
Communications in
Commun. Math. Phys. 98, 105-117 (1985) Mathematical

Physics
© Springer-Verlag 1985

De Sitter Superalgebras and Supergravity*

K. Pilch1**, P. van Nieuwenhuizen1, and M. F. Sohnius2***

1 Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook,
Long Island, NY 11794, USA
2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 9EW, England

Abstract. A general analysis of all possible super-extensions of anti-de Sitter
and de Sitter algebras 0(3,2) and 0(4,1) is presented. It is shown that actions
with de Sitter local supersymmetry exist, but contain vector-ghosts.

1. Introduction

Classical solutions of supergravity models with cosmological constants have been
constructed from anti-de Sitter metrics with space-time symmetry 0(3,2), but not
from de Sitter metrics with 0(4,1). A number of arguments are usually put forward
for the non-existence of supergravity models with a positive cosmological
constant. Such arguments are often based on the non-existence of Majorana
spίnors for 0(4,1). Indeed, one can use the "Noether coupling" approach to
supergravity to directly show that Majorana gravitini are incompatible with a
positive cosmological constant: the cosmological term in the Lagrangian, αx j/#,
is accompanied by a gravitino mass term a2γ9Ψμy

μvΨv a n d by a term δψμ

= Dμβ + α 3yμε+ ... in the gravitino transformation law. Demanding in variance
of the Lagrangian, one finds relationships ai=a2a3 and a2 = a3. The Majorana
property of xpμ fixes a3 to be real, with the result that aγ ^ 0 . The details of this
are dependent on notation and conventions, but the result is not.

There clearly is a way out of this type of no-go situation, as there is no need to
insist on the existence of Majorana spinors. We may simply accept that for every
spinor its charge-conjugate is also present and independent. The usual rules for
counting spinors in supergravity then mean that in the de Sitter case we must have
extended supergravity with even N. Once we have included all charge-conjugates
in the basic set of N spinors, there will be a symplecitic Majorana condition

Qβj (1)

for the de Sitter case, with EΊ'= —E, rather than a straightforward one with E = 1.

* Supported in part by the NSF under grant PHY 81-09110 A-01
** On leave from the Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland
*** Address from Oct. 1984: Imperial College, London SW72BZ, England



106 K. Pilch, P. van Nieuwenhuizen, and M. F. Sohnius

This particular solution to the Majorana dilemma was recently highlighted by
the construction of super-de Sitter algebras as quarternionic matrix algebras

ί N \
UUa 1,1;-;1H by Lukierski and Nowicki [1] who indeed arrived at Majorana

2
conditions of this type. These authors then went on to construct an action for the
N = 2 case, using the methods for the "gauging" of superalgebras which were
developed by MacDowell and Mansouri [2] and Townsend and van Nieuwenhu-
izen [3]. Thus, it was claimed, de Sitter supergravity exists after all.

There is, however, a second and more serious objection to de Sitter
supergravity. The very structure of the superalgebra itself indicates a serious
problem. The basic anticommutator

{Q«i, Qβj} = ωlj(ΓΛC-1)aβMab+ C~\β Tu, (2)

is the same for both the anti-de Sitter and the de Sitter case, but the properties of
the Γ-matrices are different, and if we use the reality condition (1) we can show that

If we assume that our operators act on a positive definite Hubert space, the left-
hand side of this is positive definite for i=j. In the anti-de Sitter case of 0(3,2),
and if the hermitian matrix iω with matrix elements iwtj is positive (or negative)
definite, we get a positivity theorem for the eigenvalues of the hermitian operator
— ιM 4 5 (or iM45), i.e. for the energy. In all other cases we find that there is no
non-trivial representation of the algebra on a positive definite Hilbert space.

