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Abstract. We study estimates for the intersection probability, g(m\ of two
simple random walks on lattices of dimension d=4, 4 —ε as a problem in
Euclidean field theory. We rigorously establish a renormalization group flow
equation for g(m) and bounds on the ̂ -function which show that, md=4, g(m)
tends to zero logarithmically as the killing rate (mass) m tends to zero, and that
the fixed point, g*, in d=4 — ε is bounded by const' ε ̂  g* ̂  const ε. Our
methods also yield estimates on the intersection probability of three random
walks in d= 3, 3 — ε. For ε = 0, these results were first obtained by Lawler [1].

1. Introduction

Two Brownian paths in JR4 starting at different points intersect with positive
probability in less than four dimensions, but do never intersect in four or more
dimensions [2,3].

The continuum limit of g0 |φ|4 theory, φ=φ, or ή>=(φί,φ2\ g0>0, is an
interacting theory in less than four dimensions, in the superrenormalizable regime
[4], but is a (generalized) free field in more than four dimensions [5]. Results in four
dimensions remain incomplete, but there are strong reasons to expect that the
continuum limit is trivial in that case, too.

Symanzik recognized the connection between these two facts in his work [6] on a
representation of g0 |φ|4-theory as a gas of Brownian paths with local, repulsive inter-
action. Further work on that connection led to a novel, rather intuitive approach to
scalar quantum field theory to which several people contributed valuable results, in
the past few years. (See e.g. [7] and references therein for reviews of recent results.)

On a more abstract, more heuristic level, much insight into the theory of critical
points in lattice field theories and the related problem of constructing continuum
limits in dimensions close to four has been accomplished by using renormalization
group methods; see e.g. [8] and references given there. In particular, for
go I φ |4-theories, perturbative renormalization group equations predict that, in four
dimensions, the renormalized coupling constant g = g(m) tends to zero like
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I In m I ~ 1 , as the mass m (or, equivalently, the lattice spacing) tends to 0, while in
d=4 — β dimensions g(m) approaches a fixed point g* = 0(ε), as m \ 0.
Unfortunately, it has not been possible, so far, to find rigorous renormalization
group flow equations which would yield mathematical proofs of these facts. It may
be a little interesting, therefore, that, in estimating intersection probabilities of
simple random walks, one can successfully use rigorous renormalization group flow
equations. This is demonstrated in the following. Hence, while it has been shown
already that random-walk methods are powerful tools to study field theory, it is
now known that field-theoretic methods are useful in the study of random walk
problems.

It is worthwhile and amusing to first pose the problem of estimating intersection
probabilities of random walks explicitly as a problem in Euclidean field theory. This
will show how and why heuristic renormalization group methods can be applied to
random-walk problems.

Consider a lattice field theory of two interacting TV-component fields,
φ = (φ1,..., φN) and ψ = (y/1, ..., ψN\ with action

) = Σ ft

Such models were studied from the point of view of ε-expansions by Brezin et al. [9].
Let <(*)> denote the Euclidean vacuum expectation for the theory with action

,ψ) given by (1.1). We define a susceptibility χ as

1= Σ<ΦoΦί

x> = Σ<Ψ*Ψ*>> (I-2)

the physical mass, mphys, as the exponential decay rate of <</>J<^> in |x |, and
physical coupling constants g and g' by

£= -w 4 χ" 2 ^phy S ? /= -ύ'4χ~2md

phys, (1.3)

where
«4= Σ <Φ1

0Φ
1

x;ψ
1

yψl>,
x, y,z

«;= Σ <tfo; #;#;#>,
x, y,z

and <^ ^42 5 •) denotes a connected expectation. In [9] renormalization group
fixed points for g and g' have been computed as functions of TV, to first order in
β ="4 — J. The result is:

,= / φ =g 9 g ~
TVε_

2N(N+8)-ί6(N-ί)9 ~27V(7V+8)-16(TV-l) ' '

Thus g'* and hence g' tend to 0, as TV -»0 [in the domain of attraction of the fixed
point (4)]. In the limit 7V= 0, the flow equation for g as a function of mphys = m is
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given by

