly this does not provide much insight on the dynamical structures which
are responsible for it.

The framework discussed above offers a general explanation of the failure of
Eq. (3.4), by relating it to general continuity properties of the time evolution of
states (see ref. [I]). A simple physical picture may help in visualizing the
phenomenon. Consider a state φ and an automorphism β of si approximated by
localized automorphisms βR in the sense of Eq. (3.2). Then β%φ describes a state
which essentially coincides with φ on elements of s4 localized outside a sphere of
radius R, and with β*φ inside the sphere. If the state φ is characterized by a local
order parameter φ(M^) = mφ, M^tstf, then β%φ is characterized by the order



Symmetry Breaking 161

parameter φ(βRM~) = m(x\ with m(~x) ~ mφ outside the sphere of radius R and m(~x)
~ mβ*φ inside. This state can thus be visualized as a "bubble" with order parameter
mβ*φ inside a medium with order parameter mφ. The time evolution of such a bubble
is given by of*β%φ', the interesting point is the behaviour of such a time evolution in
the limit R -> oo, i.e. when the bubble expands all over the space. In the local case, i.e.
when the algebra s# is of stable, the weak * continuity of α'* implies that the time
evolution of very large bubbles approaches the time evolution of the state β*φ with
uniform order parameter mβ*φ. One may also say that the time evolution inside large
bubbles is independent of the boundary conditions at infinity. In the non-local case,
i.e. when si is not of stable, the time evolution inside large bubbles, in the limit
R -> oo, is sensitive to the boundary conditions at infinity; more precisely it depends
in general on the value of the order parameters at large distances.

The above mechanism becomes particularly relevant when φ is invariant under
time translations, (typically when φ is the ground state of a representation of stf
with implementable time translations and with positive energy) and the algebraic
dynamics is β symmetric, βof = ofβ. In this case, if the dynamics is "local," then

w*-limaf*β$φ = af*β*φ = β*af*φ = β*φ9 (3.6)
K->00

i.e. the time evolution of large bubbles (as seen by localized variables) approaches
a constant, as R-^co. In the non-local case, a non-trivial time dependence can
persist in the limit of large R.

As discussed before, when the algebraic dynamics is non-local, one cannot have
an algebra stable under time evolution with symmetries generated by local charges
on it, more generally the time evolution of the states, of\ is not continuous with
respect to the weak topology defined by algebras on which the symmetry is locally
approximated. To deal with this problem it is useful to note that in each factorial
representation π of jtf, stable under time evolution, the algebraic dynamics of gets
somewhat reduced to a dynamics in which the variables at infinity become
onumbers. In this case one may say that π leads to an effective localization of
the dynamics since the variables at oo get somewhat frozen to their (vacuum)
expectation value and the non-local variables effectively disappear from the (so
reduced) dynamics. It is therefore reasonable to expect that the representation π
defines a reduced algebraic dynamics α'π which leaves stable a "local" algebra, i.e.
a subalgebra s/l of 501 which does not contain infinitely delocalized variables. Such
effective localization of the dynamics can be formalized in the following way.

Definition 3.1. A factorial representation π of the family F, stable under α'* leads to
an effective localization of the dynamics if there exist a subalgebra sfl c SER with the
following properties:

i) s/t is faithfully represented by π,
ii) «s/z is weakly dense in 901,
iii) there exists an automorphism ofπ of j t f h which coincides with of in the
representation π, namely for any state φeπ

(3.7)

Since s/l is weakly dense in 9K, π(^t) is weakly dense in π(50ΐ) and therefore the
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center of π(j/z) is contained in the center of π($R), which is trivial because π is
factorial. Since jtfl is faithfully represented by π(stfj)9 it follows that jtfl has a trivial
center; thus sίl does not contain any infinitely delocalized variable.

Furthermore, since π yields a faithful representation of .a/,, the automorphism
ofπ is unique, if it exists.

The physical meaning of this structure is that the essential non-local effects of the
algebraic dynamics are due to the involvement of the variables at oo; once such
variables are frozen to c-numbers, as happens with the choice of a factorial
representation π, then one obtains a dynamics which maps a complete set stl of
"essentially local variables" into themselves.

