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Solution of the Initial Value Problem
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Using a Kac-Moody Algebra
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Abstract. We solve the classical sine-Gordon equation using a Lax pair
belonging to a Kac-Moody algebra. By realising the algebra in terms of
fermionic currents we reduce the initial value problem to the evaluation of a
fermionic propagator as a sum of Feynman diagrams.

1. Introduction

The sine-Gordon equation,

d2ρ d2ρ

is a relativistic equation in one space and one time dimension with many
applications in mathematical physics [1]. Soliton solutions have been constructed
using the inverse scattering transform [2]. Here we describe a different approach,
based on a Kac-Moody algebra, which solves the equation for arbitrary initial
data. The method reveals an intimate relationship between solutions of the sine-
Gordon equation and the propagator for a certain fermionic quantum field theory.
This is a precursor at the classical level of the well-known equivalence between the
quantum sine-Gordon theory and the massive Thirring model [3].

The starting point for the solution of the sine-Gordon equation by the inverse
scattering transform is its associated Lax pair. Conventionally, this is constructed
from elements of the Lie algebra sl(2,(C). Leznov and Smirnov [4] have pointed
out that the Kac-Moody algebra may be used instead. The advantage of this is that
the same construction that was used to solve the Toda equations by Leznov and
Saveliev [5] may be exploited to relate solutions of the sine-Gordon equation to
elements of the Kac-Moody group constructed from initial data given on some
light-cone. Jimbo and Miwa have also constructed solutions using the Kac-
Moody algebra [8]. In Sect. 2 we give a different derivation of this construction
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which allows us to specify the initial data on a spacelike surface. A similar result
was obtained by Onofri for the Liouville equation [6]. At this stage the solution
appears quite formal because the Kac-Moody algebra is infinite and the group
elements remain to be evaluated.

In Sect. 3 we describe a fermionic representation of the Kac-Moody algebra
that enables us to evaluate the group elements using Wick's theorem. Thus the
solution of the sine-Gordon equation reduces to the evaluation of a two-point
function which has the usual diagrammatic expansion, and depends only on the
initial data. The final section is a discussion of similarities between our work and
the Riemann Transform method which is a formulation of the Inverse Scattering
Transform due to Shabat, Zakharov, and Mikhailov [7]. In an Appendix we give
details of the fermionic representation of the Kac-Moody algebra.

2. Solution in Terms of the Kac-Moody Algebra

In this section we define a Lax pair for the sine-Gordon equation in terms of a Kac-
Moody algebra, and exploit this to express the sine-Gordon field as a function of
an element of the corresponding Kac-Moody group depending only on the initial
data. We begin by describing the Kac-Moody algebra.

Let {U; i = 1... D} be a set of n x n matrices with the Lie algebra commutation
relations . . .., f

[L\U]=fι*L\ (1)
and Killing form

ij Uj (2)

The generators of the corresponding infinite dimensional Kac-Moody algebra [9]
carry a subscript which takes on integral values and satisfy the commutation
relations

[14, L{] = / ' * ! £ + , + mδm, _nηΠ. (3)

1 is a central element which commutes with the Un. If we take as generators of
sl(2,C) [the complexification of SU(2)] the following combinations of Pauli
matrices ττ _+ « .

H = σ3, E±=i(σί±ισ2), (4)
then from (3) the corresponding Kac-Moody algebra is

± + H ,
= o ,

We can now specify the Lax pair. Define the fields

J*± = ±iid±ρH0±d±φt + oceiρ/2E$ +ae~iρ/2EΪί. (6)

Here ρ is a real function and φ a complex function of space-time and

Z±=\(t±x), δ± = -^±, d2 = d+d_. (7)
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We now impose the condition that si be a pure gauge, that is that there exists an
element of the Kac-Moody group g such that

j*±=gd±g~1. (8)

These two equations are compatible only if si satisfies the integrability condition

[ δ + + j / + , δ _ + ^ _ ] = O. (9)

Working this out with the aid of the commutation relations (5) we find that ρ and φ
must satisfy ~2 , A 2 ^ /im

J d2ρ + 4oc2smρ = O, (10)

d2φ+°^-e-iβ = O. (11)

The first equation is the sine-Gordon equation we are interested in, whilst the
second fixes the auxiliary field φ in terms of ρ up to the addition of a solution to the
free wave equation.