= β(g\ where β(g) = - εg + 4g2 + 0(g3). (1.5)

(Note that the roots of β are g = 0, g = g*, to first order in ε.)
Surprisingly, the N-+Q limit of the theories considered here is a theory of

Brownian paths with a local, repulsive interaction between any two paths. For the
lattice theory this is easy to understand: Following [10] one may use a random- walk
representation of that theory to show that

mN,g'0-+0

= Σ Σ ί ί Π *£, (0 Π^ (̂ ) exp(-goΣ £4 Λ (1.6)
P» βω,,. . . ,ω β

 ί = ί J=1 \ x *>J /

where the (nearest-neighbor) walks ωt, / = 1,..., n have endpoints xp(2i-i)>
with α p ( 2 ί _i) = αp(2ί), and, similarly, the walks ωj connect yq(2j-i) to j>€(2j ) , where
^(2 -1) = βq(2j) P and 0 are paitings of {1, . . . , 2n}9 {!,..., 2A:}, respectively. The
lattice fields ί l = {tl

x}xez

d an<l ^ — {4}χez
d are waiting (or local) times associated

with φ and ψ, respectively. Their a /?π'0π-distributions are given by

dv™(t) = Yl dvnχ(ω}(t^) exp(- (2d+ m2) tx),
xeZd

(1.7)

and wx(ω) is the total number of visits of ω at the site x.
It should be noted that for the lattice g0|φ|2|ψ|2-theory in finite volume an

analytic interpolation in TV follows immediately from Symanzik's representation
[6,10], and a rigorous proof of (1.6) is a straight-forward consequence of the
formulas in [10]. This has first been noticed in [11]. Important special cases of (1.6)
are:

(i) Gm(x9y)= lim <<^<#>= lim <<//χ>
ΛUO-»0 W,g0->0

= Σ ί<κχo= Σ £ i ω | + 1> (i 8)

where ξΞ(2ί/+m 2)~ 1, |ω| = Φ jumps of ω. This follows directly from (1.6)
and (1.7). The right-hand side of (1.8) is well-known to be the Green's function of
— A + m2, where A is the finite difference Laplacian. From (1.8) and the simple
identity

mX= Σ ίd
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we infer that dv™(t) is the waiting-time representation of the discrete analogue of
Wiener measure with killing rate m.

(ii) G£,,,0(*i,*2;JW2) = lim <φ^ φ^; «>
N,g'0-*0

= Σ ffΛsαx wuf,*), (i.9)

where

Note that
/,0(M) = 0, (1.11)

unless ω and ω' intersect each other somewhere, in which case — 1 < Igo(t, s) < 0,

i.e. the functions expl — goΣ^Ό describe local, repulsive pair-interactions
\ * /

between random walks. By (1.9)-(1.11)

with χ = Σ Gm(0, x) = m 2, is proportional to the intersection probability between
Λ;

simple random walks with killing rate m. The actual intersection probability is
obtained from (1.12) by letting g0 tend to + oo:

where, by (1.7), (1.9), and (1.10),

P(09x)= χ~2 Σ <J'ω '+ 'ω / '+ 2%(coπco /φ 0). (1.13)
ω: 0 -»
ω': x -»

This is the intersection probability for two simple random walks, ω and ω', starting
at 0,#, respectively. Since P(Q,x) is a pure number, and m has the dimension of
[length]"1, the average intersection probability is given by

) = g(™)L.oo. (1-14)

If (1.5) were rigorously valid we would conclude that

g(m) ~ l logral" 1 , as m\0, for d=4,
and (1.15)

g(m) > g* = const ε, for d = 4 — ε.
-
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We note that, in the sense of dimensional analysis *), d is a continuous parameter,
and it is quite clear what is meant by Z4~ε. More rigorously, one may fix d, e.g.
d= 3, and study intersection probabilities for walks with jumping probabilities

Pχy=-[(-A + m2γ]xy, x*y, (1.16)

withO<y <1. We note that PX},>0, and [(-zJ + m2Γy]xy = Σ Pωίlωl + \ where
ω' x -» y

ξ = [(-A + m2)y]-χ

1, Pω= Π Puy. Then </=4, y = l is easily seen to be
(u, v)eω

equivalent to d=d0, y = d0/4, e.g. d=39 7 = 3/4, in the sense of dimensional
analysis. Moreover d= 4 — ε, 7 = 1 corresponds to d= 3, γ = (3 + ε)/4.