This situation leads us to expect ghosts in the corresponding supergravity
theories. However, it is not always true that every local gauge algebra realized on
fields has a corresponding global algebra realized on states which is obtained as the
linearized limit for constant parameters. Hence the absence of an acceptable super-
de Sitter symmetry on states cannot be used as conclusive proof that no action with
de Sitter supersymmetry exists. We have therefore explicitly constructed the
transformation rules and the action for the multiplet eμ

m, ψμah and Aμ of N = 2 de
Sitter supergravity and find that the action exists but that it contains terms

L = ^ ( - i # + . . . + i F μ v F " + . . . ) (4)

with the wrong relative sign between the kinetic terms for graviton and photon,
making one or the other a ghost. Tracing back in [1], we find that the invariant
tensors which multiply the squares of curvatures, and which are determined by the
superalgebra, were incorrectly chosen to be the same as in the anti-de Sitter case.

Our conclusions thus are: if one insists on positive energy at the perturbative
level (something which nowadays is not always wanted [4]) then de Sitter
supergravity does not exist.

A general treatment, on the other hand, of those (anti-)de Sitter superalgebras
which cannot be represented on a positive definite space does not seem to exist. We
begin the body of this article by filling this gap. Our analysis will be purely
algebraic and does not require the assumptions of the analysis of Haag et al. [5] for
the super-Poincare algebra, such as non-degenerate vacuum, non-trivial 5-matrix,
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positive definite Hubert space. The reason that we can still get conclusive answers
for the (anti-)de Sitter case under less assumptions is that the (anti-)de Sitter
algebras, being simple, lead to more restrictions on their super-extensions than the
Poincare algebra. Our conclusion will be that if the matrix ω is non-singular then
the internal symmetry group - whose structure is the only open question - is
O(p9 q) with p + q = N for the anti-de Sitter case (it is O(N) for the "good" case
which allows a positive definite Hubert space). For the de Sitter case, the internal

(N \
symmetry group is O*(N) = O[ — M , i.e.,

O*(2) = O(2) for JV = 2,

O*(4) = SU(2)®SU(1,1) for ΛΓ = 4,

O*(6) = SU(3,1) for N = 6, U

O*(8) = O(6,2) for AT-8.

The superalgebras are simple for non-singular ω and are OSp(p, ̂ r 4 IR) for the
/ N \

anti-de Sitter case and UUΛ 1,1 — H 1 for the de Sitter case. This agrees with the

results of [1]. If ω is singular, we get group contractions of O(p, q) or O*(N) and the
superalgebras are not simple and not contained in Kac's list [6]. In fact, these
contracted superalgebras contain internal central charges and the structure of the
internal group is a semidirect product of a semisimple group with a nilpotent
(rather than merely a solvable) group.

The article is organized as follows. In Sect. 2 we derive the most general de
Sitter superalgebras. The structure of the internal symmetry group is analyzed in
Sect. 3. Finally, in Sect. 4, the action for N = 2 supergravity with local de Sitter
supergravity is constructed, and the presence of ghosts is exhibited.

2. The de Sitter Superalgebras

The anti-de Sitter and de Sitter superalgebras in four-dimensional space-time have
the following generators:

(i) Mab= -Mba; a, b= 1,..., 5. These generate the groups 0(3,2) or 0(4,1).
(ii) 7}; / = 1,..., n. These generate an internal symmetry group and commute

with the Mab.
(iii) Qai; α= 1, ...,4; i= 1,...,N. These are fermionic generators which trans-

form as spinors under the (anti-)de Sitter group.
We assume that the algebra is closed under an antilinear involution *. This can

always be achieved by extending the algebra to a bigger one which together with
every generator G also contains its conjugate G* (if the generators are operators on
a Hubert space, G* could be the hermitian conjugate of G). We take the generators
Mab to be anti-self-conjugate (i.e. antihermitian),

(Mab)*=-Mab. (6)

The conjugates of the remaining generators can be expressed as

j J = B/TJ, (7)
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since * does not mix fermionic with bosonic generators, nor internal with space-
time ones.

The involution property (* )2 = 1 gives consistency conditions

Aj'Άjf = δj δt

k, B/B*κ = δ*. (8)

Further constraints on the constants A and B will be derived from the closure of
the superalgebra under the involution.