Our method for solving the sine-Gordon equation derives from studying the
action of g on two particular vectors in the representation space of the Kac-Moody
algebra. The first vector, |Λ>, corresponds to a fundamental dominant weight, i.e. it
satisfies

£0

+M>=<>, Un\Λ>=0 for rc>0, (12)

together with conjugate equations

n = 0 for n < 0 . (13)

The vector \Λ) is a generalisation of the column vector (l,0)Γ on which the Lie
algebra acts. The second vector we need is a generalisation of the trivial
representation of the Lie algebra and satisfies

<θ|iί=o,

For the moment we will assume the existence of vectors with these properties, but
in the next section we will construct them. The solution of the sine-Gordon
equation follows from observing that

d + {g-1e-{iΰ/4+φ)}\Λ} = g-1e-{iQ/* + φ){Λf+-id + ίρ-d + φ}\Λ) = O, (15)

and
d_{(Λ\e~iίρl*+φ)g} = (Λ\{-si_-id_-ίρ-d_φ}e-(i6/4+φ)g = O, (16)

using the properties of \Λ}. Similarly,

5+{^-1

e-*}|0>=0, 5_{<0|β-M = 0. (17)
Thus the quantity

(18)
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is independent of both the Z~ coordinate of the point A and the Z+ coordinate of
the point B. This enables us to evaluate it firstly by choosing these coordinates so
that A and B coincide, at the point P say, where it is simply

exp-(ίiρ(P) + 2#P)), (19)

and secondly by choosing them so that A and B lie on ί = 0, in which case we
construct g(A)g~1(B) from a knowledge of the values of the fields ρ and φ on t = 0.
Although the values of ρ on t = 0 constitute our initial data we do not know φ, but
we will be able to eliminate it from the problem later on. If P has the coordinates
(x, ή, then A is the point (x + ί, 0) and B is (x — t, 0). From (6) and (8) we have

(20)

(the dots denote differentiation with respect to time). So that g(A)g 1(B) may be
calculated as a path ordered exponential integral from B to A along t = 0,

(21)/ A \ A

= exp- \dxφ Pexp- \dx2tf.
\ B ) B

Putting all this together gives

= exp - Q i[βG4) + ρ(B)] + φ(A) + 0(B) + f d x ^ (22)

B

By a similar argument based on Eq. (17) we find that
/ A

exp - 2φ(P) = exp - ( φ(A) + φ(B) + J dxφ ι

A

• <0|P exp - J dχje\θ}. (23)

Dividing (22) by (23) eliminates the field φ from our expressions and yields the
solution to the initial value problem for the sine-Gordon equation in the form

exp- -^(P) = exp - -Hρ(A) + ρ(B)] \ . (24)
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In principle this solves the sine-Gordon equation because it expresses the field at
the point P in terms of its values at time ί = 0. All that is needed to evaluate the
matrix elements appearing in this expression is a knowledge of the commutation
relations for the algebra (5) together with the defining properties of \Λ} and |0>
(12)—(14). However, this is a very cumbersome way to proceed and offers little
insight into the structure of the solution. A better approach is suggested by the
obvious resemblance of (24) to a quantum mechanical Green function for a system
evolving in the "time" variable x with Hamiltonian — iJf. In the next section we
describe a fermionic representation of the Kac-Moody algebra which will make
this precise. We will then be able to evaluate the right-hand side of (24) using
Wick's theorem.