We now summarize how much of (1.15) can be proven rigorously, using a
rigorous version of the flow equation (1.5):

A) In four dimensions,

c 2 | lnmΓ 1 (1.17)

for small m.

B) In d= 4 — ε dimensions, there exists a non-trivial fixed point g* = lim g(w),
with m^°

c 3 ε^g*g c4ε (1.18)

/or smfl// ε .

Here cl9 ____ 9c4 are finite, positive constants.
Similar results can be proven for the probability of intersection in one point of

three random walks, with d=4 replaced by d= 3; see also [1].
The lower bound in A) is due to Erdos and Taylor [3]. The upper bound in A)

was first proven by Lawler [1]. In this paper we present a simple proof of it,
motivated by the field-theoretic arguments leading to (1.5).

Our paper is organized as follows: In Sect. 2, we recall the proof of the lower
bound on g(m). In Sect. 3, we derive estimates on the β- function which imply the
upper bounds on g(m). Our estimates are based on the results of Sect. 2. In Sect. 4,
we sketch some extensions of our results and draw conclusions.

2. The Lower Bound

The lower bound (1.17) on the average intersection probability was proven in four
dimensions by Erdos and Taylor [3]. We present here a variant of their proof of this
result, due to Sokal [12]. [For another proof see also Sect. 4, (a).]

Theorem 2.1. In four dimensions

1 X \ (2.1)

1 I.e. naive power counting



116 G. Felder and J. Frδhlich

In d= 4 — ε dimensions
g^c3ε. (2.2)

The proof of this theorem rests on the following ("skeleton"-)inequalities.

Lemma 2.2. There exist constants d1 and d2 such that, for small ra,

Gm(0,z)Gm(z,x), (2.3)
z

- 2 G G z - W ^ Σ Gm(0,Zl)Gm(Zί,z2)
2Gm(z2,X)\

n\m) z^Zϊ /

(2.4)

where

Proof of Lemma 2.2. In order to prove the upper bound, we note that

z). (2.5)

Splitting the walks ω and ω' at the site z and re-summing over all resulting walks
yields

O,z)Gm(z,x), (2.6)
z cα^ 0 -»z i = 1 z

ω2: z -» jc
ω3: z -»
ω4: z -»

and we have used that

x = m-2 = £Gm(Q,z)= Σ ξH + i . (2.7)
z ω: 0^

In order to prove the lower bound, we choose some sublattice, L, of Zd. Then, by the
inclusion-exclusion principle,

^ Σ Σ m4ξM + lω'l

LzeL ω: O
ω': x -

2T Σ Σ m*ί |β|+"D' | 1 2χ(ωnω'nL3z1,z2). (2.8)
z t,z2 ω: 0 -» •

ZiΦ^eL co': x -»

The probability that a walk ω starting at x hits a site j; is given by

gm(χ,y)= Σ ^2^ |ω|
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Thus

zeL z l f * 2 eL
Z!φ*2 (/ ΛJ

It is convenient to choose L to be a percolation lattice, i.e. we assign a probability />
that a site t is in L and a probability (1 —p) that ^φL. Taking the expectation value
on both sides of (2.9) we obtain

P(0,x) ̂  (Gm(0,QΓ2P ~ Gm(0,OΓ4p2B(m))ΣGm(0,z)Gm(z,x)
z

- Gm(0,0)-y Σ Gm(0,z1)Gm(z1,z2)
2Gm(22,x), (2.10)

*l,Z2

which is equivalent to (2.4) if we choose

p = y? < 1, for /w small enough. D (2.11)

Proof of Theorem 2.1. Inserting (2.10) in the definition (1.14) of g(m) and using
(2.7) we get

*-4. (2.12)
D\m)

But since

B(m)'

ln(-), d=4

1
-m
ε

(2.13)

the theorem is proven. [See also Sect. 4, (a).] D

3. The Upper Bound

We now turn to the main part of this paper: The proof of the upper bound on the
intersection probability. Our proof is based on the following lemma, which relates
the β-function to the average probability that two independent, simple random
walks starting at the same point both intersect a third walk. We set g — g(m).