The above algebraic structure offers a convenient mathematical framework for
the generalization of the Golds tone theorem: the localization algebra sίl is in fact
a natural algebra on which symmetries may be locally approximated (see ref. [I] ),
and furthermore it is stable under a reduced dynamics, oίπ, which coincides with
α, in π.

The relations between αf, ofπ and their symmetries are discussed in ref. [I].

Remark. It is worthwhile to remark that the effective dynamics o4 has also a
raison d'etre from a point of view based on the correlation functions. According
to this philosophy, as in Wightman quantum field theory, the theory is formulated
in terms of the (unequal time) correlation functions of a field algebra stfl with trivial
centre (essentially localiz able fields), defined by a space time translational invariant
state φ0 . We consider the case in which such correlation functions are constructed
by using approximate finite volume dynamics oφ, through infinite volume limits like

lim φ0(Bofv(A)C) = φ0(BAtQ9 A^Ced^A1^^ (3.8)
V-*ao

It is important to stress that even if the approximate (finite volume) dynamics oφ
commute with an automorphism β of s/l9 the infinite volume dynamics defined on
the (essentially local) field algebra j f l by the correlation functions φ(Bofv(A)C)9 A, B,
CGJ/J, as V-+ oo, need not be symmetric, i.e. one may have

φ(Bβ(At)Qi=φ(B(β(A)γC). (3.9)

The point is that in general Eq. (3.8) only guarantees the weak convergence of
ofv(A) to AL in the representation π defined by φθ9 and β is continuous with respect
to the weak topology defined by π, if and only if β is unbroken in π, (see Sect. 4);
thus in general

w - lim oφ(Λ) U w - lim ofy(β(A)). (3.10)
V J V

In the local case ofv(A) converges to the infinite volume dynamics in the norm
topology, with respect to which β is always continuous (since it is an automorphism
of ĵ ).

The above lack of symmetry of the dynamics appears as a very different
phenomenon of symmetry breaking with respect to the conventional one: even if
the finite volume Hamiltonians are β-symmetric, not only the correlation function
may fail to be symmetric (as in the conventional case) but the dynamics itself ("the
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equations of motion") of the field algebra may turn out to be asymmetric. From
a constructive point of view, the mechanism is that the boundary conditions, which
characterize the state, not only affect the correlation functions, but also the
dynamics ("the equation of motion") defined on the algebra ^l of essentially
localizable fields. A symmetric dynamics can be defined only with reference to an
algebra TO with a non-trivial centre. This phenomenon enforces symmetry breaking:
as shown in ref. [I], Sect. 6, the relation βλofπ ^ ofπβ

λ implies that βλ is broken
in π.

The above features are related to long range effects which show up not only at the
level of the correlation functions (as in the standard case) but also at the level of the
commutators [Hv, A], Aejtf^ for large V such commutators involve largely
delocalized variables which converge to different values in different representations,
as K-> oo (see footnote 5).

4. Spontaneous Symmetry Breaking and Non-Local Dynamics: Energy
Gap Genέraίion Through Variables at Infinity

We are now in position to discuss the phenomenon of spontaneous symmetry
breaking with essentially non-local dynamics. In a certain sense, this will provide
a generalization of Goldstone's theorem to situations in which the infinitely
delocalized variables at infinity will be responsible for energy gap generation
associated to spontaneous symmetry breaking.

We recall the framework discussed in the previous sections. A dynamical system
is described by a von Neumann algebra TO, with predual F, and by an
automorphism α' of TO, (time evolution). The space translations are assumed to
be automorphisms α- of TO and to commute with a1. A symmetry β is an
automorphism of TO, (therefore weakly continuous). Given a representation π of
TO with unique cyclic (pure) state φ0eF invariant under space and time
translations, if a symmetry β commutes with space translations

β<h = <hβ> (4-1)

then, by the uniqueness of φ0, β is spontaneously broken in the representation π
iff there is no unitary operator which describes such a symmetry in π. Equivalently,
β is spontaneously broken iff there is an operator ^4eTO such that

Φo(β(A]) + φo(A). (4.2)

In the following we shall consider continuous one-parameter groups of auto-
morphisms j8A, Λ G R , which commute with space translations.

From the existence of a cyclic vector ψ0, representing φ0, it follows that in π
the space and time translations are described by unitary operators (7(3c), U(t) which
are assumed to be strongly continuous in "x, t.