3. Fermionic Representation of Kac-Moody Algebras

It has been known for some time that currents constructed from fermion fields can
provide explicit realisations of the type of infinite dimensional algebras we have
been using [10]. Here we outline one way of doing this. It is based on an
n-component complex Fermi field xpr(σ) defined on the space-like unit interval
O^σ^l with periodic boundary conditions and canonical anticommutation
relations,

{ φ » , ψs(σ')} = δrsδ(σ - σ'), {ψr(σ\ φs(σ')} = 0. (25)

The coefficients of the Fourier decomposition of ψ have the usual creation and
annihilation operator algebra that follows from (25),

ψr(σ)= Σ Ay*", {A'n,A°m} = 0, {A'n\AsJ = δ'%m. (26)
n = — oo

Which of these operators we take to be annihilation operators and which creation
operators appears at this stage to be rather arbitrary, but with some prejudice we
will define our Fock space vacuum so that

Ar

n\0) = 09 n^O allr,

^ + | 0 > = 0, n^-\ allr.

The Fock space states are generated in the usual way, by applying the remaining
operators to the vacuum. Conjugate to (27) we have

< 0 | 4 ; + = 0 , n^O a l l r ,
(28)

0, n^-l a l l r .

Matrix elements of products of the Fermi field will not be finite in general.
However, normal ordered products will have finite matrix elements. In particular,
the Fermion bilinears

Ji(σ)=:ψ(σ)Liψ(σ): (29)

will have a finite action on the Fock space. Here we have assembled the ψr into a
column vector ψ and the ψ* into a row vector xp. The Li are the nxn matrices
introduced in Sect. 2 which form a representation of the Lie algebra. The normal
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ordering, which is denoted by dots, stands the annihilation operators to the right of
the creation operators at the cost of a minus sign for every interchange of operators
that takes (29) back to the ordinary product.

In the Appendix we show that the Fourier components of J satisfy the Kac-
Moody algebra. Thus if

Un=)dσe-2™°jχσ), (30)
o

then

[ 4 , Li,] = / < * [ * , + „ + < _mφt, (3i)

where 1 is just the c-number one. Writing out Lι

n in terms of the A and A+,

Un=Z-Ar

q

+-nUrsA
s

q:, (32)

we see that for n^O each term in the sum contains at least one annihilation
operator which stands to the right because of the normal ordering; thus

(33)

Similarly,

(33)

so that the vacuum has all the properties we required of the vector |0> in Sect. 2. We
will identify them. We also need \Λ}. If the action of the n x n matrix Ώ on the
column vector φ is to give the column vector χ,

Lίφ = χ, (34)

then the action of the Kac-Moody generator Lι

0 on the state

Ό+\0} (35)

is to give the state |χ>, since if we use (26) and (32) it is easy to see that

W r-+

n. (36)

So that

H>\Φ> = Σ Wo, Λ s

0

+] |0># = Σ UAΌ+ \0}φs = |χ>. (37)
s rs

Also Un annihilates \φ) if n^ 1, because

4 Λ l 0 > = 0, n ^ l . (38)

The vector \Ay introduced in Sect. 2 was a generalisation of (1,0)Γ in the same way
that \φ} generalises φ. Thus we can take

4
o

as this satisfies all the conditions (12).

(39)
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4. The Solution in Terms of a Fermionic Propagator

We can now translate our solution of the sine-Gordon equation into the language
of Fermi fields of the previous section. The result will be to reduce our formula (24)
to a Fermionic propagator which may be evaluated in the usual way as a sum of
Feynman diagrams. The expression is particularly simple because the Hamil-
tonian is only bilinear in the Fermi fields. It may be written

X (x) = iρ(x, 0)tf o + I **<*• 0 ) / 2 (E 0

+ - E»)

(40)

where M is the

+ α
2e

= i\dσ:

2x2 matrix

l-ρ(x,O)

,iρ(x,0)/2_e-ίρ(jc, 0)/2

v3(σ)M(σ,x)y(σ):,

e-2πiσ\

In terms of the Fermi fields the ratio of matrix elements appearing in our solution
becomes

<Λ|Pexp- J dxjf |Λ>/<0|Pexp- J dxJ^\0}
B B

= \dσAdσBGιl(xA,xB), (42)
0

-if d2x :
ijrA*A,XB)- <0\Pexp(-ί$d2x :ψMψ:)\0}

Here the vector x is the pair (x, σ). It is convenient to consider a slightly more
general object than G. Define

(43)

<O|Pexp( -i j dxjdσ:i/3Mφ:
\ XB 0

so that

.Grs(x^ xβ) = Grs(xA, xB; xΛ, xB).