Lemma 3.1. In d= 4 — s dimensions, ε ̂  0,

where

φ). (3.2)
ωι:0-
ω,:0-
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Proof. Starting from the definition of g,

ω: 0-» ™
ω': -»

we calculate the derivative, using —- = —2ξ2m. Thus
dm

2md + β Y (|ω| + |ω'| + 2)ξM + ̂ +3 χ(ωnω' φ φ)
ω: o-, -
ω': -»

= (d+4)g-4md+β £ (|ω| + l)ξH + ι»'i + 3 χ(ωnω'φφ), (3.4)

since we can interchange ω and ω'. Note that | ω | + 1 is the number of points that ω
hits (counted with multiplicity). In each of these points we can split the walk ω into
two independent walks ω1 and ω2 . We thus have (with ω' = ω3):

m^L = (d+4)g-4rtl+6Σ X Π ξ | ω ί l + 1^(ω1nω3φφ or ω 2nω 3Φφ).
dm z ωι:0->z i=l

α>2:^ π .,
ω3: -> V^ ̂

A moment of reflection shows that

χ(ωl nω3 φ φ or ω2 nω3 φ </>) = χ(ω! nω3 φ φ) + χ(ω2 nω3 φ φ)

— χ(ωi nω3 φ φ and ωx πω3 φ φ). (3.6)

Inserting this identity on the right-hand side of (3.5) we have, after translation of z
to the origin,

X fl £K I + 1*Kna>3 Φ φ) χ(ω2nω3φφ),

where the term — 8^ on the right-hand side of (3.7) results from the first and second
term on the right-hand side of (3.6), by re-summing over ω29coί9 respectively, and
adding the two contributions.

We now proceed to proving our main estimates.

Theorem 3.2 In four dimensions,

g(m)^c2\\κm\-ι. (3.8)

In d =4 — ε dimensions,

g*^c4s, (3.9)

where g* = limg(ra).
w \ 0
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Proof. Defining

) — = - , (3.10)

we need a lower bound on β(g, m), in order to obtain upper bounds on g(m) and g*9

by integrating (3.10). By the Schwarz inequality,

, + !/ 2 V ,1 1 + 1 / +^2

ω3ι + i j wι ^ ζ|ω| + 1χ(ωπcθ3 φ φ)
\ ω:0

| ω ) + |ω|+2 Y_ 2

ω^->. 3 /ω:0->

and we have used that

m —I — ( L
\ω:0->.

We define BR= {xeZd\ \x\ ̂  R} , and use the Schwarz inequality once more. This
yields

A ™~d / \2

, (3.12)

where | BR\ denotes the number of sites in BR. In order to compare md

xeBR

0,x\ we need an upper bound on P(0,x), for | x | > Λ : For

x = (x1 , . . . , xd) eZd, let xα be the coordinate of x with the largest absolute value.
Thus \XΛ\ ^ d~1/2\x\. Let πx be the lattice plane perpendicular to the α-axis and
intersecting that axis in the point [xJ2] ea , where [a] is the largest integer ̂  α, and ea

is the unit lattice vector in the α-direction. We now recall that P(Q, x) is the probability
that a random walk ω starting at 0 and a random walk ω' starting at x intersect in a
common point of TLd. This probability is clearly bounded above by the probability,
R(Q, x), that either ω hits the plane πx , or ω' hits πx . (For if neither ω, nor ω' hit πx ,
then ω and ω' will always be on different sides of πx and hence never intersect.) Thus

P(0,x) ^ R(0,x) ^cT(Q9x), (3.13)

where

,x) = Prob{ω|ω:0^ , ω hits πx}

(and c = 2 if χΛ is even). Now, T(Q,x) can easily be calculated explicitly:

,*) = Σ [Gm(0,z
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By using the Fourier representation of Gm and the calculus of residues to carry out
the momentum space integration we find

(3.15)

Thus P(Q,x) ^ cexp (—cm\x\)9 from which we get

md Σ P(^x)^Ce~£mR

9 (3.16)
\x\>R

for some finite constants C and c.
We now discuss separately the cases d= 4 and d= 4 — ε.
(i) For d= 4, we choose

2C" l l (3.17)

where c^ is the constant appearing in Theorem 2.1, and c, C are the constants of
estimate (3.16). Then, by (2.1) and (3.16),

m4 Σ P(^x)^c1(2\lnm\Γ1 ^^g, (3.18)
\x\>R ^

and thus A
:)^* (3.19)

With.(3.11) and (3.12) this yields

m — = β(g, m) ̂  constg2(In\lnm\)~d, (3.20)
dm

and after integration,
I In m\

g(m)~l - g(mo)~^ ^ const J dτ(lnτ)~d. (3.21)
| lnm 0 |

Since the right-hand side of (3.21) diverges, as m\ 0, we conclude that

*, (3.22)

in particular g(m) -> 0, as m -> 0.
With more effort, one can improve (3.22) and show that g(rri) ^ <

(ii) For d— 4 - ε, we choose in (3.16)

__ _M /2C\

Then

md Σ ^(0>*) ̂  yε g -g, (3.24)
|x|>Λ ^ 2
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by Theorem 2.1, and hence

m J^ const g 2 | lnεΓd-εg, (3.25)

or

—^-^εg-const^llnεΓ". (3.26)
a \ In m \

limg(m) = g*^c 4 ε |Γnε| d . (3.27)
m\0

Note added in typescript. We now briefly outline how to remove the factors (In | In m |)4, | In ε |d,
respectively, by sharpening the bounds (3.12) and (3.16). Our argument is somewhat inspired by
one used by M. Aizenman in his independent work on closely related problems. (We received his
preprint after completion of the first draft of this paper.)

The simple estimate

where πx is the plane defined after (3.12), implies, by the Schwarz inequality,

*

where use was made of the symmetry under interchange of α^ and ω2. The

denominator is just mdΣT(Q,x) ^ const, by (3.15), and since
X

χ(cΰ! nω2 φ φ) - [χ(ωx nπx φ φ) + χ(ω2 nπ,

we get the lower bound
(3.30)

(Cd is a positive constant), which, upon integration, yields the claim of the
theorem. D

4. Extensions and Conclusions

The following results can be established by using the techniques developed in our
paper:

(a) In (1.9) we have defined a connected four-point function for the
go I Φ 1 2 1 Ψl 2-theory, for finite values of g0, in the limit N-* 0. We have noted that,
for finite g0,

PjO?;c)= -m4^G^go(0,y;x,z) (4.1)
y, z
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is proportional, but strictly smaller, than the intersection probability, P(0, x). Since

the function — Igo (t9 s) = 1 — exp ( — g0 Σ tx

 s

x ) is monotone increasing in g0 , we
\ x /

conclude, using (1.9)-(1.11), that

P0 (0,*) is monotone increasing in gθ9 with
(4.2)

limP,o(<U) = 0, limP,o(0,x) = P(0,x).
go\0 go Sco

Clearly

- 7J/, s) ̂  - Ig,(t, s)^g^tzsz-
g-^- Σ tzι tZ2 szι sZ2 , (4.3)

Z *ι,*2

For arbitrary g'0 g g0 . By the splitting lemma of [13], this yields

~ Σ σ«(o,zι)σm(z1,z2)
2σ111(z1>je)

^1,^2

~^Σ GL,(0,z1)C?Il l(z1>z2)
2Gm(z2>*). (4.4)

^1,^2

By choosing g'0 = B(m)~1g0, we obtain

Σ 6^(0,zj G(zl9Z2)2Gm(z2,x), (4.5)
,m) Zlt22

with B(πi) as in Lemma 2.2.
For g0 small enough, this lower bound has the desired feature. But, since

P0o(0, x) is monotone increasing in g0 we have an adequate lower bound for all
values of g0. Thus, Theorem 2.1 holds in this more general situation, too. It may be
checked without difficulty that the results in Sect. 3 extend to the full range of values
of g0 j as well.

