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Abstract. The supergravity torsion and curvature constraints are shown to be a
particular case of constraints arising in a general geometrical situation. For this
purpose, a theorem is proved which describes the necessary and sufficient
conditions that the given geometry can be realized on a surface as one induced by
the geometry of the ambient space. The proof uses the theory of nonlinear partial
differential equations in superspace, Spencer cohomologies, etc. This theorem
generalizes various theorems, well known in mathematics (e.g., the Gauss-
Codazzi theorem), and may be of its own interest.

1. Introduction

In a previous paper [1] we studied the geometry of various superspace formulations
of N = 1 supergravity. We considered a well-known family of supergravity models
labelled by a parameter ζ, and found that different approaches to supergravity are
connected with a general geometrical problem. Suppose one has a space endowed
with a fixed geometry of some type. Then, given some surface in this space, one can
define the internal geometry of the surface, induced on it by the geometry of the
ambient space. The relevant general definition of induced geometry uses the
language of G-structures (see refs. [1,2]; the present paper is not completely self-
contained, but uses the notations and conventions of ref. [1]).

In this paper we prove a theorem (Sect. 2) about the necessary and sufficient
conditions that the given G'-structure on a manifold can be realized on some surface
as one induced by the trivial G-structure in UN. In general, this problem amounts to
the question whether a certain system of nonlinear partial differential equations has
a solution. The theorem describes the conditions of the formal integrability
(Appendix B) for that system in a convenient form of constraints on the internal
geometry. There is, in general, a chain of integrability conditions of increasing
orders. The number of non-trivial ones, which is always finite, is controlled by
certain Spencer cohomologies (Appendix A) related to the problem.

Thus, we shall see that a G'-structure corresponding to induced geometry is not
arbitrary, but satisfies certain constraints. It turns out that the supergravity torsion
and curvature constraints are just of that nature. In refs. [1,2] it was shown that in
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supergravity one also encounters induced structures. In ref. [1] we have given, for
each £, formulations of supergravity in terms of induced SCR(£)-structures. The
SCR(Q-structures arise on real (4|4)-dimensional surfaces in complex superspace
C4/4, when it is endowed with the trivial G(C)-structure. For the sake of these
formulations to be self-contained, the constraints on induced SCR(C)-structures
must be stated in terms of internal geometry. The following constraints were claimed
in ref. [1], where they were shown also to be equivalent to the usual supergravity
constraints in the Wess-Zumino approach. The torsion of an arbitrary connection
in an induced SCR ©-structure satisfies

7 ^ = 0,7^ = 0 i f ζ = o o , a l s o T j , - Γ ^ = 0. (1.1)

If we choose now a connection which obeys additionally

= ±taδ
Λ

β (ta=TδJ, (1.2)

j = ίβ i f ί ^ l , o o

Γ α = - ία if ζ = oo

lTa = tΰc = 0 ifζ = l,

then, for an induced SCR(()-structure with ζ ψ oo, the curvature satisfies

« J . / y = 0. (1.3)

In the present paper we derive (Sect. 3) these constraints from our general theorem,
and prove, by investigation of relevant Spencer cohomology groups (Appendix E),
that they are not only necessary, but also sufficient.

In what follows the superspaces will not be always referred to explicitly, but the
corresponding generalizations will be obvious. As usual, one has only to take care of
correct signs under the (anti) symmetrization of tensors in superspace. For example,
if tAB is a second rank tensor, then (no summation)

and similarly for higher rank tensors. Here the symbol ( — ) Λ B means minus one,
when the indices are both fermionic, and plus one otherwise.

2. The Basic Theorem about the Induced Structure

Let us consider the manifold UN, endowed with the standard trivial G-structure, and
an M-dimensional regular surface in UN (see [1]). If yά(ά = 1,..., N) are the standard
coordinates in UN, this surface is given by yά = f\x\ with xm(m = 1,..., M) some
coordinates on it. According to ref. [1] we have a G'-structure induced on the
surface. This structure is determined by the frame field e™(x)9 a, m = 1,..., M, which
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satisfies the following relation

δβί}-eΐ(x) = gl(x), (2.1)

with gά

b(x) being the M x N part of some N x N matrix function g\(x) with values in
G. Conversely, suppose we have some G'-structure represented by a frame field e™(x)
on an M-dimensional manifold M. This G'-structure is equivalent to an induced
structure if there exists a map, yά = f\x), of Jί into IR* satisfying the differential
equation (1). The requirement of the compatibility of Eq. (1) poses some constraints
on the G'-structure in Jί. To describe the necessary and sufficient conditions of
compatibility we need the following definitions.

Let g be the Lie algebra of the group G c: GL(N, U). The algebra g consists of
N x N matrices corresponding to linear transformations of the vector space UN. It
will be convenient to denote this vector space by W, in order to distinguish from the
other cases, when UN appear in our considerations. Let k be an arbitrary non-
negative integer. One defines g(fc), the feth prolongation of g, as the space of tensors
4i...dk+1 i n W, symmetric in the indices ίl9 hk + x, and such that for any fixed values
of $2,...,$k + 1 the matrix t$lmmjk+1 belongs to g. Thus, for instance, g(0) = g. Now we
define g^ as the formal sum of linear spaces1

where we set g(~1} = W.
The space g^ has the natural structure of a Lie algebra with the following

property. If X, Y are homogeneous elements of g^, that is Xe${k\ Γeg(/) for some k
and {, then [X, y]eg(fc+^. To describe explicitly the relevant operation [,] let us use
the following correspondence. For every Xegik~ υ , k ^ 0, one can construct a vector
field on RN with the following homogeneous feth order polynomials as the vector
components

Here (yd)e[RN, while ί̂  hk are the tensor components of Xeg^"1*. For an arbitrary
element XEQ^ one has in such a way a formal power series Xά(y) which is a formal
vector field X(y) on IR .̂ We identify the vector fields on UN with first order
differential operators: X(y) = Xά(y)d/dyά. According to the definition of g^, a formal
vector field X on IR^ corresponds to some element X of g^ if and only if it satisfies

3, (2.2)

order by order in y. It can be easily seen that the set of vector fields satisfying Eq. (2)
is closed under the usual commutator and that the resulting operation [,] in g^
obeys [g(k), g°°] cz g(/c+<l. Let us remark that g^ has, in particular, the subalgebra g(0),

1 i.e. the linear space of formal sums X _ 1 + X 0 + Z 1 + X 2 + , where Xkeg,(k) and the number of non-
zero terms may be infinite
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which coincides with g, and the subalgebra g(~1} + g(0), which is the semidirect sum
of the Abelian algebra W and the algebra g acting on W.

We denote by G^ the group corresponding to the Lie algebra g^. This group will
be described below in terms of formal power series on UN.

Now, if e™, α, m = 1,..., M is a frame field representing a G'-structure in Jί, let
ea = ea

m{x)dxm be the corresponding coframe field. Then we define on Jί the 1-form
field Θ with values in W as follows:

Θά = δά

be
b (2.3)

(i.e. we prolong ea to Θά, taking Θa = 0 for a' = M + 1,..., N). We are ready to state
the following:

Theorem. .4 G'-structure in Jί is equivalent to the structure induced on a surface in the
space UN by the trivial G-structure in UN (i.e. Eq. (1) has a solution) if and only if
there exists on Jί a 1-form field Ω = Ωm(x)dxm(m = 1,..., M = dim Jί ^ N) with
values in g^, satisfying the following conditions

Ω(~v = Θ, (2.4)

dΩ+\\Ω Λ β ] = 0 . (2.5)

Here Θ is connected with a coframe e9 admissible for the G'-structure in view, by the
relation (3);ί2(fc) denotes the g(fe)-component of Ω in the decomposition g^ = £ 9(fc),

k

while [Ω A Ω~\ in Eq. (5) denotes the usual operation on the Lie algebra valued
forms.

We remark that the criterion stated in the theorem is self-consistent, that is it
does not depend on the choice of the frame field e%(x) (coframe field ea\ for the
following reasons. Condition (5) is nothing but the requirement that the gauge field
Ω has vanishing curvature (strength). For every x-dependent G'-rotation of e™(x) we
can find a G-gauge transformation of the field Ω, which preserves (4). Then condition
(5) will be maintained as well. (Note that G is the subgroup of G^, corresponding to
the subalgebra g(0) = g of g^.)