ψ depends on x only as on a label which determines its position under path
ordering, otherwise it just depends on σ. G is the two point function for a fermionic
theory with Hamiltonian density: ψMψ:, this is the result anticipated at the end of
Sect. 2. Furthermore, because :ψMψ: contains no derivatives of the Fermi fields,
the differential equation for which G is a Green function will only involve
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derivatives with respect to the "time" variable x. Using Wick's theorem we obtain
G as the usual diagrammatic expansion of the complete propagator.

(44)
x y x y

Here the bare propagator is

[ 1 =<0\Pψr(x1)Ψ:(x2)\0)

= δrs{θ(xί-x2)κ>(σί-σ2)-θ(x2-xί)κ<(σί-σ2)} (45)

= δrsA(xί-x2).

κ> and κ< are projection operators onto the positive and nonpositive frequency
components of functions of σ. Thus

0 otherwise.

The vertex is just the matrix — iM(σ, x). The implied integrations in (44)
are over the ranges O ^ σ ^ l , xB^x^xA. Explicitly the expansion of the matrix
(Grs) is

G(x, y;x^xβ) = ί2

(47)
Rearranging (44) gives

which together with

^-A(x1-x2) = δ(x1-x2)δ(σ1-σ2) (49)

shows that G is a Green function

d
(50)

This is the Green function appropriate to "mixed" or Feynman type boundary
conditions that are usual in relativistic quantum field theory. By this we mean that

^(x) = JdσBG(x, xB; xA, xB)φ>(σB) - \dσAG{x, xA xA, xB)φκ(σA)

satisfies
ί p) \

(52)

subject to

B) = φ>(σB), κ<oφ(χA,σA) = φ<(σA). (53)
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This may be seen by solving (52) and (53) iteratively in powers of M. We can now
interpret the right-hand side of (42) in terms of such a φ9

i ^

J dσAdσBG1 x (xA, xB) = J dσB( 1,

where

(54)

κ<oφ(χA) =

Now we can give the final form of our solution of the initial value problem of the
sine-Gordon equation.

exp-iiρ(x,ί) = exp(-ii[ρ(x + ί,O) + ρ(x-ί,O)])Jdσ i l(l,O)^(xJ, (55)

where φ satisfies (54) and the 2x2 matrix M contains the initial data. The solution
of (54) is given by (51) in conjunction with (47).

5. Relationship to the Inverse Scattering Method

In this section we discuss the relationship of our work to the Riemann transform
method of Shabat et al. [7]. This is a version of the inverse scattering transform in
which solutions of the sine-Gordon equation are constructed by solving a
Riemann problem. The problem is to construct a 2 x 2 matrix function ψ of the
complex variable λ which is analytic everywhere except on some contour Γ where
it suffers a discontinuity. The limiting values of ψ on either side of the contour are
determined by the conjugation condition

λ), λeΓ, (56)

together with the value of ψ at some point

ψ(λ)\λ=o0 = t . (57)

Both ψ and the matrix G are functions of the spacetime variables x and ί, and G

GJ=0. (58)

{$t±} is a Lax pair depending on the spectral parameter λ, whose zero curvature
condition

[δ++^+,d_+j/_] = 0 (59)

is equivalent to the sine-Gordon equation in the same way that (9) leads to (10).
The Riemann problem is solved by using Cauchy's integral formula to write down
an integral equation for ψ> in terms of G, which may then be solved by iteration,
see [7] for details.