Furthermore, as a result of the discussion of Sect. 3, we shall assume that the
representation π effectively localizes the dynamics on a subalgebra j^, c TO,
(Def. 3.1), J2// is stable under space translations and that in the state φθ9 βλ is
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generated on ts/l by local charges: i.e. s/l is stable under βλ and

(4.3)

where QR is the integral of a translationally covariant charge density j0 (x) over
a region of size jR. The charge is assumed to be integrable as a commutator:

J(x, ί) = KΆo> DΌPcMΊΆo) = i<Ψo, DΌ(*, - ί)M]^0>

is a finite measure in the ^-variable, i.e. there is a Schwartz seminorm || ||̂  such
that for 0(ί)e^(K),/pc)e^(K3)

l̂ [/0]l<C||0||^sup|/(x)|. (4.4)
c

The meaning of Eq. (4.3) is that on jtfl the derivative dβλ/dλ can be approximated
by local charges, equivalently by the derivatives dβ^/dλ of unbroken automor-
phisms βp_.

By Eqs. (4.2), (4.3) the condition of symmetry breaking in the representation π
can be written as

The relation between symmetry breaking and energy spectrum is given by the
following

Theorem 4.1. Under the above assumptions and the spectral condition (dEω = 0 for
ω < 0), the

Bm<DOtfjA^>0EE'(f), (4.5)
K->oo

where A1 = U(t)AU(t)~l, exists in the sense of distributions. Furthermore, for any
real test function /e<9%R3), with \ f(x)d3x = 1, as a tempered distribution in ω

i<Ψo,Jo(f)dEωdEkA\l/0y

is a continuous function of k and

i(2π)3 lim (ψ0J0(f)dEωdEkAψoy = J(ω) (4.6)

(dEω, dEk are the spectral measures associated to the space and time translations
and J(ώ) is the Fourier transform of J(t)).

For the proof and related results see ref. [I].

Remark. It is worthwhile to stress that the relevant condition, which allows us to
derive a general connection between the charge commutator and the energy
spectrum of excitations at H = 0, without special assumptions on the Fourier
transform of charge commutators [16,17], is the condition that the charge, as
commutator, is well defined as the integral of a density. Essentially this requires
that the commutator <[;0(x,y4ί]> decreases as |x |~ 3~ ε. τhis maY appear as a
stronger fall off property than that implied by Swieca's condition, Eq. (3.5)),

lim |x 2 [ , F ] = 0 .
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The latter condition is however required both for the charge density and for the
current density 70x), and therefore the continuity equation implies that the charge
density commutator actually decreases as pc|~ 3~ ε. Moreover, Swieca's condition
implies that [dj0(~x,t)/dt,A] integrates to zero and therefore it excludes the
phenomenon of energy gap generation (see Sects. 3, 4). In the preceding discussion,
only the charge density commutator is required to be sufficiently regular as
|Λ;| ->> oo; no general condition, like Eq. (3.5), is required about the fall off of the
generic correlation function, and in fact long range behaviours are allowed. In
many examples with long range interactions and energy gap generation associated
to spontaneous symmetry breaking, the charge density is integrable, as a
commutator.

By Theorem 4.1 the discussion of energy gap associated to spontaneous
symmetry breaking is reduced to the computation of J(i). To this purpose since
the effective time evolution mapping jtfl into jtfl is given by oίt

π9^
and on s/l Eq. (4.3) holds, we have

J(ί) = Πim <LQR9
K-oo

It is worthwhile to note that a non-trivial ί-dependence of J(t) is possible
compatibly with βλof = ofβλ

9 just because it is ofπ and not of which appears on the
right-hand side of Eq. (4.7). This phenomenon has been discussed in Sect. 3 and
explained in the terms of the dependence of the effective dynamics from the
boundary condition at infinity.

A non-trivial ί-dependence of J(t) corresponds to a non-trivial energy spectrum
of excitations (Theorem 4.1); the following analysis shows that the time dependence
of J(t) can be reduced to the non-trivial dynamics of a set of variables at infinity.
To this purpose we need the following definition.