Let us show first that the G'-structure induced on the surface yά — f\x) in UN

necessarily has the property described in the theorem. Equation (1), determining the
induced structure, can be rewritten using the previous definitions

dfΛ = $Θ\ (2.6)

Now there is a g^-valued 1-form Θ defined as follows:

Ωik) = 0 for k> 0,

where the indices have been suppressed. From (6) it is obvious that this 1-form Ω
satisfies (4). One can check in a straightforward manner that Ω satisfies also Eq. (5).
Instead one can observe that the so-definedί2 is merely a pure gauge/2 =h~x dh with
a Goo-valued gauge function h(x). Then condition (5) becomes trivial. (Although in
this case h(x) can be chosen to lie for all x in a subgroup of G^, corresponding to the
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subalgebra g(~1} + g(0), there may be some other pure gauges, which need not have
such a property, but do satisfy (4).)

Let us inquire whether the existence of a field Ω, obeying Eqs. (4) and (5), is also
sufficient for a G'-structure to be induced. The above consideration suggests the
following arguments. Let us suppose first that the Lie algebra g is of finite type, that
is g(p) = g>ip+1] = "- = 0 for some finite p. Then the algebra g^ and the corresponding
Lie group G^ are finite dimensional. If there exists a field Ω satisfying the conditions
of the theorem, then in the case of a finite dimensional Lie group G^ the vanishing
curvature requirement of Eq. (5) leads to a well known conclusion that this field ί2 is
a pure gauge. In other words,

Ω = h~1dK (2.7)

where h is a function on Jί with values in the group G^. For an arbitrary group G
this statement will be proved in Appendix C. Thus we proceed here with a general G.
To complete the proof of the theorem we have to show only that the existence of a
field Ω, obeying Eqs. (4), (7) for a G'-structure on Ji, implies the existence of a
solution to (6).

To make the meaning of (7) clear we have to consider the structure of the group
Goo m more detail. As it was already mentioned, cj^ may be thought of as a Lie
algebra of formal vector fields on IR^ satisfying condition (2). Such vector fields form
infinitesimal automorphisms of the trivial G-structure in UN (cf. [1,4]). Therefore the
group GQO consists of formal transformations of MN, which can be represented as
yά -• φ\y\ where φ\y) is a formal power series obeying

(y))eG. (2.8)

The group G^ is thus the formal analog of the group Γ(G) of automorphisms of the
trivial G-structure in UN (cf. [1,4]).

Let xt(x,y) correspond to the c^-valued l-formί2 = ΩJx)dxm

9 as explained in
the text before the theorem. Then condition (7) means that there exists an x-
dependent element /φ^eG^, which corresponds to such an x-dependent transform-
ation yά-+φ\x,y) of UN, that

(2.9)

where φ~x is the inverse of φ at each x. Since (φ~1(x, φ(x,y))f = yά, we have

After the substitution into (9) we obtain

^ (2. I
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Remember that Xά

m(x,0) = Θά

m(x\ due to (4). Taking into account (8) we see that
Eq. (10) at y = 0 gives just the desired relation (6) with

p>±ά

gl(x) = yI(x,0), fά(x) = φά(x,0).

We find that Eq. (7) does imply the existence of a solution to Eq. (6). This completes
the arguments.

To conclude this section, a few remarks concerning the general situation may be
useful.

Let us denote the left-hand side of Eq. (5) by R00=dΩ + \[Ω A β ] . The equation
R00=0 turns out to be an infinite set of the conditions R(k) = 0, k = — 1,0,1,2,....
Here Ro0=Σ R(k) is the decomposition of the 2-form R^ with values in g^ = £ g(/c).

k k

Using the matrix notations for Ω = £/2(/c), β ( - 1 ) =Θ, we have explicitly

+ β ( 0 ) Λ fl(0) + f l ( i ) Λ Θ = 0 e t c (2.11)

To find out whether the field Ω satisfying the conditions of the theorem for a given
G'-structure exists, one may try to solve the equations Ri~1) = 0, K(0) = 0,...,
successively with respect to β ( 0 ) , β ( 1 ) , etc. Then one has to find at first such a 1-form
β ( 0 ) with values in g(0) = g, that dΘ + β ( 0 ) A Θ = 0 holds. It is clear that dΘ must
obey certain algebraic conditions at each point, in order to ensure the existence of a
solution Ω{0\ Consequently, the G'-structure under consideration must satisfy
certain conditions on the first derivatives of the frame field e^x). (Remember that Θ is
connected with e™, as described before the theorem.) Suppose such a field Ω(0) exists.
Now one has to findί2 (1) = (Ω ά

hό), the 1 -form with values in g( 1 \ such that R{0) = 0 holds
true ( β ( 1 ) Λ Θ in (11) must be understood as Ω\t A Θ C ) . The requirement of the
existence of such a field β ( 1 ) clearly amounts to certain conditions on the second
derivatives of e%(x) at each point, and so on. At first sight we obtain in this way an
infinite chain of the integrability conditions for Eq. (1) of increasing order. However,
only a finite number of these conditions is non-trivial. As is explained in Appendix C,
when we solve the equations R(~1} = 0, R{0) = 0, etc., successively, we have to deal at
each step with a sort of cohomology equation. The obstructions to the compatibility of
these equations lie in certain Spencer cohomology groups Hk2 (gF), which are
generally vanishing for k sufficiently large.

The resulting finite number of the integrability conditions on a G'-structure can be
formulated as constraints on the so-called structure functions. The conditions of the
first and second order amount to certain constraints on the torsion and the
curvature in the G'-structure. It may occur that the higher order conditions are
trivial. This is just the case, for example, in the classical problem of the induced
Riemannian metric on a surface in Euclidean space. This situation is described by
the Gauss-Codazzi theorem [4,5], which turns out to be a particular case of the
theorem stated in the present section (see Appendix D for details). Fortunately, in
applications to N = 1 supergravity it will be also sufficient to consider the conditions
of first and second order only.
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3. Deriving the Torsion and Curvature Constraints

Here we shall show that the supergravity torsion and curvature constraints (1.1),
(1.3) follow from the theorem of the preceding section2.

The following notations will be used. We consider a real (414)-dimensional
manifold Jt and an SCR(()-structure in it, assuming the relevant definitions of
ref. [1]. Let eΛ = dxMEi[{x, 0, θ) be an admissible coframe field, with

χM _ (χm? βμ^ gμj b e jng coordinates in M. The coframe may be thought of as a vector-
valued 1-form, e = (eA), which takes its values in a real (4|4)-dimensional vector
space V. It will be instructive to identify V with a real subspace of the complex vector
space W = C4'4. If zA = (za, θ\ φή) are the complex coordinates in W9 we set V to be a
subspace defined by the following equations:

za = (z f l)*, θa = (Φά)*, Φή = (θπ)* (3-1)

After such an identification one may consider the coframe 1-form as taking values in
the space W, or, rather, denote the resulting W-valued 1-form field by Θ. The
components of Θ that correspond to coordinates in W are complex valued 1-forms,
which we denote, along with their conjugates, as follows,

(βλ) = {ΘA; Θ*) = (Z\Θ\ Φή; Zα, Θ\ Φπ). (3.2)

Here the index A = (A; A) = (α, α, π; α, ά, π) refers to coordinates zλ = (zΛ, z\ where
zΆ = (zά, W, ψπ) are the complex conjugates of zA = (zα, 0α, φή). We have just defined
a W- valued 1 -form (2) in terms of a coframe field (eA) = (ea, ea, eά). This can be expressed
by the following somewhat tautological relations:

Za = Zά = e\

φ- = Θή = e\ (3.3)

Note, however, that ea are always real valued 1-forms, while ea and eα are always
conjugated, for eA is a coframe in the real (4|4)-dimensional manifold J(. Thus the
definitions (3) of a FΓ-valued 1-form Θ makes its values satisfy Eqs (1) of the real
subspace V in W, as it must be.

The above notations, though cumbersome, have been introduced to be close to
the general context of Sect. 2 and to make its use here mo%st straightforward. In
Sect. 2 we dealt with a Pf-valued 1-form field Θ too, the vector space W being
arbitrary. In the theorem about induced structures we used Θ tied to some coframe
field of a G'-structure under consideration. This forced the values of Θ to lie in a fixed
subspace (also denoted by V) of the space W. The dimension of W equaled the
dimension of the ambient space (or superspace) while that of V equaled the
dimension of the manifold (a would-be surface in ίRN, N = dim W\ where the given
G'-structure was defined. Although V can be an arbitrary subspace of W, it must
always coincide with the subspace, that appears in the definition of regular surfaces
induced G'-structures and of the group G' itself. When we considered in preceding

2 Of course, the statement of the Theorem must be generalized to superspace in a straightforward manner
as explained in Sect. 1
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sections the general case of induced structures, we choose for defϊniteness the
standard M-dimensional subspace of W = UN. So we did, in particular, in the
formulation of the theorem (cf. Eq. (2.3)). In the present case, when G = SCR((), it is
convenient to use PF = C4'4 and its real (4|4)-dimensional subspace V defined by
Eqs. (1). Thus, for instance, Eq. (3) of the present section is parallel to Eq. (2.3). These
conventions for W and V are coherent with those of ref. [1], which concern the
definitions of SCR(ζ)-structures and induced SCR(£)-structures. Note, finally, that
in order to be in agreement with generalities of the preceding sections, we must treat
W = C4μ as a real (8|8)-dimensional space. This can be achieved by the use of
complex coordinates along with their conjugates. Now the application of the
theorem must cause no trouble.