We now want to connect this with our work. We do so by showing that the
defining equations for φ (54) may be cast as a similar Riemann problem, which in
our case is solved by (51) together with the Wick expansion (47). The φ of (54) is one
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column of a 2 x 2 matrix Φ satisfying

We can readily write down a formal solution to the differential equation,

Φ(xA) = G(xA, xB, ζ)Φ(xB), G = P exp - i ? dxM(x, ζ). (61)
XB

The problem is to satisfy the boundary conditions. These force Φ(xA) to be a
function not just of xA but of xB also, and similarly for Φ(xB), so define

Φ(xA) = φ>(xA,xB,ζ), Φ{xB) = φΛxA,xBΛ). (62)

φ> and φ< are both periodic functions of σ, and so have power series expansions in
ζ. The boundary condition

K>oφ<=t (63)

implies that there are no positive powers of ζ in this expansion, so we may continue
this expansion to define φ< as an analytic function of ζ for |(| > 1 such that

Lt ^<(0 = l . (64)
ζ->oo

Similarly, the boundary condition

κ<oφ>=0 (65)

implies that the power series expansion for φ> may be analytically continued to
define an analytic function for |£| < 1. The two analytic functions are, of course,
related by (61) on the unit circle

O , ICI = 1 (66)

The dependence of G on the space-time variable x is through xA and xB

xA = x + t, xB = x — t, (67)

so that

^ G = - iM(xA)G + GiM(xB). (68)

ίM is the spatial component of a Lax pair,

£± = ± ^d±ρH + aeiρl2E±+θίζτίe-ίρ/2Eτ , (69)

whose zero curvature condition yields the sine-Gordon equation. The Eqs. (68)
and (58) differ in the arguments of M; this is because our G contains only the initial
values of the sine-Gordon field as we have expressed the time development
through our solution (55).
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6. Conclusion

We have solved the initial value problem for the classical sine-Gordon equation by
a Lax pair technique based on a Kac-Moody algebra. Realising the algebra in
terms of Fermionic currents reduced the problem to that of evaluating a
propagator for the Fermi fields for which there exists the standard expansion as a
sum of Feynman diagrams. The advantage of the method over the inverse
scattering transform is that it can be performed for arbitrary initial data, although
in general the Feynman diagrams could probably only be summed numerically
rather than in closed form.

That the classical model reduces to a Fermionic theory is intriguing because of
the well-known equivalence between the quantum version and the massive
Thirring model. Attempting to apply our method to the quantum sine-Gordon
equation along the lines of [11] would presumably reproduce this equivalence.

Finally, we should point out that, independently of the present work, Olive and
Turok [12] have considered the construction of solutions to the sine-Gordon
equation and its generalisations within the context of a Lax pair belonging to a
Kac-Moody algebra. They are interested in the hierarchy of equations based on
the two dimensional exactly integrable systems obtained by replacing the algebra
sl(2,C) used here by an arbitrary Lie algebra.

Appendix

In this appendix we show that the Un defined in Eq. (30) satisfy the Kac-Moody
algebra. We begin by using the {Λr

n} defined in (26) to construct "analytic
continuations" of the Fermi fields for complex Z

= Σ Ar

nZ\ φr(Z)=
n = — oo

Splitting each of these into creation and annihilation parts

φr{Z) = Cr(Z) + A£Z), UZ) = A(Z) + Cr(Z),

Cr(Z)= Σ KZ\ Cr{Z)= Σ A'n
+Z~», (A.2)

Ar(Z)= Σ A\Z\ Άr(Z)= Σ A-n

+Z-«,

enables us to write out the normal ordered product

:φr(Z)φs(Z): = -CsCr + CrAs + ArCs + ArAs. (A3)

The anticommutators of the annihilation and creation parts of φ(Z^) and φ(Z2) are
well defined functions of Zx and Z 2 only for certain values of \ZJZ2\'.

= δrsZ2l{Zy-Z2) for | Z 2 | < | Z X | ,

ά AS(Z2)} = δrs Σ (ZJZ2γ (A.4)

= «5rsZ2/(Z2-Z1) for \Zy\<\Z2\.
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Consider the following product,

J: :$t(Z2)φu(Z2):. (A.5)

For | Z 1 | < | Z 2 | a little algebra allows this to be rewritten as

= Γrstu(ZuZ2). (A.6)

The value of this expression is that all the operator products are normal ordered
and so have a finite action on the Fock space, even as Z x approaches Z 2. Now
define i