In order to derive super-extensions of the anti-de Sitter and de Sitter algebras
we shall assume the most general (anti-)commutation relations with arbitrary
structure constants and subsequently look for the most general solution of the
Jacobi identities. Under the assumptions (i)-(m)> the most general ansatz for the
O 1 Q" £* f*\ t* Q i n

lMM]ηMad + ηadMbc-ηacMbd-ηbdMac, (9)

[TI,TJ-] = cIJ

KTK, (10)

[Maft,Γ,] = 0, (11)

ίQ.i,Mab-\=\{Γab)^Qβi, (12)

[β«i.7}] = fc/βί

wβw, (13)

{Qai, Qβj} = X«iβf
bMab + Waiβf 7}. (14)

Here ηab is the metric (+ + -\ ) or (+ + + + —), and (9) is just the algebra of
the (anti-)de Sitter group. The spinorial character of Qxi implies (12) with

Γab=UΓaΓb-ΓbΓa); ΓaΓb + ΓbΓa = 2ηabl. (15)

The matrices \Γab are a representation of the algebra (9), and the Γa are the 4 x 4
Dirac matrices for five space-time dimensions. The symmetry of the anti-
commutator (14) implies that

V = xβj«iab *W=wβJj. (16)

It is straightforward to check that the (M, M, M), (M, M, β), (M, M, T), and
(M, T, T) Jacobi identitities are satisfied. Next we consider the (M, Q, Q) identity. It
is satisfied provided that for each ij the structure constants X and W are
numerically invariant tensors of 0(3,2) or 0(4,1), with the indices α and β in the
spinorial and the index pair ab in the antisymmetric tensor (adjoint) represent-
ations. Such numerical invariants are unique up to a constant (the direct product
of two spinors contains the tensor only once) and we get

^«i/u<Λ = ω £ j < Γ Λ C - % , (17)

where C is the charge conjugation matrix in five dimensions which has the
following properties:

Cτ=-C; (Γ.C-1)^ - / C- 1 (ΓabC-1)τ = ΓάbC-1. (19)

We see that of this complete set of 4 x 4 matrices ten are symmetric and six are
antisymmetric. These symmetry properties imply, together with Eqs. (16) that ω is
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symmetric and w antisymmetric,

ω ι7-ω^; w^-w^1. (20)

We observe that in the {β, β} anticommutator the internal symmetry
generators appear in the form

T^wt/T,, T^-T^ (21)

and we will use Ttj rather than 7} to determine the structure of the algebra. For this
we multiply the generators 7} in (10), (11), and (13) with wf/.

Next we analyze the (β, β, β) Jacobi identity. Using Eq. (12), this identity reads

V δ * . 7],] +(cyclic Λi^βHγk),

and uniquely determines the [β, T] commutator to be

[Q«, Tjk] = -2(ω j J .β β f c -ω i k β β i ) . (22)

(Note that the homogeneous equation for [β, T] has no non-trivial solution, as
one may show by taking an explicit representation for C"1.)

Having obtained the [β, T] commutator, we deduce the [T, Γ] commutator
from the (β, β, T) Jacobi identity and finally check that the (β, T, T), (T, T, T), and
(β, M, T) Jacobi identities are satisfied automatically. This concludes the analysis
of the Jacobi identities and gives the full superalgebra in the form

[Mab, Mcd] = ηbcMad + ηadMbc - ηacMbd - ηbdMac, (23)

[ Tφ TkJ = - 2(ωjk Tu + ωu Tjk - ωik Tβ - ωβ Tίk), (24)

[ M f l b , 7 y = 0 , (25)

lQ«i,Mab-]=Urab)/Qpi, (26)

[β«, Tjk] = -2(ωijQock-ωikQO[j), (27)

{βαί? β«} = ω ι7(ΓΛ6 C- %Mab + C-\β Ttj. (28)

The only unknown quantity in this is the symmetric matrix ω whose properties we
shall now proceed to determine.

We first turn to the conditions which follow from the existence of the in-
volution *. Taking the conjugate of (26) we find, using (7),

AjJ(Γab)βv = (ίΓab)/rAβi". (29)

This means that for each fixed i and j, A is an interpolating matrix between the
irreducible representation matrices Γab and (Γab)* and thus unique up to a constant
(Schur's lemma). Therefore A factorizes,

Qpj9 (30)

and the first of the conditions (8) becomes

££*DD* = 1. (31)

We now construct a representation of the Dirac matrices Γa in five dimensions from
the ym and y5 in four dimensions which we take in the Majorana representation,
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and multiply with factors of i such that

0(3,2): Γfc(fc=l,2,3): real and symmetric, {Γk)
2= + 1

Γ4 and Γ5: real and antisymmetric, (Γ4)
2 = (Γ5)

2 = — 1.