Let us consider an SCR(0-structure in a real (4|4)-dimensional manifold Jί.
Let Θ be a W-valued 1-form field connected with some admissible coframe,
eA = dxME^(x, θ, θ), in Jί by means of Eqs. (3). Our aim is to specify the conditions
ensuring that this structure in Jί is equivalent to an SCR(Q-structure induced on
some surface by the trivial G(()-structure in the ambient space C4'4. Let q(ζ) denote
the Lie algebra of the group G(ζ). According to the theorem of Sect. 2 we must
inquire into existence of a 1-form field Ω on Jί that takes values in Q(QO0 = £ g(Q(/c)

and satisfies (2.4) and (2.5). Let us consider the components Ω{k) of Ω corres-
ponding to the decomposition of ^(ζ)^ into the sum of subspaces Q(ζ)(k); let us
decompose also the infinite dimensional equation (2.5) into its cj(C)(/c) components.
Thus, instead of dΩ +h[_Ω /\Ω~\ = 0 , we consider the equations R(k) = 0 for
k = — 1,0,1,2,..., where R(k) form the decomposition of R(X) = dΩ +
^[Ω AΩJ. An explicit expression forΛ(Λ~1) involves ΩU) only with — l ^ j ^ f c ,
moreover, Ω(k) enters linearly and without derivatives. (This can be seen, using
the property [g(0(i), g(0 ω ] <= 9(0 ( i HΛ of the Lie algebra gOX, as stated in
Sect. 2.) Hence one may consider each equation R(-k~1) = 0 as a linear equation,
to be solved for Ω{k) in terms of Ωij) with -l£j<k. Starting with Ω{~1] = Θ
(cf. Eq. (2.4)) one may try to find successively Ω(k) for fc = 0,1,2,..., from
fl(fc-i) = o. If a solution exists at each step, a field Ω, satisfying the requirements
of the theorem, will exist too. It follows that the compatibility of arising linear
equations is necessary and sufficient for the given SCR(ζ)-structure to be induced.
That is to say, the integrability conditions for the differential equation (2.1) are
rewritten as compatibility conditions of certain linear algebraic equations. In the
case of the algebras g(£), it turns out that these equations for Ωfk) with k ^ 2
are always compatible, provided the first two equations, Ri~1) = 0, # ( 0 ) = 0,
are compatible. In other words, the existence of a solution Ω(0) to R(~ί} = 0
and Ω(1) to R(0) = 0 implies that &k) for k^2 exist too, satisfying
ftik-1) _ o \yh e n ζ = oo5 moreover, the existence ofί2 ( 0 ) is already sufficient forΩ{k)

with/c ^ 1 to exist. The proof can be found in Appendix E; it follows from the vanishing
of certain Spencer cohomology groups related to g(().

Thus in the present case it suffices to investigate the compatibility of the system
Rί'V = 0, R(0) = 0. The former equation takes the following explicit form:

R{-ί)Λ = dΘΛ-ΘβA Ωi (3.4)

where the matrix 1-form (Ω$ stands for the g(Q-valued l-form/2(0). That is to say, we
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are looking for a solution Ω\ to (4), which is a 1-form that satisfies the conditions
corresponding to the algebra cj(Q. The group G(ζ) was defined as a group of complex
linear transformations of C4'4 (see [1]). We are using now the space W9 which is, strictly
speaking, C4'4 considered as a real space. Hence we have to use the matrices of the form
(Xj), which consist of blocks {XA\ (Xf), [XA) and (Xf), where x\ = (X$)*9 X

A = (X*)*.
(Remember that an index A = (A; A) runs over the values corresponding to the
complex coordinates zA and their complex conjugates zA) Then according to the
definition of the group G(Q, its Lie algebra, g(Q, consists of the matrices (X$) obeying

Xa

ή = Xά

π = 0, X% = Xά

π = 0, Xj = x\ = 0, (3.5)

and also a £-dependent condition

tr ζX = 0, (3.6)

where the following notation is used. If ζ Φ oo,

tτζX = ζ(Xa

a-X:)-Xi (3.7)

whereas for ζ = oo, we set

txa,X = Xa

a-Xl. (3.8)

The existence of a 1-form ΩJ satisfying Eqs. (4), (5) and (6) is equivalent to certain
constraints on dΘ, that is on the first derivatives of a frame field representing the
given SCR(C)-structure. It is convenient to express these conditions in a more
covariant form.

Let us consider a connection in the SCR(O-structure, that is an SCR(£)-valued 1-
form ω. The Lie algebra SCR(ζ) consists of linear transformations of a real (4|4)-
dimensional space. We consider this real space as a subspace V in W, given by (1).
According to the general definition, the algebra cjr consists of transformations of
V that can be extended to linear transformations of the space W9 belonging to
the algebra g and leaving the subspace V invariant. In the present case, cj = g(£),
Qr = SCR(Q, and each extension is unique. In particular, for a matrix (Yβ) in
SCR(0, we get a matrix ( ? | ) in g(0 taking Ϋi= Y$9 Ϋj = O. (Remember that
(F^)eSCR(O satisfies the same equation as Xi in (5), (6) and still obeys Ύ% =
(YD* and (yjί)* = δ*tfY*β.) Let ώ | b e the g(Q extension of the SCR(ζ)- valued 1-form
ωg. (Were this extension not unique, we could choose an arbitrary one. This may
happen for a different couple g, Q'.)

For the coframe 1-form field eA and connection ω^ the torsion 2-form TΛ is
defined as usual,

TA = deA - eB
 A ωA. (3.9)

Replacing eA and ωA by ΘΛ and ώj, it is straightforward to check that the 2-form

TΛ = dΘΛ-Θ* ΛώJ (3.10)

is connected with TA in the same way as Θλ is connected with eA in Eq. (3).

Combining Eq. (4) with the definition (10) of f\ we get TΛ = Θ6 Λ Γ | , where

Γ\ = ecΓJc is a g(Q-valued 1-form given by Γ =Ω — ώ. Expanding in the basis
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of eA and turning back from (9, T to e, T, we obtain the following expression
for TA = \ec A eBTB

A

c, the torsion of the connection

TB

Ac = ΓA

B-(-)BCΓA

c. (3.11)

Finally, the first order integrability condition for an SCR(ζ)-structure to be
induced is satisfied (i.e. Eq. (4) is compatible) if and only if the torsion, TB

A

C, of some
arbitrary connection in this SCR ©-structure can be represented in the form (11),
with some quantities ΓJC satisfying for each fixed value of the index C the conditions
(5), (6) of the algebra g(C)3 Now it is easy to read off the resulting torsion constraints.
The algebraic conditions on the right-hand side of Eq. (11) imply that the torsion
must obey

Ta

c

p = 0, TJP = O9 (3.12)

and one more constraint, for ζ = oo only,

Tj>b-T/β = 0. (3.13)

(For example, Γ\B = 0 due to (5). Consequently, Tή

c

φ must vanish, since T/^ =
ΓCfin+Γc

ήp and we have also Ta

c

β = 0, for Ta

c

β is related to T/^ by complex conjuga-
tion.) The resulting torsion constraints are just those claimed at the end of Sect. 1.

One may stop at this point if ζ = oo, as we have already mentioned. When ζ φ oo,
one has to proceed further and derive the curvature constraints from the
requirement of compatibility of the equation Ri0) = 0. Explicitly one has

R{0)j = dΩJ ~Ωc

βAΩi - Θc
 ΛΩ{1)JC = 0, (3.14)

where ΩJ is the same as in (4). Equation (14) is to be solved with respect to the 1-
forms Ω(1)βC, which represent a g(£)(1)-valued 1-form Ω{1\ Thus according to the
definitions of Sect. 2, for each value of C the 1 -forms Ω(1)jc satisfy Eqs. (5) and (6) of
the matrix algebra cj(0, and also

(3.15)

Let us introduce the following notation:

Kj j c i (3.16)

Equation (14) may be rewritten, expanding in the basis of
Rj=^ec ΛeDKjCD, Ω(1)jc=eDΩ^jCD, while Θλ is related to eA via (3). Then
Eq. (14) assumes the following form:

= R A

B C D , (3.17)

and similarly for complex conjugates. This equation is to be regarded as an
inhomogeneous linear equation with respect to Ω{1\ The right-hand side, RiCD>
satisfies Eqs. (5), (6) for any fixed C and D, and still obeys

®' (3.18)

3 It is easy to verify that if this condition holds for some connection, then it does for any. In the general case

the first order integrability condition as a torsion constraint was derived in ref. [2], see also [3]
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The last condition is a form of a Bianchi identity, which can be also written as
Θβ A Rg = 0. This identity can be obtained from (4) by external differentiation. Note
that the condition (18) is necessary for compatibility of the linear system (17), as the
left-hand side of (17) vanishes obviously due to (15) under the super-anti-
symmetrization in J5, C, D. The question4 we are interested in is what conditions
beyond (18), if any, have to be imposed on R^CD t o ensure the compatibility of
Eq. (17).