Definition 4.2. In the framework discussed above, given a pure state φ0 invariant
under space time translations, giving rise to a representation π which effectively
localizes the dynamics on jtfl9 we denote by S the minimal set of (pure) states on jtfl

containing φ0 and stable under of* and βλ*. We then consider the representation Πs

of j/j given by the direct sum of all representations defined by states of S and we
denote by Zs the centre of Πs(^ί).

If j/l is weakly asymptotically abelian with respect to space translations, in the
representation π, i.e. \M, Be^/^

w- Hm π([^,£]) = 0, (4.8)
pc|-κ»

then, since the space translations are implemented by continuous unitary operators,
the ergodic limit

w- lim J-JΛcπGy (4.9)
K-»oo V V

exists for any Ae<$/l and it commutes with π(jtft) [18].
Since the (pure) states of S can be obtained from φ0 by application of βA*, of*

and the space translations α^ commute with both βλ and ofπ9 the ergodic means
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of elements of #fl exist as weak limits in the representation Πs. In fact any pure state
ψ of Πs is of the form

(4-10)
ΐ

and therefore

converges as K->oo.
In the same way one proves that ja/, is weakly asymptotically abelian in the

representation Πs, and therefore the ergodic limits of elements of jtfl belongs to
Zs. Actually Zs is generated by such ergodic limits, by the Stone- Weierstrass'
theorem.

We are thus led to the following results:

1) VAej/ j , the ergodic limit

lim — ̂ o^A)d3x = limAv = AaQ (4.11)
F^oo V V V

exists in the weak topology of Πs and it belongs to Zs.
2) The unique extensions of βλ and α'π to Πs(^^1 map Zs into Zs.
3) Given Aes^l and J(t) as in Theorem 4.1,

φ0(βλ«<π(AJ) = φ0ϋ5Vπ(Λ)), ^Φ0(0X(Λ J) |A=O = W (4.12)

Remark. Equation (4.12) reduces the time dependence of J(f), and therefore the
phenomenon of energy gap generation, to the time evolution of variables at infinity.
Since they form an abelian algebra, stable under such evolution, the problem is
reduced to the study of a "classical dynamical system."

Each representation of Πs maps such "classical variables" into e-numbers and,
in particular, it identifies the initial value of the time evolution ofn(Am). By definition
of o4, the dynamical behaviour of such "classical variables" is trivial if the initial
values correspond to those of the representation π, and in general non-trivial
otherwise. In particular, a non-trivial time evolution may arise starting from initial
values corresponding to βλ* φ0, when βλ and α'π do not commute. As discussed
in Sect. 3, this happens when the effective dynamics ofπ depends on the boundary
conditions which characterize the representation π.

Equation (4.12) shows that the low momentum energy spectrum in the
representation π is determined by the time evolution of the ergodic limit A^, when
the initial value is infinitesimally close to that of the representation π, in the
direction of the symmetry transformation βλ*.

The above classical dynamical problem can be further simplified under general
assumptions, by which only a finite number of "degrees of freedom at infinity" get
involved. A general case in which this happens is when

α) given Aίets/h there is a C*-subalgebra R of Zs which contains Aίf00, which is
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stable under α'π and is generated by a finite number of hermitian ergodic limits
zf = lim Ai F, ϊ =!,...,«, v4ί

It then follows that

afM = F%zl9...zH)9 (4.13)

with F\ norm limits of polynomials of the A?s. F\ are then continuous
functions. In the following we assume that F\ are differentiable.

Theorem 4.2. Under the above conditions the linearization of the dynamics zt->
F\(zl9 ...9zn) around the stable point zt = φQ(Ai) gives rise to a motion of the form

x' = £Pi(t)exp(i<ufet), (4.14)
k

with P[(t) polynomials and ωk real; the energy spectrum at zero momentum of the
two point function involving Ai9 Eqs. (4.5), (4.6), coincides with the set of frequencies
ωk which enter in the linearized motion of z f.

Proof. By Eq. (4.13), since βλ is an automorphism of Zs and therefore it is norm
continuous, we have

βλofκ(zύ = βλF\(z^ . . . , zn) = F\(β\z,\ . . . , βλ(zn}}.