0(4,1): Γk (k = 1,2,3): real and symmetric, (Γk)
2 = + 1 (32a)

Γ4: imaginary and antisymmetric, (Γ4)
2 = + 1

Γ5: real and antisymmetric, (Γ5)
2 = — 1.

In this representation one has for 0(3,2) that (Γab)* = Γab, while for 0(4,1) the same
is true except that (Γa4)*= —Γa4. We can now easily determine the matrices C
and D. One finds

0(3,2): D = 1 C - Γ4Γ5 (antisymmetric, real)

0(4,1): D = Γ4 C = Γ4Γ5 (antisymmetric, imaginary). ^ ^

From DD* = 1 for 0(3,2) and DD* = - 1 for 0(4,1) we see that the consistency
condition (31) implies that r 1 f ncx

£ £ * = { - l for 0(4,1). ( 3 3 )

We now take the conjugate of the {Q, Q} anticommutator

and convert it back into {Q, Q], using the reality condition (30). The result should
be Eq. (28) again. This gives us conditions

{EωE% = + (ωυ)*, (ETE% = ± (7J,) = ±(T%, (34)

where the upper sign refers to 0(3,2) and the lower to 0(4,1). From EE* = ± 1 we
get {Eτ)~ι = ± £ f and find the following reality properties

(EώΫ =-Eω, (ETy =-ET (in both cases). (35)

The reality conditions for the remaining [Q, T] and [T, T] commutators should
now be satisfied, since these commutators followed from the Jacobi identities. We
checked this and found agreement.

3. Structure of Internal Symmetry Group

Before going on, we note that one can choose a basis for the Qai such that E is the
unit matrix for the anti-de Sitter case and a symplectic metric in the de Sitter case:

E = \ for 0(3,2)

E={-°i ί ) for 0(4'1}

The proof is given in the appendix.
In the anti-de Sitter case, ω and T are both antihermitian and since ω is

symmetric and T antisymmetric, ίω is a real symmetric matrix, while the operators
Ti} are hermitian, (T^* = Tiy Redefining

e ; =M/ρ α j , (37)
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one finds the same algebra but with ω^ replaced by

coί-MfM/cou. (38)

Hence, with M being an appropriate real orthogonal matrix one can always cast ίω

into diagonal form with p entries equal to + 1 , q entries equal to — 1 and r entries

equal to zero: ω . . = diag(l,..., 1, - 1 , . . . , -1,0, ...,0). (39)

For p + q = N one clearly obtains the OSp(p, q;4) superalgebra with O(p,q) as
the internal symmetry group, see Eq. (24).

For p + q < JV, the T-j (with f and Jrunning from p + q + 1 to JV) commute with
all the generators in the superalgebra but still can be obtained by the {β, Q}
anticommutator. Hence these T j are central charges. The mixed TJj (with
ί = 1,..., p + q), on the other hand, rotate a Qt into Qj and vice-versa, while [ Tφ Tk{\
produces only a Tp Thus the system (Tip Tφ T j) forms a (bosonic) graded algebra
with central charges:

CΆP τkΐ] ~τmn', [ T φ Tkΐ] ~TmH; [Tij9 7£f] = 0

ITφTώ-Tn; [7ϊ;,Γ£r] = 0; [7r/,Γ£f] = 0.

The internal symmetry group is thus a semidirect product of the simple group
O(p9 q) with the nilpotent group generated by the 7]jand T j. We shall call this non-
semisimple superalgebra the inhomogenous lOSp(p,q,r;4).

Turning to the de Sitter case, we begin by noting that the general solution of the
reality conditions for ω and T reads

/ S ίH\ S = complex symmetric
ωij=\-ίHτ S*J if = hermitian

fa ih\ a = complex antisymmetric

ij =\-ίhτ aV h = hermitian, (h^ = hjt.