Let Pφ(m) be the probability that two simple random walks starting at the origin
never intersect after the first step. Lawler [1] has studied this quantity which
provides a useful notion for the study of triviality of gφ* theory. He has proven that

and
mε/2

? d=4-ε

These results can be recovered, in our formalism, from the following straight-
forward estimates.

,0)^l -B(m)Pφ(m),
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providing the lower bound, and

Pφ (m)2^ const w4~dg(ra),

which, with the estimates on g(m), yields the upper bound.
In the context of the Edwards model closely related bounds were proven in [14].

It would be interesting to calculate the exact behaviour of Pφ(m\ as ra\0. A
heuristic argument (based on an approximate flow equation for Pφ(m)) suggests

g
that, in d= 4 — ε, Pφ(m) ~ ma, with- < α < ε. We thank A. Sokal and T. Spencer for

very instructive discussions on the results reported in this paragraph.
(b) The results of Sects. 1-3 can be generalized to include estimates of the

probability that n simple random walks ω1 , . . . , ωn intersect in a common point of
Zd, n = 3, 4, . . . . This problem, too, may be posed as a problem in Euclidean field
theory by considering a lattice theory with action

, (4.6)
xeZ" U

By the methods of [6, 10], the limits

Gϊt9βo(xι,x'1',...;xn,x'n)= lim ^^<ΦlXίΦι.X(l"ΊΦlXuΦn,X'uy (4 7)
£0->CO #->0

can be shown to exist, and the average intersection probability gn(m) for n walks is
given by

Σ jΓ"<£,Λ(*ι,*i; •••;*,,,*;,)• (4-8)

From these formulas it follows that the upper critical dimension is du = 2n/(n — ί),
in particular, for n = 3, du = 3. For d=du, we have

gn(ni)~ \\ogm\-i, as m\0, (4.9)

as was first proven by Lawler [1]. Moreover, for a fixed value ofn, one can estimate
the behaviour in dimension du — ε, with ε small. Our results suggest that there may
be no non-trivialg0φ

6-theories in three dimensions, and that the violations of mean-
field theory in tricritical point theory in three dimensions are logarithmic.

(c) Techniques related to the ones we have developed in this paper do also
extend to theories like the — g0 tr(φ3) model, where φ is a hermitian N x TV matrix-
field, in the limit N-+ oo. For this model, one can establish, for example, asymptotic
freedom (β < 0), for d ̂  6. However, the consequences of our results are not terribly
spectacular. A more interesting application concerns intersection probabilities of
branched polymers without self-interactions: We can prove that two branched
polymers without self-interactions do not meet each other, in the limit where the
correlation length diverges, with probability 1 in d^. 8, and we have fairly sharp
estimates for the intersection probability in dimension d= 8 — ε. Precise statements
and proofs will appear elsewhere.
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Conclusions

We believe that the results and techniques reported in this paper have, at the very
least, some pedagogical value: They show that renormalization group flow
equations can, sometimes, make rigorous mathematical sense and yield precise
results. However, the idea to use rigorous renormalization flow inequalities to
analyze the critical behaviour of lattice models may turn out to actually have a
much wider range of applications than the ones considered in this paper. In fact,
this is suggested by results (c), above.

We have been informed that Michael Aizenman has also obtained results on
intersection probabilities of random walks, using a β-function approach apparently
related to ours.

Acknowledgements. We are indebted to D. Brydges, K. Gawedzki, T. Spencer, and K. Symanzik
for very helpful discussions about different topics related to this paper. We are especially indebted
to A. Sokal for sharing many insights with us and for permission to describe an unpublished proof
of his.

This paper is dedicated to the memory of K. Symanzik, on whose deep ideas it is based.
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