En

rs= ί dσe~2πίnσ :ψr

+(σ)ψs(σ): (A.7)
o

In terms of φ and φ this is

^ ^ (A.8)

c is the unit circle. Using (A.6) the product of two E's is

tu— n - \ 2 7 Ύn+1 7 7m+ΓrsίttV^1^2;

(2πι) C l Z x C2 Z 2

cγ is a closed contour lying just within the unit circle whilst c2 just encircles it. This
ensures that |Z 1 |< |Z 2 | . Similarly,

c[ ^ι c2 A2

The integrands are the same because of the symmetry of Γ under the interchange of
(r, 5, Zγ) and (£, M, Z2), but now c\ must encircle c2 so that \ZX\ > |Z2 |, the order of
the £'s having been reversed. Subtracting (A.10) from (A.9),

Do the Z x integration first, holding Z 2 fixed. The contour cx —c[ can be deformed
to a small circle around the pole Z1=Z2 of Γ, traversed clockwise. Thus

ΓT7Π r m i 1 X ^ 2

{δst :$r(Z2)φu(Z2):-δru :φt

The nxn matrices {U; i = 1...D} satisfy the Lie algebra

[L\lJ-\=fi3kLk
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with Killing form
ηij = Ίv(jJLj). (A.14)

Define x

Un = En

rsUrs =\dσe-2πinσ :ψ+(σ)Πψ(σ): . (A. 15)
o

By contracting (A. 12) with UrsL
j

tu we see that the Un satisfy the Kac-Moody algebra

[ 4 , L j J =fijkLk

m+n + nδn, _mηV. (A.16)

References

1. Scott, A.C.: Propagation of magnetic flux on a long Josephson tunnel junction. Nuovo
Cimento69B,241 (1970);
Rubinstein, J.: Sine-Gordon equation. J. Math. Phys. (N.Y.) 11, 258 (1970)
Barone, A., et al.: Theory and applications of the sine-Gordon equation. Riv Nuovo Cimento
1, 227 (1971)

2. Ablowitz, M.J., et al.: Method for solving the sine-Gordon equation. Phys. Rev. Lett. 30,1262
(1973)

3. Coleman, S.: Quantum sine-Gordon equation as a massive Thirring model. Phys. Rev. D11,
2088 (1975)
Mandelstam, S.: Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D11,
3026 (1975)

4. Leznov, A.N., Smirnov, V.G.: Graded algebras of the second rank and integration of
nonlinear equations YzS=exp(27)- exp( - 2Y), ΎzΈ = 2exp( Y)- exp( - 27). Lett. Math. Phys.
5, 31 (1981)

5. Leznov, A.N., Saveliev, M.V.: Representation of zero curvature for the system of nonlinear
partial differential equations Xa%zS = exp(KX)α and its integrability. Lett. Math. Phys. 3,489
(1979); Representation theory and integration of nonlinear spherically symmetric equations
to gauge theory. Commun Math. Phys. 74, 111 (1980)

6. Onofri, E.: An identity for Γ-ordered exponentials with applications to quantum mechanics.
Ann. Phys. 102, 371 (1976)

7. Mikhailov, A.V.: TH 3194 - CERN
Zakharov, V.E., Shabat, A.B.: Funct. Anal. Appl. 13, 13 (1979)

8. Jimbo, M, Miwa, T.: RIMS - 439
9 Kac, V.G.: Izv. Akad. Nauk. SSSR, Ser. Mat. 32, 1323 (1968); 34, 385 (1970)

Moody, R.V.: Bull. Am. Math. Soc. 73, 217 (1967)
10. Bardacki, K., Halpern, M.B.: New dual quark models. Phys. Rev. D3, 2493 (1971)

Goddard, P., Olive, D.: Proceedings of the workshop on vertex operators in mathematics and
physics. Berkeley, 1983

11. Mansfield, P.: Solution of Toda systems. Nucl. Phys. B208, 277 (1982); Light-cone
quantisation of the Liouville and Toda field theories. Nucl. Phys. B222, 419 (1983)

12. Olive, D., Turok, N.: To appear

Communicated by A. Jaίfe

Received July 30, 1984