Moreover, since Zs is abelian and φ0 is a pure state,

Now, by Eq. (4.12), φQ(βλ(z^) = φ0(βλ(Ai)) which is differentiable in λ by condition

(4.3); since F\ is differentiable we have

0. (4.15)

With obvious notations, the above equation can be written in the form

We now show that F\tk is a polynomially bounded abelian group of real
matrices. In fact by Eq. (4.13) and the group properties of ofn9 we have

F\+ S(z1? . . . , zj = α'/'fe) = <(a^)) = <FKz1? . . . , zn) = F\(^(ZI\ . . . ,

and therefore

By taking the expectation value on the pure (time invariant) state φθ9 the above
equation gives

F^z, , . . . , z J = FJ./Z! , . . . , zj^fr , . . . , zn).

Finally, since x\ is polynomially bounded in t by Eq. (4.12), (see Theorem 4.1), so
are the matrices F^k. They can therefore be written as (exp(Kt))ik with K a real
matrix; the spectrum of K is purely imaginary since F\tk are polynomially bounded
and therefore also symmetric with respect to the origin (spectX = (spectX)). If



168 G. Morchio and F. Strocchi

F\ίk are uniformly bounded in ί, the spectrum of K has no algebraic multiplicity
and the linearized motion (4.16) is multiperiodic, with frequencies given by the
eigenvalues of K. In the general case the spectrum of K has algebraic multiplicities
and the corresponding motion (4.16) is described by products of polynomials in
t and (periodic) exponentials. The connection with the energy spectrum at zero
momentum follows from Theorem 4.1.

Clearly, the same conclusions of the above theorem are obtained if condition
α) is weakened to require the reduction to a finite number of degrees of freedom
only in the neighbourhood of the stable point z£:

α') given A1 es^h there is a finite number n of hermitian ergodic limits z£ such that,
for \λ\ small,

\z,)\ . . . , φ0(βλ(zn))) + #•',
with

II pΛ 'f II -̂ /"•* 2 1 +e|| Kt || < C λ. ,

and F\ a differentiable function.
A reduction to a finite dimensional classical problem is also obtained if only

a finite number of symmetries are generated by βλ and afπ, more precisely if

β) the automorphisms βft) of s/l9 defined by

/^EEα^/JX, (4.17)

are generated on «a/f, in the state φθ9 by a finite number of independent (local)
charges Q1

R, i.e.

o = i Σ *i(01im<M[ekM]), (4.18)
i = i R

with fl£(ί) independent of A.
Since sίl is stable under αf

π, for any fixed tβ*t} is generated by QR(t) = a~tQR

and therefore Eq. (4.18) states that only a finite number of charges QR(t\ ίeR
are independent. For the following it is convenient to choose the charges QR as
6κ = QR(^^ f°Γ suitable times ti9 . . . , tn.

Equation (4.18) can then be written as

=o = i Jim Φo(LQR(t),Λ^ = ̂ Ci(t)i ΐίm
R->ao i R^co

0, (4.19)

and one has

(4.20)

We then have

Theorem 4.3. Under the same assumptions as in Theorem 4.1 if condition β) holds
then

0, (4.21)
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where cik(f) is a one-parameter group of real matrices, polynomially bounded in t;
the spectrum of its generator coincides with the spectrum ofJ(ω\ and therefore with
the energy spectrum at zero momentum, in the sense of Theorem 4.1, when A varies
over j/,.

Proof. Equation (4.21) follows from (4.19), (4.20) with

Equation (4.21) with hermitian A shows that cίk(t) are real. Moreover, we have

and therefore cίk(t) is a one-parameter group of real matrices. The proof then
proceeds as in Theorem 4.2.

Condition β) can be recovered as a condition on the linearized dynamics of
Zs around the stable point defined by the state φ0. In fact, condition β) is implied
by the following:
β') the (finite) products of automorphisms βft), A, ίeIR, form a finite dimensional
Lie group G of automorphisms β(g\ geG, of Zs.

Given zeZs, with z the ergodic mean of A e s^l one can choose a basis Lt in the
Lie algebra of G such that

Moreover, by Eq. (4.12), Φ0(β(t)(z)) = φ0(βft)(A)) and the latter is differentiate in
λ at λ = 0, by condition (4.3); therefore

φ0(β}(t)(z))λ = 0 = Φo(β\ti + t)(z))ί = 0 =
dλ dλ dλ j / Λ = 0

)A.o (4-22)
j "A

Clearly by Eq. (4.12) the above equation holds when z is replaced by A and in
such a way one recovers Eq. (4.18).