One can verify that it is always possible to match a solution to (17) satisfying the
relaxed conditions: Eqs. (5) and (15), but not (6). Let ψjCD be such a solution, that is

ΨicD = (-)BCΨΪBD, (3.19)

ΨABCD-(-)CDΨABDC = RABCD, (3.20)

with Eqs. (5) satisfied by φ\tΏ for any C, D. The desired solution, Ω(1)jCD, however,

must obey one more condition, corresponding to Eq. (6), ζ{Ω{1)a

aCD — Ώ ( 1 ) * C ί ) ) —

Ωil)*CD = 0, or, symbolically, tr ζ ί2 ( 1 ) = 0. Let us try to find Ω{1) in the form

Ω(1) = φ-φ. Combining (15) and (19), (17) and (20), we see that φjCD must obey

Φ\BC]D = 0 a n d ΦBICD) = 0, which yields

ΦίcD = Φ{BCDy (3.21)

The condition tr ζ ί2 ( 1 ) = 0 requires that trζφ = trζφ. Thus the compatibility of
Eq. (17) for satisfying (5), (6), (15) amounts to the compatibility of the equation

C(φaaCD - ΦZCD) - ΦtcD = (*ζΨ)cD (3-22)

for the unknown φ satisfying (5) and (21). To work out these conditions, let us
observe that the left-hand side of Eq. (22) vanishes identically for C = p, D = σ.
Indeed, applying successively (21) and (5) we find φa

aβό = φa

βaό = 0, and similarly
φ*pά = 0. Finally, φύ

iftό = 0 vanishes, for it is antisymmetric in three indices, as
required by (21), whereas each of them takes two values only. By the same arguments
(trζφ)pά reduces to a single term, namely, {trζφ)βά = — φ%ά. This term need not be
zero a priori, since φ9 unlike φ, need not satisfy (21). However, we observe
immediately that it should vanish, (trζφ)βά = 0, to ensure the compatibility of Eq. (22)
where (trζφ)βό = 0 identically. Thus we have to require

# U = 0. (3.23)

A direct inspection reveals that if (23) holds, there are no further obstructions for a
solution φ of Eq. (22) to exist. Then Eq. (17) will be compatible too, with a solution
given by Ω(1) = φ — φ.

Returning to Eq. (17), the condition of its compatibility given by (23) is now to be
expressed in terms of RiCD. By definition, φ satisfies (19) and (20). It follows from
Eq. (19) that φπ

ipό can always be represented as

Ψ*w = Ψfa*> (3.24)

4 This is, in fact, a typical problem of the Spencer cohomology calculus, see Appendices A, C, E
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where εifi is the antisymmetric symbol. Then from the relation (20) we have

%» = Ψ% + Ψfc* (3.25)
Using a notation ψ^ = \l/^εήά9 we obtain

% = </^ + </V (3-26)

Note that the 2-form Rj obeys {trζR) = 0, because it is a g(Q-valued 2-form, as the
definition (16) shows. By arguments already stated and using, in particular, the
identity (18) the equality ( tr ζ #)^ = 0 can be reduced to

% = 0. (3.27)

Then Eqs. (26) and (27) give ψ.ά = λε.ό for some function λ, and Eq. (15) can be
rewritten,

Rήrpά Ξ *MRU = λ^iP + **M (3-28)

Note, however, that this expression is, in fact, a mere consequence of the Bianchi
identities. Now condition (23) can be expressed in terms of R. Using (24) and
ψ* = λb% we obtain first λ = 0. Then Eq. (28) gives a condition equivalent to (23),

*k/* = 0. (3.29)

Let us notice that this is equivalent to R^ό = 0. The last condition could be read off
already from Eqs. (23)-(25). However, Eq. (29) is the weakest form of such a
condition, which is simpler to use, while iζL = 0 can be restored by means of Bianchi
identities.

We have derived Eq. (29) as a condition on the right-hand side of Eq. (17),
required for its compatibility, or, equivalently, for the compatibility of the equation
R(0) = 0 (see Eq. (14)). Remember that the compatibility of this equation amounts to
the second order integrability conditions in the problem of induced SCR(£)-
structures. Let us notice that condition (29) is indeed a constraint on the SCR(0-
structure. The 2-form Rj was defined in Eq. (16) in terms of a 1-form Ω$9 which in
turn was introduced as a solution of Eq. (4). Thus (29) implies certain restrictions of
the first order in derivatives on the field βf, and hence, by Eq. (4), certain second
order constraints on a coframe field representing the SCR(£)-structure in view. (Note
that a coframe enters Eq. (4) via the relation (3), and that the resulting constraints on
the SCR(Q-structure does not depend on the particular admissible coframe field.) Of
course, the condition (29), as it stands, is still of little use. What we wanted is to
express the second order integrability condition in terms of curvature of connections
in the SCR ©-structure, rather than of the g(Q-valued l-formβj. It is straightfor-
ward to extract this from Eq. (29).

It would be inconvenient, however, to deal with arbitrary connections. Let us
instead reduce the set of connections to be considered. For this purpose one may
impose certain conditions on the torsion. A possible choice of such conditions is
given by Eq. (1.2) of the next section. One can see that given a coframe field eΛ, one is
always able to find such an SCR(£)-connection in Eq. (9), which satisfies (1.2). Of
course, a connection obeying (1.2) is by no means unique, and we consider any such
connection. Let ω^ = ecWβC be an SCR (Q-valued connection 1-form, which satisfies
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(1.2). Let also ώj be, as above, a cj(()-valued 1-form, the extension of ωB. Assuming
that the first order integrability conditions are satisfied, the torsion of the connection
ωB must obey the constraints (12) in addition to the "conventional constraints" of
Eq. (1.2). Remember that the torsion tensors satisfying (12) are just those, which can
be represented as in Eq. (11). That is to say, there exists a g(Q-valued 1-form
ΓJ = ecΓJc satisfying (11). A possible choice may be as follows:

jrc _ pc _ i ^ d Sic

1 βά — 2 λ ά δ °β>
inn Xηr δ Zπ

1 pά~ 2*a δ°p>

Γ% = 0, (3.30)

while the other independent components of Γ\c vanish. (Note that the last line in
Eq. (30) serves to ensure t r ^ = 0 if ζ ψ oo, as required for a g(ζ)-valued 1-form).
Then, if we setί21 = ώ\ + T% it will satisfy Eq. (4). Thus it is the 1-formβJ, that is to
be substituted into the constraint (29). Taking into account the definition (16), we
have

where

RB = dωi — COBACOC

is the curvature of the connection ωB. Then using Eq. (30) we obtain finally that
condition (29) is equivalent to the following curvature constraint

RΛβaySβV = 0. (3.31)

Of course, this final form of the second order constraint depends on the choice of
conventional constraints in Eq. (1.2), which could be different. (The only purpose of
Eq. (1.2) was to reduce the set of connections.)

To conclude, we have proved that the given SCR(ζ)-structure is induced on a
surface by the trivial G(ζ)-structure in C4'4 if and only if (i) the torsion of some (and
hence any) connection in this SCR(C)-structure satisfies (12) for ζ φ oo, or (12) and
(13) for ζ = oo (ii) when ζ φ oo, the curvature of some (and hence any) connection
obeying (1.2) satisfies (31). This is just what we claimed at the end of
Sect. 1.