As a special case which suggests the general treatment, we consider first 5 = 0

and H = 1. In that case the generators Ttj act on Qai li= 1,...,n; n= — I and Qai

as follows rn . a J = 0' ΓO • h-J~2δ 0

Let us expand the generators htj on a complete basis of hermitian nxn matrices λ\-3\

hυ = λ\j Rr Rr hermit ian. (43)

F o r example, if JV = 2, we have λ=l, while for N = 4 one may take

and for N = 6 and 8:

2\ί/2

- I δi}R0
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with k> 1. If the λ^ satisfy the orthogonality relation

M = 2δ w , (44)

one obtains
lQai,RΊ = λijQ«j'> lQ«i,RΊ = -λrjiQaj. (45)

The generators Rr must have the same algebra as the matrices λr. This follows from
the (g, R, R) Jacobi identity, and we conclude that the Rr generate the group

Next we expand the atj on a basis of antisymmetric and real matrices Ofy.

aij = OI

ij(PI + ίWI); P1 and W1 hermitian. (46)

For example, for JV = 25 aV} vanishes, while for N = 4 one may take Oi<7 = εi7 ; for
N = 6 one may take O\} = εk

ip and for JV = 8 one may take O\j = ε ^ with k>l.
Normalizing these Of, to

0i}0jt=-2δ", (47)
one obtains

[Q.,, f ] = - iO)Aj [ββί, w1]=oi&j

In the space Qai@Qai, the operators P7 and WJ act as

[Qβi,P] = (P)0.βfly.,

with the matrix representation given by

% J ^ J (49)
These representation matrices are antihermitian although the P1 and Wι are
hermitian: we conclude that these generators are non-compact.

In the same way one may deduce the explicit matrix representation of the Rr

generators on βαι ®ζ)αι from (46). Splitting the λr

tj into a traceless part Xr

tj and a
trace part proportional to δij9 one finds

(R0)mn = ^3®δmn.

From this explicit matrix representation of the generators Ttj we can now
deduce the group which the Ttj generate. Note that the reality properties of Ttj were
fixed; one can, of course, change the reality properties of P J, W1, R'\ and R° by
redefining P1 = iP1, etc., but this does not affect the reality properties of the Ttj

themselves. Clearly, the λ matrices generate the same group on Q as do the — λτ on
Q. The matrices satisfy the additional commutation relations
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Since {O^O3} and i[p\OJ] are hermitian and i\_O\λτ-λ~\ and {OI,λτ + λ} are
antisymmetric and real, the algebra closes.

This whole structure suggests that the internal symmetry group is O*(N),

which is that complex form of O(N) whose maximal compact subgroup is U ( —

Rather than work these details out any further, we now present a general proof
that the internal symmetry group is indeed O*(N) for any non-singular ωfj . Let
us begin by stressing that one must look at those linear combinations of Ttj which
are antihermitian. Without such a restriction, statements like "the internal
symmetry group is O(p, <?)" are empty, since one can always go to another complex
form where the internal symmetry group is different, e.g., O(p + q). The first
problem to solve is thus: for which λij= -λji are the XijTtj antihermitian. The
solution is given by the following Lemma.

Lemma I. λi}TV} is antihermitian if and only if λij are matrices of 0*(7V).

Proof. O*(N) is defined as that subgroup of 0(JV;(C) which leaves the sesquilinear
antisymmetric form given by E invariant [7]. Since λιj are complex antisymmetric
matrices, they are generators of O(N; C). Using that (7y*= —(ETEτ)ip see Eq.
(34), we have .. .. , ,

(λ»TIJ)*=-λ*«Ei

kEJ

ιTu=-λklTu. (52)

It follows from Eq. (27) that for non-singular ω the Tkl are linearly independent.
We can therefore drop them and multiply by Elm to get

0, (53)

the condition for λ to be generators of O*(N).
N

Let us write the set of generators as λΣ

ιj = — λj\ / = 1,..., — (JV — 1). Our task is

to determine which group the TI = λ1

ιjTj generate. It will turn out to be more
convenient to use the matrices

> (54)

which also form a basis of O*(N) according to the next lemma.