It is worthwhile to remark that as a state on jtft9 the state βft)Φo is completely
determined (within S) by its values on Zs and in this way one may define β(g)*
on φ0:

β(g)*φ0(z) = φ0(β(g)(z)) = φ0(βft}(z)) = β£}φQ(z}.

Condition β') then implies that the (finite) products of βft) form a finite dimensional
Lie group β(g)*, #eG, on φ0. The translation in variance of φ0 may be crucial
for the validity of this property. Moreover since φ0 is ofπ invariant and S is
minimal, it also follows that S = {β*(g)φo, 0eG}.
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Remark. The Conditions α), α'), β), β') imply that the energy spectrum at zero
momentum (see Theorem 4.1) consists of discrete points ωt (excitations with infinite
lifetime in the limit /c->0). If J(ί) is uniformly bounded, the minimal number of
degrees of freedom which enter in the conditions α) α'), or the minimal number of
charges for which Eq. (4.18) holds for fixed Ae<$#his even if and only if ωt / 0 for all
f s, i.e. iff one has an energy gap associated to the spontaneous breaking of βλ. In
general, given the generator QR of Bλ and the generator QQ

R of an automorphism αj
which commutes with afπ, one can always define a new group of automorphism yλ

with generator QR + QQ

R. Therefore the appearance of the point ω = 0 cannot be
ruled out by the time dependence of βft). It is clear however that one can get rid of the
charge 0% by a suitable choice of the operator A. This separation can be done in
general if condition β) holds (ref. [I]).

Remark. Theorems 4.2, 4.3 show that only discrete excitations contribute at zero
momentum to the vacuum expectation value of [QR, A~\ if only a finite number of
charges QR(t\ ίeIR, are independent, or if only a finite number of "condensates"
get involved in the linearized (classical) motion of the "condensate" A ̂ . The converse
is also true: if the energy spectrum at 7c = 0 is discrete, then by a suitable smearing
in time of At one can obtain that no more than two degrees of freedom, with
frequencies ω and — ω, are involved in the dynamics of the condensates or of the
commutator <[βΛ(f)M]>o for fixed A.

Apart from simple models, the determination of the function F] in Eq. (4.13),
or of the matrices cik(t) in Eq. (4.21), is in general a non-trivial "dynamical" problem.
To attack this problem one may perform a sort of Hartree-Fock approximation
on the equation of motion of the variable A. Typically, in a given representation
the time derivative of a field variable A is expressed in terms of a set of field
variables Al9...9An

A = F(A19...,AΛ)9

and the first approximation is to take

Such approximation turns out to be exact for linear models. More generally the
above approximation may be taken as a starting point for setting up an iterative
procedure in terms of truncated correlation functions. In this way one may get
approximate determinations of the energy spectrum at zero momentum, which by
Theorems 4.2, 4.3 is directly given by the spectrum of the time derivative of F\^k

or of citk(t)9 at t = 0.

5. Examples

The above abstract structures and theorems are illustrated by a large class of
models [20].

i) General Spin and BCS Models. We consider the class of spin models defined by
the standard spin algebra d on a lattice and the following finite volume
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Hamiltonians

"y=4 Σ Σ faurt + Σ Σcx (5 i)
I V \ iJeV α,/3 ieV α

The choice AΛβ = Aδφ Cα = Bδa^ yields the Heisenberg model in the mean field
approximation [21] with an external field B, whereas

-i 1 0
0 0 0

gives the BCS model [13].
The finite volume dynamics α'κ is defined by

(5.2)

(5.3)
where

It is shown in ref. [20] that αr

κ(σ^) converges ultrastrongly as F->oo, whenever
σ\ converges ultrastrongly. An algebraic dynamics of is then defined by taking
as family F the largest set of states for which the ergodic limits (5.4) converge
ultrastrongly. It is then shown in ref. [20] that the ultrastrong limit of oφ, α',
defines a one parameter group of automorphisms of the von Neumann algebra
9JΪ defined as the weak closure of #0 with respect to F.