Appendix A. Spencer Cohomologies5

Let us consider some linear space g that consists of M x N matrices, or linear maps
from V to W9 where V and W are vector spaces: V ^ UM with coordinates (xb), while
W ~ UN with coordinates (yά). (The generalization of the considerations that follow
to the case of superspaces is straightforward.) That is to say, consider some subspace
cj c Hom(F, W). The kih prolongation, g(/c), of the subspace g is defined as the space of

5 See, e.g. [6,7]
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tensors, tά

buJ)k+1, symmetric in the lower indices and such that the matrix tά

bl^bk+1

corresponds to an element of g for any fixed values of the indices b2,...,bk+ί.
Furthermore, we set g(0) = g and g(~1} = W. For i, k = 0,1,2,..., consider also the
space CM(g), which consists of tensors, ίf1...6k;ci...Cl, that are, roughly speaking,
arbitrary tensors from g(fc~1) supplied with additional antisymmetric indices
cί,..., ct. The elements of Ck'*(g) will be called cochains. The Spencer differential d is
an operator acting from CkJ(§) to C/c~1' ί+1(g) as follows:

where the antisymmetrization in the i + 1 last indices (with a factor of l/(i + 1)!
included) is assumed. The operator (1) satisfies clearly dδ = 0. One says that a
cochain αeCM(g) is closed if doc = 0, and exact if α = dβ for some βeCk + 1J~ x(g). If we
denote by Zfc'f(g) the subspace of closed cochains and by 2?M(g) the subspace of exact
cochains in CM(g), then from dd = 0 it follows that 2*M(g) c ZM(g). Therefore we may
define the cohomology group of degree (k, ί) as a coset space iίM(g) = Z ^ g y i ^ g ) .
The cosets # M (g), k, ί = 0,1,2,..., are called the Spencer cohomology groups of the
space g cz Hom(F, W).

The space g is called p-acyclic, if # M (g) = 0 for k> 0 and O^i^p. Furthermore,
g is called involutive, if # M (g) = 0 for k> 0 and i ̂  0. (Note that every space g is
1-acyclic).

Let us consider, as an example, the space of all M x N matrices, i.e. g =
Hom(F, W). It can be demonstrated in a direct way, using, for instance, the Young
tableau calculus, that the space g = Hom(F, W) is always involutive. We remark in
passing that this statement is essentially the Poincare lemma for W-valued
differential forms on UM with arbitrary polynomial coefficients. Another example is
g = gl(π, C), that is the space of all complex linear maps of C " ^ U2n into itself,
considered as a subspace in gl(2w, U) = Hom(!R2n, 1R2"). To see that gl(w,C) is
involutive too, it is convenient to arrange the coordinates of U2n into two sets of
complex numbers, (zα), a— 1,..., n and (zα), which are the complex coordinates in C"
and their conjugates. Then gl(π, C) becomes the space of complex In x In matrices
X\ with ά, δ = l,...,n;ϊ,...,w, such that χξ = (Xβ* and X% = XΪ = 0. In this
representation the problem is factorized in an obvious way and the computation of
cohomologies of gl(n, C) is reduced essentially to the previous example.

The same factorization occurs in a more general case of a subspace g cz
Hom(F, W\ which consists of matrices satisfying the only condition that some of
the matrix elements on certain places must vanish for all matrices in g. Following the
authors of ref. [8], we call such spaces multifoliate6. Multifoliate subspaces in
Hom(K W) are always involutive. Let us consider an example of this sort, which
proves to be useful in our study of supergravity (Sect. 3 and Appendix E). Let us take
the superspaces V = W = C4'4 with coordinates arranged into two groups: (zΛ) =
(zA;z% where (zA) = (za,θ\φ% a =1,2,3,4; α = l,2; π=l,% are the complex
coordinates in C4'4, while (zA) = (za, 9*, φπ) are their complex conjugates. Consider the

6 In [8] the matrix Lie algebras of this type were considered
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space g, which consists of matrices XA$ obeying the following conditions

X*ή = X< = 0, Xj = XΛ

B = O. (A.2)

(Of course, X\ = (Xf)*, while the last line of Eq. (2) means that g consists of complex
linear maps.) The so defined space g, being, in fact, a Lie algebra, is multifoliate and,
hence, involutive. This example is intimately connected with the algebras g(C)
appearing in the context of supergravity (see, in particular, Appendix E).

Appendix B. Criterion of Formal Integrability

Our aim in this appendix is to make it manifest that some mathematical methods,
used in the theory of nonlinear partial differential equations, survive the advance of
superspaces. For this purpose we review at an elementary level the relevant
mathematical constructions.

The modern status of the subject and further references can be found in refs. [6]
and [7], that we shall follow in the main. However, we will use throughout local
coordinates and make no attempts to account for the conditions like non-
degeneracy or constancy of ranks of some maps, etc. The advantage of such a
cavalier treatment will be that the superspace generalization becomes self-evident.

Let us consider a system of partial differential equations, with ya (a= 1,..., N)
being the unknown functions of the arguments xm (m = 1,..., M). Without loss of
generality we may study a first order system of the following form:

where F = ( F 1 , . . . , Fτ), with τ being the number of distinct equations in the system.
The function F will be understood throughout to satisfy the condition that the
equation

F(pa

m,pa,xrn) = 0 (B.2)

is compatible with respect to pa

m for any given pa and xm. We can proceed from the
first order equations to an equivalent system of the second order by adding the
equations that correspond to

Fn(pL,Pam,Pa,xm) = 0 (B.3)

for /, n = 1,..., M, where we set, as a definition,

F » = έ F Ξ ^ l r ^ + ^ (B 4)

The resulting second order system consists of Eq. (2) together with Eqs. (3), where
the second derivatives of the unknown function pa = ya(x) are to be inserted in place
of pa

mm and so on. Proceeding further in an obvious way, at the ith step we obtain a
system of the order (i + 1), called the ith prolongation of the system (1). The top order
equation is of the form

Fnί..,ι(Pllι...mi+ί,. ,Pa

mi,P
a,xm) = 0, (B.5)
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with FnίmmMi defined by applying i times d/dx to the function F (cf. Eq. (4)).
Let us try to find a solution to Eq. (1) as a formal power series,

va(γ\ — na _i_ V na (Ύ™1 — v m i ϊ (xmk — Ύmk) ΓR ft)
y \x) — P + Zj77Pm1...mk\

x X0)...{X A 0 ) . \OΌ)

k kl

Then the coefficients of this expansion must obviously satisfy an infinite chain of
equations, namely, Eq. (2) at x = x 0 and Eq. (5) at x = x 0, for i = 1,2,3,.... Note that
Pmi...mi+1 enters Eq. (5) linearly. Therefore, if some pa,pa

m satisfying (2) at x = x 0 have
been found and we are looking for higher coefficients successively, then at each step
we have to solve a certain system of linear algebraic equations. The following
definition is in order.

The system of partial differential equations (1) is called formally integrable if,
given arbitrary pa

m, pa, x™ satisfying (2), the arising linear algebraic equations are
compatible at each step in an order by order search of higher coefficients for every
choice of solutions at the preceding steps.

Let us consider the conditions for the formal integrability. For this purpose we
assume that the formal integrability holds up to the (k + l) s t order. Then we have
to ascertain the conditions for this to be valid also in the next order. Suppose
some solutions pa,pa

mι>... >Pmi...mfc+1> have been chosen at the steps from the first to
the kth one. With the choice made in all points x, these coefficients may be considered
as functions of x. Let x 0 be an arbitrary point. Under the above assumption it is
always possible to arrange it so that the functions pa(x), pa

mM)> > Pmί...mk+! W °bey
the following conditions. They satisfy at every x Eq. (2) and Eqs. (5) with ί = 1,..., fc,
whereas pα(x0), Pa

mMo\ »Pm1...mk+Mo) correspond to an arbitrary given solution of
these equations at x = x0, and, moreover,

= Pamι...mk + Mθ)' (B.7)
δxm

At the next step we have to be interested in the compatibility of Eq. (5) for i = k + 1 at
the point x = x 0. This equation may be written symbolically as

ATPmxm2...mk + 2 +
 Bm2...mk + 2

 = 0> ( B ̂ )

where the following notation is used,

dF
m — Am(rtb nb γ n ϊ = (B.9)

Equation (8) is a system of linear inhomogeneous equations with respect to
Pmi...mfe+2> while Bm2 mk+2 in Eq. (8) stands for the terms depending on p's of order less
than k + 2. The solution of Eq. (8) is requested to be symmetric in the indices
mt (ί = 1,..., k + 2). Note, however, that the existence of solutions at the preceding
steps guarantees at any rate the compatibility of the equations

A?lifmιm2...mk+1n + Bm2...mk+1n = 0, (B.10)

where tfnί...mk+in is required only to be symmetric in fc+ 1 indices mb but not
necessarily in all k + 2 indices. The compatibility of Eq. (10) can be shown by
substituting the above functions p(x) into Eq. (5) for ί = k, giving zero on the right-
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hand side and by the subsequent differentiation of the left-hand side with respect to

all entries of x. Then va

mί_mk+ίn = dpa

mί_mk+1/dxn\x=Xo gives, on account of (7), a

particular solution to Eq. (10). Furthermore, from the explicit form of the terms

Bm2...mk+1n
 m (10), one can conclude that

(Here [ ] denotes the antisymmetrization, whereas ( ) will denote the symmetriz-
ation). Since va

mi_mkln = va

{m_mkl)n, we have also

C...m*-i[*[*.]] = 0 ( B 1 2 )

Any solution of the linear inhomogeneous equation (10) differs from the above
particular solution, ifmUmmm^ιn9 by an arbitrary solution, ua

mi^Mk+ιn, of the cor-
responding homogeneous equations:

AmUja —f)
^a umι...mk+1n

 u ?
Umι...mk+ίn

 = U(mι...mk+ί)n (B.I 3)

One may try to match some solution of Eqs. (13) to the particular solution of (10) so
as to get

If one succeeded in doing so, one would obtain another solution of (10), which is
symmetric in all k + 2 indices due to (14). That is to say, Eq. (8) would be compatible
in such a case, and, hence, the hypothesis concerning the preceding steps would be
valid at the (k + l) s t step as well. Now we need the following definition.