Lemma II: λHj defined in (54) form a basis for the algebra of O*(N).

Proof First note that (]/ω)~ι can be defined by a power series in ω (provided that
ω is non-singular, as we have assumed), and that it is a symmetric matrix. This
implies that the λj are antisymmetric. Next, we must show that (53) holds with λI

replaced by I / 5 i.e.,

1 = 0 . (55)

Using that ω*E = Eω according to (35) we move the first E to the left through the

power series in ω* which is j/ω* ~ ι and the second E to the right through (|/ω)~1.

Then multiplying by ]/ω * from the left and by j/ω from the right one obtains Eq.

(53) which is satisfied as we have assumed that the λι generate O*(7V). Thus the

γω~1λIγω~1 also generate
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We can now prove the main theorem, namely that the antihermitian operators

7} = X/% (56)
also generate the group 0*(N).

Proof. Using (24) one finds that the commutator [Γ/? 7}] reads

= *cu

κTκ, (57)

where cu

κ are the structure constants of O*(ΛΓ), defined by

lλM = cu

κλκ. (58)

Hence, the internal symmetry group is indeed O*(N).

4. The iV = 2 Action with de Sitter Supersymmetry

In the previous section we have obtained superextensions of the de Sitter algebra
0(4,1) for any even N. We now turn to the question whether there exists local
Lagrangian field theories with a related set of local symmetries. To keep the
discussion simple, we only consider the case of N = 2. The N = 2 extended
supergravity model, as in the Poincare and anti-de Sitter cases [8], contains only
gauge fields, namely the vielbein eμ

m, two gravitini ψμ

ι (ί= 1,2) and a photon Aμ.
These fields satisfy reality conditions, namely the vielbein and the photon fields are
real, while the gravitino, being the gauge field associated with the odd charges βαί,
satisfies the symplectic Majorana condition

Ψ^ΨIJC-W (59)

with C~ι = C~i

5 the charge conjugation matrix in five dimensions. [Since the
internal symmetry group is 0(2) there is no significance in the position of indices

U ]
The appearance of the symplectic metric ειj suggests that an acceptable action

may exist. If in the gravitino mass term and its supersymmetry transformation law
the symplectic metric is present, then the variation of the cosmological term b]fg
must cancel against terms involving the square of the symplectic metric (instead of
the square of the unit matrix as in the anti-de Sitter case), thus containing an extra
minus sign. However, one can immediately rule out this possibility because
Ψμ

ιyμvψvjεij vanishes identically, independent of whether the ψι

μ are Majorana or
symplectic Majorana spinors (note that C4 and C5 differ by a factor of γ5 and that
yμvy5 is a linear combination of γμv).

The leading terms in the transformation laws of the fields can be determined,
according to general rules, from the structure of the superalgebra, using the fact
that each gauge field is associated with an appropriate charge. This will be enough
to decide, using the Noether coupling construction [9], whether the complete
nonlinear theory exists.
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The supersymmetry transformation law of the gravitini follows from the
[β, M] and [β, T] commutators (26) and (27) by identifying M5m with Pm, and
taking the vielbein as the gauge field associated with Pm. It reads

= Dμζ
ι + bA/Kj+a3γμC, (60)

where we have identified the gauge field Aιj associated with the internal symmetry
generator Ttj= — Tβ with the photon as Aιj = ειjAμ. The constants b and α3, which
in principle could be fixed from the algebra, will be more easily determined later by
the Noether construction.

The transformation law of the vielbein is found from the {β, β} anti-
commutator. It reads

The bars denote here the symplectic Majorana conjugate (50). Taking ωij = δij,
which is allowed by (41), and evaluating (60) with C" 1 = y5y4, one gets

Note that the symplectic metrics have cancelled (ε2 = — 1). To facilitate the
calculations we can thus use the ordinary Majorana conjugation. Then the
vielbein transformation law (with the conventional normalization) reads

δeμ

m=^ζTψμ\ (61)

In a similar way one arrives at the photon transformation rule

δA^j^ζ'y^ψi, (62)

where q is a constant to be determined.
The Noether procedure gives the following most general form of the action