States φ invariant under time evolutions are easily constructed as product
states with the property that

φ(af(σϊ)) = φ(σ?)9 σα°° = lim σv

Λ. (5.5)
K->oo

For any representation π defined by a pure state invariant under time translations
the algebraic dynamics αr gets effectively localized on the subalgebra jtft = stf ,
(see Def. 3.1), and the corresponding automorphism ofπ is defined as the solution of
the following equation:

^M) = - 2e^Aaf + AβMσβK^y) ~ 2Cαβα,/π(σ;). (5.6)

For the proof of the above statements see ref. [20].
For simplicity we discuss the symmetry breaking aspects for the Heisenberg

and the BCS models. For the Heisenberg model with 5 = 0, the three dimensional
spin rotations define automorphisms of stf which commute with o?v. Therefore,
they can be extended to automorphisms of 5ϋϊ which commute with of. Given a
pure product state invariant under space translations φl , with φl (σl

Λ) = na,
\n\ = 1, ΦQ is time translation invariant and only the rotations around Jί are
unbroken in the representation defined by φ% .

The set 5 (see Def. 4.2) is the set of states φ% Zs is generated by σ™ and the
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classical motion at infinity defined by ofπ on Zs is the group of rotations of σ*
around Jϊ = πfσ °°), with frequency ω = 4 A. The products of ofπ and the rotations
around the two axes ?1? ~e2 orthogonal to 7ί, generate the group of three
dimensional rotations (condition /?')); the independent charges of condition β) are
the generators of rotations around ~e^ and ~e2

For the BCS model the rotations around the z axis are automorphisms βλ of
<£/ which commute with ofv. They are therefore symmetries of the infinite volume
algebraic dynamics. Pure product states invariant under space translations φ\ ,
with φno(σla) = na are time translation invariant if either nα = (0,0, + 1) or
na = (nl9n2,ε/Tc). We consider the second case in which βλ is broken. ofπ defines
rotations around — 7ί, with frequency ω = 2Tc. We see here an explicit example of
an interesting phenomenon which accompanies the symmetry breaking in the
presence of long range interactions, namely the generation of exact symmetries of
the effective dynamics ofπ (here rotations around ~n) which did not exist as
symmetries of the finite volume Hamiltonians nor of the infinite volume dynamics
of.

The set S is again the set of states φ* , \m\ = 1, Zs is generated by σ™ and
the classical motion at infinity is the group of rotations of σ^° around 7f = π(σ °°),
with frequency ω = 2Tc. All the other features are very similar to the Heisenberg
model, in particular the independent charges of condition β) may be taken as the
generators of rotations around z and around (n'~ezjn + 7ί x ~ez.

For more details see ref. [20].

ii) Kibble Model The abelian Higgs phenomenon is well illustrated by freezing
the modulus of the scalar field in the Higgs-Kibble model. The dynamics of such
a linearized model in the Coulomb gauge essentially reduces to that of a scalar
field with Hamiltonian

H = $ld3xlπ2 + (Vφ)2]+tfd3xd3yπWU&-J)π(y), U(x) = g2/\x\ (5.7)

(Kibble model [5]). A proper discussion of the model requires an infrared
regularization; we will introduce an infrared cutoff L in the potential, e.g. UL(x) =
ί/(3c)/(|;c|/L), with / a regular function which is one inside the sphere of
radius 1 and vanishes outside the sphere of radius 1 4- a. (The actual form of the
infrared regularization is not important.)

The canonical commutation relations (CCR)

[φ(x),π(7)] = ̂ (x-7) (5.8)

uniquely determine (see e.g. ref. [18] vol. II) an abstract C*-algebra, generated
by the Weyl operators W(f\ f = (flJ2\ fi, /2^reai(#3X which we will take
as algebra j^.

The (formal) equations of motion given by the infrared cutoff Hamiltonian HL

are

φ(x, t) = π( x , ί) + J UL(x - 7)π(7, t)d3y, π(x , t) = Δ <p(x, t), (5.9)

which imply

φ(x, t) = Δ φ(x, t) - 4πg2φ(x,t) + JσL(x - J)φ(J9 t)d*y, (5.10)
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where σL has support in L ̂  ~x — ~y\ ^ L(l + a) and §σL(x)d3x = 4πg2. The σL term is
a consequence of the (necessary) infrared regularization, and it gives rise to infinitely
delocalized variables in the limit L-* oo.