The symbol of a system of differential equations is the vector space σ of solutions
of the linear algebraic equations

where A% is defined in (9). This space σ is to be considered as a subspace in
Hom(F, W)9 where dim W = N, the number of the unknown functions ya{x\ and
dim V = M, the number of the arguments xm. (Note that since A™ may depend on
p^,pb,xn, so may the space σ.)

One can observe that the obstruction to the compatibility of Eq. (8) corresponds
to an element of the Spencer cohomology group Hk'2(σ) (see Appendix A). Indeed,
from Eq. (11) we see that ha

muMkΛn = t4i...mk[in] corresponds to a cochain, heCk'2(σ).
Moreover, Eq. (12) means that this cochain is closed, i.e. dh = 0. Similarly, any
solution of (13) corresponds to some ueCk+ 1Λ{σ). Since v^ll mk[ln], a solution of (10),
is defined only up to an arbitrary solution of (13), we see that h is defined up to an
exact cochain (because ua

mχ ...mk[/w] corresponds to du). Therefore only the cohomology
class, [h]eHk'2(σ\ of the closed cochain h is relevant. Now Eq. (14), if compatible,
implies that h = δu for some u, or, equivalently, [K] = 0. From the above reasoning
we conclude that, under the assumptions made, Eq. (8) is compatible if and only if
the corresponding cohomology class [K] is trivial. Remember that Eq. (8), being
identical with (5) for i = k + 1, is considered as an equation on the (k + 2)nd order
coefficients of a formal solution (6), provided some coefficients have been already
found in all orders up to k + 1.
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Finally, for a system of partial differential equations (1) to be formally integrable,
the obstructions arising in solving it in terms of a formal power series must vanish at
each step. This gives a set of integrability conditions of increasing order imposed on
the functions F in Eq. (1). We can conclude, that if Hk'2(σ) = 0 for k greater than some
X, one must take into account the integrability conditions of order not greater than
K -f 1 in derivatives of F. (It can be shown that, in general, only a finite number of the
cohomology groups Hk'2(σ) may be non-zero.) In particular, one has the following
theorem.

If the symbol of the system (1) is 2-acyclic (i.e. HK2(σ) = 0 for k> 0) and Eqs. (3)
are compatible for any xm, pa, pa

m satisfying (2), then the system (1) is formally
integrable.

We see, that, in the case of a 2-acyclic symbol, only the first order integrability
conditions are required; these are the constraints on the first derivatives of the
functions F ensuring the compatibility of Eq. (3). When Hka(σ) become zero for
higher k only, more integrability conditions must be involved. Till now we have
nothing to do with the convergence of our formal solutions. As to the existence
of genuine solutions, we remark only the following: If the system (1) is formally
integrable and the functions F are real-analytic, then it is known that there are
solutions which correspond to convergent power series [6, 7]. If, moreover, the
symbol is involutive (i.e. Hkyi{σ) = 0 for i ^ 0, k> 07), then more detailed information
is available converning the number of different solutions. Such partial differential
equations correspond to the involutive systems of Cartan. In applications to our
problems, however, we will use only the mere existence of solutions.

Appendix C. The Proof of the Theorem

We continue the proof of the theorem of Sect. 2, using the results recapitulated
in Appendices A and B. Remember that the theorem is intended to describe the
necessary and sufficient conditions for the induced structure. These coincide, as
we have already seen, with the conditions ensuring that a certain system of partial
differential equations has a solution. The aim of the theorem is to give an equivalent
formulation of these conditions, which can be more easily applied. Before
proceeding with the proof let us study directly the above-mentioned system of
differential equations by means of the methods discussed in Appendix B.

When considering the induced structure, we have to fix a vector space W9 a sub-
group G of the group of linear transformations of W and a subspace V in W. Let
us consider the restrictions to V of linear maps defined on W and belonging to the
group G. Let Gv denote the manifold of the resulting maps from V into W. It is
a submanifold in the space Hom(K W) of all linear maps from V into W. The
notations of Sect. 2 correspond to the following particular choice made for
simplicity: W = MN, while V must be the standard M-dimensional subspace
generated by the first M vectors of the standard basis in UN. In this case G is
to be considered as consisting of N x N matrices. Assuming these conventions, the
system of differential equations, to be studied in the problem of the induced

7 Note that Hk>°(σ) = HkΛ(σ) = 0ΐoτk>0 and for any σ
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structure, takes the form of Eq. (2.1). Then the manifold Gv corresponds to the
rectangular M x N matrices that appear on the right-hand side of Eq. (1.1). Then
(1.1) gives a system of equations with respect to the unknown functions y\x\
ά=l,...,N, defined by the requirement that the rectangular matrix gά

h =
e™(x) dyά(x)/dxm should belong to Gv for each x. In this case the symbol of the
resulting system (see Appendix B) can be identified with the subspace in Hom(K W)
that corresponds to the tangent space of the submanifold Gv c Hom(K W). Let gF

denote the linear subspace in Hom(F, W) that corresponds to the Lie algebra g of the
group G in the same way, as Gv corresponds to G. One can identify the tangent space to
Gv at each point with this subspace gF. Thus gF cz Hom(F, W) can be considered as
the symbol of our system of differential equations. To see all this explicitly one can
write this system locally as

where Φ = ( Φ 1 , . . . , Φχ) are some functions singling out Gv as submanifold defined
(locally) by the equation Φ(gl) = 0 in the space of all M x N matrices (i.e. in
Hom(K W)). Then the correspondence with Appendix B (in particular, with Eq. (B.I))
can be established by setting F(pά

m,p\xm) = Φ(pά

me™(x)\ the rest being straight-
forward. According to Appendix C we are able, in principle, to specify the conditions
ensuring that system (1) has a solution. In this way we would obtain a finite number of
integrability conditions corresponding to non-vanishing groups in the chain of
Spencer cohomology groups Hk'2(§v), k^O of the subspace gF in Hom(F, W). These
integrability conditons would then arise in the form of differential constrains on the
frame field e™(x) in Eq. (1), the orders of these constrains being equal to those fe's for
which Hk~1>2(Qv) / 0 . Our final aim is, however, to obtain the constraints on the
induced structure in the form established in the statement of the theorem. In order to
avoid somewhat tedious calculations that might be encountered at this point, let us
proceed differently.

In Sect. 2 we succeeded in reducing the problem to another equation, which was
written symbolically as Eq. (2.7). That is to say, we have shown the following: for an
induced G'-structure, that is if Eq. (2.1) has a solution, we constructed explicitly a 1-
form field Ω that satisfies the conditions of the theorem, thus proving one part of the
statement. Assuming, conversely, that such a field Ω really exists, we showed that if
Eq. (2.7) has a solution, so does Eq. (2.1), i.e. the G'-structure under consideration does
correspond to an induced one. To complete the proof of the theorem, it must be shown
that the condition dΩ + ̂ \Ω A Ω~\ = 0 is sufficient for the existence of such a G^-
valued function h(x) that satisfies Ω = h~1 dh. For an arbitrary matrix group G (i.e.
G c: GL(N, U))9 the corresponding group G^ may be infinite dimensional. The exact
meaning of the expression Ω = h~x dh was already explained, allowing in the general
case for infinite dimensional groups G^. This led us to a system of equations (2.8), (2.9).
Now we are going to find the conditions that are sufficient for the compatibility of
these equations.