-J= L = - I R(e, ω)-\ ψ^iD^ώjψJ + b^AQψ{)
]/g 2 λ

\ ^ ^ (63)

+ ax + a2ψ
i

μy
μvy5ψ

i

y

The requirement of invariance of this action under transformations (60)-(62)

fixes all the constants. From the variation of the cosmological term ]/g aγ we get

a1 = -l2a2a3, (64)

while the ψDζ variation gives

a2 = a3. (65)

Thus if a2 were real, we would have a de Sitter supergravity model. (The details of
this are slightly different from the anti-de Sitter case sketched in the introduction.)
However, we must still check the other variations.
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The ψFζ variation tells us to add to the transformation law of the gravitino a
term of the form

^ ^ V V s C Λ , (66)

with an arbitrary constant p. To cancel the terms one must have

ra3 + a2p = 0, ra3 - a2p = - fc|/2. (67)

From the ζψDF, the DζψF and the ζψFF variations, one gets respectively

0, pq=l. (68)
The final result is

p=-q=-r = i, a2 = a3=-—F=, a1 = 6b2. (69)

Since q is imaginary, we find that δAμ is imaginary: we have chosen the wrong
phase for Aμ and must redefine Aμ = iA'μ, where Aμ is taken to be real. Also, a2 and
α3 must be real to ensure the reality of the gravitino mass term and the symplectic
Majorana condition of δ\pμ. This fixes b to be imaginary and everything is
consistent. However, the Maxwell action changes sign by this redefinition, and one
ends up with a photon ghost.

We conclude that N = 2 supergravity can be gauged such that one has a de
Sitter rather than the usual anti-de Sitter model, but the price one has to pay if one
wants to have a real action is violation of positive energy. Although certain efforts
are being made nowadays to show that actions with perturbative ghosts may yield
at the nonperturbative level unitary theories [4], these efforts are at this moment
rather speculative, and we reject, for the time being, de Sitter supergravities.

Appendix

We show that one can choose a basis for the Qai in which the matrix £, defined by
Et

jQaj = E(QJ, with E(Q) given by E(Qai) = D~ \βQ% becomes the unit matrix for
0(3,2) and the symplectic metric for 0(4,1). We shall treat these two cases
separately. Note that if E(Q) = λQ, then λ + 0 and E(ocQ) = (α*/α)/l(αβ). Hence one
can always make λ real and positive.

0(3,2) Case. Pick a Q, and consider E(Q). If E(Q) = λQ make λ positive. From
££* = 1 it then follows that λ = ί. Hence E(Q) = Q in that case. By induction we
complete the proof. Namely, if one has Qu ..., Qk satisfying E(Qi) = Qb then an S
which is linearly independent from these Q's satisfies either

(i) E(S) is proportional to S. Then one can make E(S) = S.
(ii) E(S) is linearly independent of Qi9..., Qk and S. In this case one can take

(iii) E(S) is a linear combination of S and Q's, namely E(S) = λS + aiQi with
λ>0. Acting on it with E one finds S = λ*E(S) + ai*Qi. Hence λ=l and α1 are
purely imaginary. One can take Qk + 1 =S+^aiQi.

Thus, E becomes the unit matrix.

0(4,1) Case. Since now EE* = — 1, one cannot have E(Q) = λQ because iteration
would yield — Q = λ*λQ. Take now an arbitrary Q and construct Q± = Q±E(Q).
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Then E(Q+) = - Q ~ and E(Q ") = Q +. Hence, £ acts on (β + , Q ") as a symplectic

metric. Now suppose one has constructed 2k charges β l 5 . . . , β 2 / t o n which £ acts as

a symplectic metric Ωk= — ισ2(x)lfc. Then, if S is linearly independent from

6iJ jβ2*» a l s o ^(S) will be linearly independent from βi , . . ,β 2 fc a n d S.

[Suppose E(S) = λS + ocιQi. Acting with E once more one would find + S = λ*E(S)

+ 0Li*E(Qi) = λ*λS + Q-teτms, which is impossible.] So one can take

Qik +1 = S + E(S) a n d Qik + 2 = S — E(S). This concludes the proof.
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