For a rigorous construction of of we consider the infrared cutoff dynamics ofL on
j / : a f L W ( f ) = W ( f t ) v r i t h

), (5.1 1)

7'2(fc) = sin(ωL(fc)ί)[(l + σL(fc))/ωL(fc)]/ι(fc) + cos(ωL(fc)ί)72W,

where ωi(/c)-P(l + C7L(/c)).
The dynamics α^ commutes with the automorphism βλ of j/ defined by

φ-+φ + /, i.e.

/?M/) = exp(α7ι(0))VW (5.12)

The states of F can be taken as follows: one considers the set F0 of Fock
representations of #/ defined by translationally invariant states Ω with

β(W(/)) = exp[-i[/,/]], (5.13)

where

U,n=Sd*kftk)Miβ)fβ)9 Mij(k) = Mij(k} = Mjί(k\ detM=l, (5.14)

and M satisfies the following infrared regularity condition

IMnMl^ffi- 3 ^, |M22(/c)|^|I|1+5, δ>0. (5.15)

The set of states associated to the representations of F0 and to their transform under
/?A*, λeU, is then taken as family F. One can prove [20] that the infrared cutoff
dynamics afL(A)9Aejtf, converges ultrastrongly, with respect to F, as L-> oo. In this
way one defines a mapping α' of ja/ in 5[R; one checks that αf*F c F and that

α

rι*αί2* = α( ί l+ί2)*, and this implies that αr defines a one parameter group of
automorphisms of 50ί, which commute with βλ [20].

The state φ0 of the form (5.13) with M 12 = 0, M X 1 = ωj/c)/!2, M22 - P/ωJ/c)
and its transforms under βΛ* are invariant under time translations. Each of
them (φλ, λeU) leads to an effective localization of the dynamics on the sub-
algebra stfl c 9JI of finite linear combinations of the (extended) Weyl operators
W(f\ with ^(xJe^ίjR3), Zl/2(;c)Gy?(K3); the corresponding relocalized dy-
namics are given by

af,λ(W(f)) = W(f)Gxp[iλ}'l(Q)(l - cosωί) -h iλ(P72)(0)sinωί/ω], (5.16)

where ω = ω^ίO) and /ί is defined by Eq. (5.1 1) with L = oo. In each representation
defined by φx, β

λ is broken.
The algebra jtft is stable under βλ and on j/z,

where
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One checks that the charge is integrable as a commutator for Aes^l (Eq. (4.4)).
Furthermore the mapping

y\W(f}) = ^(/)exp[α(P/2)(0)] (5.17)

defines a one parameter group of automorphisms of j/f and

βλyt __ gt βλcosωty-λsinωt/ω

βY = fβ* (5.18)

(conditions β and β' are satisfied).
The set S is the set of states βλ*γμ*φ0 = φλ'μ and

f* j ίλ,μ _ J-λcosωί + μωsinωί,μcosωf — λsinωί/ω /c i n\

Zs is generated by

Q\p[iaφ00] = w — lim exp[ίαφ(L~3/ι(|3c|/L)], (5.20)
L->oo

exp ia( — *π ] Uw- lim exp ία( — *π ](L-3/ί(|x|/L)) , (5.21)
L V4πr / α o j L^°° L \4πr / J

where J/ι(;c)d3x = 1, and the classical dynamics at infinity can be written as

< φ «, = <?«, cos ωt + (- — *π ) sinωί/ω. (5.22)

The energy gap associated to the breaking of βλ is ω.
The standard treatment of this model [5] completely misses the following

essential features: i) the correct treatment of the dynamics requires us to define it
as a limit of infrared cutoff time evolutions; ii) this procedure accounts for the
symmetry of the algebraic dynamics under βλ through the appearance of variables
at infinity, which are not present in the Hamiltonian; this feature is due to the
interplay between the kinetic term and the long range 1/r of the interaction; iii)
the effective localization of the dynamics is obtained by freezing the variables at
infinity to their expectation values and this mechanism explains the generation of
energy gap.

The same features show up also in the Kogut-Susskind model [8] if correctly
treated along the above lines [20].
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