Let us rewrite Eqs. (2.8) and (2.9) as follows:
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dφa(x,y) _rά, ., vv ~ (ΓΛ A\(- Xm(x, 0(x, y)) = U, IV TJ

where Φ = (Φ \ . . . , Φτ) are some functions singling out the group G as a submanifold
defined (locally) by Φ{gf) = 0 in the space of all N x N matrices. Remember that
Xά

m(x, y) depends on yh (α, δ = 1,..., N) as a formal power series corresponding to the
given g ̂ -valued 1-form field Ω(x). Analogously the unknown "functions" φ\x9y)
are, in fact, formal power series in y$, with coefficients being usual functions of xm,
m = 1,..., M. Equations (3) and (4) are to be understood, of course, order by order
in y. According to Appendix B, to obtain the desired result we have to find out
whether or not the system (3)-(4) is formally integrable. It means that we must
consider the compatibility of that system, regarding φά(x, y) there as a formal power
series in both variables, x and y. It doesn't matter that Xά

m(x,y) itself is a formal
power series in y9 the methods of Appendix B are still applicable. A straightforward
calculation reveals that there are only the following integrability conditions:

mώjxu^y)^ iίφ{g)^ ( C 5 )

δXΛ

m(χ,y)

(C.6)

As it can be easily seen, the condition (5) means that for each fixed m the matrix
(Ύg)m = dXά

m/dyh should belong to the Lie algebra c$ of the group G. This require-
ment is, however, satisfied merely by definition of Xά

m(x, y) which is the counterpart of
the g oo-valued 1-form field Ω (cf. Sect. 2). Recalling the description of the Lie
algebra c^ in terms of formal vector fields on UN

9 we observe also that Eq. (6) can
be rewritten as dΩ + ^[Ω Λ / 2 ] = 0, using the above-mentioned correspondence
between Xά

m(x,y) and Ω. We obtain finally, that dΩ + %[Ω A Ω] = 0 is indeed
the integrability condition for the equation Ω = h~ί dh with h being a G^-valued
function. Then, in view of the reasoning of Sect. 2, the theorem is proved.

We remark that the proof is valid if everything is real-analytic. However, it is
valid also in the smooth case if the group G is of finite type, i.e. when G^ is finite
dimensional. (In the latter case the formal integrability need not to be involved; one
can rather use the Frobenius theorem for the equation h~x dh =Ω).

Some particular examples of how to apply the theorem are contained in Sect. 3
and Appendix D. There only the constraints on the torsion and the curvature of an
induced structure appeared. Such constraints correspond to the integrability
conditions of the first and second order if dealing with Eq. (1), or to the terms of
order not greater than two with respect to y if dealing with Eq. (6). These may not
suffice, however, in the general case. As it was discussed at the end of Sect. 2,
generally one has a set of constraints of increasing order. To establish them, one has
to find the compatibility conditions for the equation dΩ + \\Ω A /2] = 0. Maintain-
ing the notations of Sect. 2, this equation, when solved successively with respect to
Ωi0\Ω{1\Ω{2\ etc., amounts to an infinite chain of linear algebraic equations. Here
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Ω(k) is a 1-form field with values in g(fe); it must be a solution of the equation

jR(fc"1) = 0 that arises at the (fc+l) s t step. Specifically, one has Ω{k)h_hk_ιhk A
Θh = P(k~1)i1_h_l9 where P{k~1] is a 2-form with values in g(*~1}. which
depends on ί2 ( φ s with t < k. Since Θb = 0 for V = M + 1,..., JV, we observe about
the equations on those components of Ω{k) for which at least one of δ/s assumes a
value from the set M +19...9N9 that such equations are always compatible. It
remains to consider the truncated components of Ω{k) and p ( / c~ 1 }. These obviously
correspond to the forms taking values respectively in g^} and g(^~1}

(see the definition above). Now, a g-form ω with values in g(/} corresponds
some Spencer cochain ώeC7 *(gκ). Furthermore, the (g + l)-form ωά

bi bp A Θbp

corresponds then to dώeCp~1'q+1($v). Hence the equation on Ω(k) can be
rendered in terms of CPiq(qv)-valued functions, giving dΩ(x) = P(x\ where
Ω{x)eCktl(Qv) and P(x)eCk~ia(Qv). Note that the consistency requires dP = 0.
This is, however, always satisfied, by virtue of Bianchi identities (namely,

R(k-i) A Θ = O> provided R{η = 0 for / < k - 1). If Hk~ia(qv) = 0, the condition
dP = 0 is sufficient for the compatibility of the equation d& = P. Con-
sequently, the non-trivial constraints may arise only in orders k, for which
Hk~li2(Qv)φ0. (This agrees, of course, with what we discussed in connection
with Eq. (1).) It is known that for any given gF one can find, in principle, such a
finite number k0 (depending on gF), that Hk'2($v) = 0 if k ^ k0. (This is valid in
the superspace too.) Thus in order to verify the existence of the field Ω that satisfies
the conditions of the theorem it suffices to examine the compatibility of a finite
number of linear algebraic systems from the infinite chain contained in the equation
dΩ + ^[Ω AΩ~\ = 0 . The resulting necessary and sufficient conditions on the
induced structure are of orders not greater than kθ9 where fc0 depends on the
particular properties of the space gF.

Appendix D. Gauss-Codazzi Theorem

Let us consider an example, well known in mathematics, from the point of view of
the general results obtained in Sect. 2. In Riemannian geometry one deals with the
metric, which defines a non-degenerate scalar product in the tangent space at each
point. Therefore one can define the fields of orthonormal frames (vierbein fields in
General Relativity). These orthonormal frames are defined up to arbitrary rotations
of the group O(n) (if the dimension of the manifold equals ή) and determine the
corresponding metric uniquely. Hence every Riemannian metric corresponds to an
O(n)-structure and vice versa. The flat metric corresponds to the trivial O(n)-
structure.

Let us consider the flat Euclidean space of dimension n + p, i.e. the space Un + P

with the trivial O(n + p)-structure. Every rc-dimensional surface in this space receives
an induced metric in a familiar way. It can be easily seen that this metric corresponds
precisely to the induced G'-structure, where G' = O(ή) in this case. The necessary and
sufficient conditions for a given rc-dimensional Riemannian geometry to be
isometrically (locally) embedded in the flat (n + p)-dimensional Euclidean space are
described by the theorem of Gauss and Codazzi (see, e.g. [5]). We are now able to
show that this is a particular case of our theorem stated in Sect. 2. To make contact
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with the notations of that section we set W = Un+P with coordinates yά = ( / , / ' ) ,
ά=l,...9n + p; a=l9...9n; a' = n+l9...9n + p . W e c h o o s e V t o b e t h e
space IRM considered as the subspace of Un + P defined by the equations ya> — 0.

First of all, we observe that o(n + p) ( 1 ) = 0 that is all the prolongations of the
algebra o(n + p) vanish (see, e.g. [4]). Consequently the only integrability conditions
that might be non-trivial are R(~1) = 09 R(0) = 0. According to Sect. 2 we must
introduce a W-valued 1-form, (Θ*) = (efl,0), where ea are the 1-forms of an
orthonormal (i.e. admissible) coframe field corresponding to the given Riemannian
geometry on an n-dimensional manifold Jί. Next we must find out under what
conditions there exists an o(n + p)-valued 1-form field Ω\9 that obeys

R(~1)ά = dθά+Ω\ A ΘB=0, (D.I)

Ri0)l = dΩ\ + dΩ\ A Ω\ = 0. (D.2)

Then the compatibility conditions for the systems of Eqs. (1), (2) will give the Gauss-
Codazzi theorem. Explicitly Eq. (1) reads

dea+Ωa

bAeb = 0, (D.3)

Ωa

b Aeb = 0. (D.4)

These equations, however, are always compatible. Indeed, if we denote the
components oϊΩa

b byΓa

bc, i.e. Ωa

b = Γa

bce
c, then Eq. (4) amounts to Γa

bc = Γa

cb. Notice
also that sinceΩ\9 corresponds to o(n + p\ its ρart,ί2£, is a matrix 1-form with values
in o(n). It is well known that a connection ω£ compatible with the metric can always
be chosen to have vanishing torsion: Ta = dea + ( O J Λ ^ = 0. We see that Eqs. (3), (4)
and, hence, Eq. (1), always have a solution. Thus only Eq. (2) remains non-trivial,
giving a constraint for the induced metric.

Finally, it is necessary and sufficient for a Riemannian geometry to be realized on
a surface in Euclidean space, that there exists an o(n + p)-valued 1-form field

ωa

b Γa

bce
c

— Γh> pc Ωa>

satisfying (2) and such that Γbc = Γa

Λ, while ωa

b is the unique torsionless connection
1-form corresponding to the given orthonormal coframe ea. Equations (2) for ω%9

Γbc, Ωb> are precisely those of Gauss and Codazzi. To see this clearly consider the
simplest case, p = l. Then Ωb, = 0. Furthermore, no explicit indices of type a' are
needed. In this case Eq. (2) reads as follows,

Rabcd = ΓacΓbd - ΓadΓbc, (D.5)

DΓa = 09 (D.6)

where ^Rabcde
c A ed = dωab + ωae A ωeb is the Riemannian curvature, and

DΓa = D(Γabe
b) = dΓa — ωb A Γb. If a symmetric tensor, Γab = Γba, satisfying (5) and

(6) does exist, then the given Riemannian geometry corresponds to the internal
geometry of a hypersurface in Euclidean space. In that case Γab defines a quadratic
form called the second fundamental form of the hypersurface.
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Appendix E. A Calculation of Spencer Cohomologies in Supergravity

Here we intend to prove that in the problem of the induced SCR ©-structure it
suffices to consider the integrability conditions of the first and second order only.
(That is to say, no higher order conditions beyond the algebraic constraints on the
torsion and the curvature arise in N = 1 supergravity.) In order to prove this, we
have to show that certain Spencer cohomology groups vanish, namely Hk'2($(ζ)v) =
0 for k> 1. (The definitions of Appendices A and C will be used throughout.)

Let zλ = (zA; zΛ) be the coordinates in W ~ C 4 / 4 , which is considered as a real
(8|8)-dimensional space. Here zA = (zfl, 0α, φή) and zΆ = (z\ θ\ φπ) are, as in Sect. 3, the
complex coordinates in C 4 / 4 and their conjugates respectively. We must consider
also the real (4|4)-dimensional subspace V in W. Let xA = (xa,va,vά) be the
coordinates in V, where xfl, a = 1,..., 4, are real, while vα = (v*)*, a = 1,2, are complex.
We shall use the same fixed subspace V9 as in Sect. 3, see Eq. (3.1). It can be defined
also by the embedding into W, so that (xA) is mapped to (zΛ) = (zΛ; zA) with zA = xA,
or, explicitly, za = xa, θa = vα, φή = v71. The Lie algebra g(£) consists of linear maps of
W into itself, with matrices XA

n satisfying Eqs. (3.5-6). Then, by definition, Q(ζ)v

consists of maps from V into W, that are the restrictions to the subspace V c W of
maps belonging to cj(Q. In other words, g(£)F consists of maps, (xA)-+(zΛ) = (XβXB),
where the rectangular matrix Xβ obeys

Xa

β = 09 X"β = 09 (E.I)
and

tr ζ X = 0, (E.2)

as well as the reality conditions: XA = (Xξ)* XA = {Xff and Xf= (Xj)*. The notation
trζX is to be understood as before: trζX = ζ(Xa

a - X*a) - Xή

ή if ζ φ oo and tr ζX = Xa

a

- x ; iff =oo.
In order to work out the Spencer cohomologies of the subspace8 Q(QV C

Hom(K W)9 it is instructive to consider first g cz H o m ( ^ W\ where g corresponds
to matrices satisfying (1), but not (2). Thus g includes g(QF as a subspace, the kernel
of the map tr^ of g into9 C. The space § is multifoliate and, hence, involutive, that
is iίM(g) = 0 for i: ^ 0, k> 0 (see Appendix A and, particularly, the last example
therein). As a matter of course, trζ maps g on C, and we have an exact sequence10,
0-> g({)F-> g-• C-• 0. We can extend this to a sequence for cochains. Indeed,
let us introduce the following notations for the spaces of Spencer cochains:
«*»*(£) = Ck'\q(ζ)v) and 9kΛ = CM(g). Then trζ can be extended, for any 1 1 i9h, to a
map of S)kΛ into ^k~Ui where y™ = Ck\V) for V = Hom(KC), the space of linear
maps of the real space V into C. It follows that # M ( 0 is the kernel of the map
t r ζ : ^ M - > ^ k ~ u . Let Stk~ui(ζ) be the image of this map. Thus, for any

8 The superspace Horn (A, B), with A and B being vector superspaces, may be thought of as the space of all

supermatrices of size (p\q) x (r\s), where (p\q) = dim A, (r\s) = άimB

9 Strictly speaking, we should have written C . In what follows, we will continue to refer, somewhat

incorrectly, to this (l|0)-dimensional complex superspace, as C

10 One says that O - ^ - ^ β A C - ^ O i s a n exact sequence of vector spaces A, B, C,'ύA<=. B, with i being
the inclusion map, while C = B/A, with π being the projection
11 If some of the integers i, k is negative, we set Cfc>ι(σ) = 0 for any space σ
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i, k — 0,1,2,..., we obtain exact sequences

- 0-*^k' ι(<Q->^k'1 -> ^ k ~ u ( 0 - » 0 . (E.3)

The action of the Spencer differential d is defined on the complexes #(£) = © %>k'Xζ\

@ @
i,fc ί,k

is a subcomplex in £f (i.e. the subspace <%(ζ) in ^ is closed under the action
of d). Moreover, the sequences (3) are compatible with the operation d (in particular,
d ° trζ = trζ ° 3). In other words, there is an exact sequence of differential complexes that
corresponds to (3). In such cases it is known that if the cohomology groups of the
middle complex in the sequence are trivial, those of the peripheral complexes are
related by certain isomorphisms. In our case, recalling that Hk>ί(^(ζ)) = Hkti(gKζ)v) and

HkΛ{β) = Hk'\§) = 0 for i ^ 0, k> 0,

we have the following isomorphisms:

i*0,k>0, (E.4)

The problem is reduced thus to the properties of the complex <M(ζ).
Let us consider the case ζ = oo. First of all V = Hom(F, C) consists of all complex

covectors vA. Consequently, every cochain se^k>ι = Ck>ι(V) corresponds to a tensor
5 s , where the dots stand for the set of k symmetric indices (before the comma) and of i
antisymmetric indices (after the comma); £fkil corresponds to the space of all complex
tensors s with the above symmetry properties. Of course, the symmetries of indices
are being understood properly to superspace (an obvious modification of the
definitions cited in Appendix A). Now, the space $Jkii = CM(cj) consists of tensors dβ
(where B is one among k symmetric indices), satisfying daβ =0 and ά\ = 0, in
correspondence with Eq. (1). Then the space 0tk\oo\ being a subspace in £fk'\ consists
of tensors r 5 , that can be represented as r _ = db

h ^ — dβ

β for some cochain
deS)k+1Λ (that is r = trζd for ζ = oo). We observe immediately that the components
r ά of any r in dlkti(oo) must vanish, since d£...ά....... = <$...«..,... = 0 according to the
definition of $)kΛ. By a careful examination one can find that these tensors r are
otherwise arbitrary. That is to say, $kΛ(co) consists of all tensors satisfying rά =0.
Consequently, $kΛ(co) coincides with a space of Spencer cochains Ck\h\ where h is a
subspace in H o m ( F , C), that consists of complex covectors υA satisfying vά = 0. The
space h is obviously multifoliate, hence it is involutive. O n account of ̂ M ( o o ) = CkΛ(h)
and in view of the isomorphism (4), we conclude finally that # M ( g ( o o ) F ) = 0 for i ^ 0,
k> 0. Thus the space g(oo)F is involutive.

In the case ζ Φ oo we have to specify the tensors r 5 , that constitute the space
$kΛ(ζ). These are tensors that can be represented as r , = C(d*...,... —
dfβ ) - d\ , for some ά\_t_ belonging to 3)k + 1'\ (Note that the upper index π = i, 1
refers to the coordinate φπ in the space W, while π = i ,2 at the bot tom of d\ ^
corresponds to v1, v2, the complex conjugates of the coordinates v1, v 2 in V) In analogy
with the previous case, we have r ά = d* ά 5 for some de2)k + l f I. Since ϊoτdeS)1'1 the
components d\ are quite arbitrary (except for symmetries prescribed), we obtain,
that, unlike the previous case, ^ 1 ' I (C) = ^1Jiϊζφ GO. O n the other hand, we still have
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r άβ =0 for any re&kΛ(ζ) with k> 1. Indeed, r ^ must be equal to ά\ άβ , but
these vanish for any de@k + u due to antisymmetry in the fermionic indice ά, β, π. We
observe that Mk%) = i^M(oo)for k> 1, while ^ U (C), C ^ oo, is larger than ^ u ( o o ) .
Consequently, the cohomology groups Hk'X&(ζ)) for £ ̂  °o coincide with
Hk'ι(&(oo)) if k> 1, while for /c = 1 they may differ. On account of the results con-
cerning ζ = oo and of the isomorphism (4), we conclude that Hk'ι($(ζ)v) = 0 for
i:^0, /c> 1. The cohomology group /ί1'2(g(C)F), ζφoo, which is needed in the
problem of induced structure, can be calculated and proves to be non-trivial. (This
is what we have done implicitly in Sect. 3.)

Finally, HkΛ(o,(ζ)v) = 0 for i ^ 0, k> 1 and for all ζ, while for ζ = oo, moreover,
HkJ(q(oo)v) = 0 for ί ^ 0, k > 0. That is why in minimal supergravity (ζ = oo) the
torsion constraints alone suffice, whereas the non-minimal case (ζ ψ oo) requires also
the curvature constraints.
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