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Abstract. The supergravity torsion and curvature constraints are shown to be a
particular case of constraints arising in a general geometrical situation. For this
purpose, a theorem is proved which describes the necessary and sufficient
conditions that the given geometry can be realized on a surface as one induced by
the geometry of the ambient space. The proof uses the theory of nonlinear partial
differential equations in superspace, Spencer cohomologies, etc. This theorem
generalizes various theorems, well known in mathematics (e.g., the Gauss—
Codazzi theorem), and may be of its own interest.

1. Introduction

Ina previous paper [ 1] we studied the geometry of various superspace formulations
of N =1 supergravity. We considered a well-known family of supergravity models
labelled by a parameter {, and found that different approaches to supergravity are
connected with a general geometrical problem. Suppose one has a space endowed
with a fixed geometry of some type. Then, given some surface in this space, one can
define the internal geometry of the surface, induced on it by the geometry of the
ambient space. The relevant general definition of induced geometry uses the
language of G-structures (see refs. [1,2]; the present paper is not completely self-
contained, but uses the notations and conventions of ref. [1]).

In this paper we prove a theorem (Sect. 2) about the necessary and sufficient
conditions that the given G'-structure on a manifold can be realized on some surface
as one induced by the trivial G-structure in R". In general, this problem amounts to
the question whether a certain system of nonlinear partial differential equations has
a solution. The theorem describes the conditions of the formal integrability
(Appendix B) for that system in a convenient form of constraints on the internal
geometry. There is, in general, a chain of integrability conditions of increasing
orders. The number of non-trivial ones, which is always finite, is controlled by
certain Spencer cohomologies (Appendix A) related to the problem.

Thus, we shall see that a G'-structure corresponding to induced geometry is not
arbitrary, but satisfies certain constraints. It turns out that the supergravity torsion
and curvature constraints are just of that nature. In refs. [ 1, 2] it was shown that in
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supergravity one also encounters induced structures. In ref. [1] we have given, for
each {, formulations of supergravity in terms of induced SCR({)-structures. The
SCR({)-structures arise on real (4|4)-dimensional surfaces in complex superspace
C*¥* when it is endowed with the trivial G({)-structure. For the sake of these
formulations to be self-contained, the constraints on induced SCR({)-structures
must be stated in terms of internal geometry. The following constraints were claimed
in ref. [1], where they were shown also to be equivalent to the usual supergravity
constraints in the Wess—Zumino approach. The torsion of an arbitrary connection
in an induced SCR({)-structure satisfies

=0,Tl,=0 if{=oo,also T% — T/ =0. (1.1)

If we choose now a connection which obeys additionally

Taczb = TZb = TZI; = TZzb = ng =0,

w=4T,0; (T,=Tg),

Ty =310 (t,= Ty, (1.2)
T,=1, if¢+1,0

T,=—t, if { =00

T,=t,=0 if =1,

then, for an induced SCR({)-structure with { # oo, the curvature satisfies
« efr=0. (L.3)

Bay
In the present paper we derive (Sect. 3) these constraints from our general theorem,
and prove, by investigation of relevant Spencer cohomology groups (Appendix E),
that they are not only necessary, but also sufficient.

In what follows the superspaces will not be always referred to explicitly, but the
corresponding generalizations will be obvious. As usual, one has only to take care of
correct signs under the (anti) symmetrization of tensors in superspace. For example,
if t 45 is a second rank tensor, then (no summation)

Lap) = Heap+ (=) Ptpa),

Liag = s —(— )*Btga}s

and similarly for higher rank tensors. Here the symbol (—)*2 means minus one,
when the indices are both fermionic, and plus one otherwise.

2. The Basic Theorem about the Induced Structure

Let us consider the manifold R¥, endowed with the standard trivial G-structure, and
an M-dimensional regular surface in R (see [1]). If y*(@ = 1,..., N) are the standard
coordinates in RY, this surface is given by y? = f4(x), with x"(m = 1,..., M) some
coordinates on it. According to ref. [1] we have a G'-structure induced on the
surface. This structure is determined by the frame field e(x), a,m = 1,..., M, which
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satisfies the following relation

p;l 4
S oro9 =gt @)

with g%(x) being the M x N part of some N x N matrix function g¥(x) with values in
G. Conversely, suppose we have some G'-structure represented by a frame field ef'(x)
on an M-dimensional manifold .#. This G'-structure is equivalent to an induced
structure if there exists a map, y* = f%x), of . into R" satisfying the differential
equation (1). The requirement of the compatibility of Eq. (1) poses some constraints
on the G’-structure in .#. To describe the necessary and sufficient conditions of
compatibility we need the following definitions.

Let g be the Lie algebra of the group G = GL(N, R). The algebra g consists of
N x N matrices corresponding to linear transformations of the vector space RY. It
will be convenient to denote this vector space by W, in order to distinguish from the
other cases, when R" appear in our considerations. Let k be an arbitrary non-
negative integer. One defines g™, the k™ prolongation of g, as the space of tensors
. e+ A0 W, symmetric in the indices by,....b,+,and such that for any fixed values
of b,,.. Bk+ | the matrix 1§, 5 . belongs o g. Thus, for instance, g = g. Now we
define g, as the formal sum of linear spaces?

0o =g(—1)+g(0)+g(1)+g(2)+ e

where we set g~ = W.

The space g, has the natural structure of a Lie algebra with the following
property. If X, Y are homogeneous elements of g, , that is X eg®, Yeg“ for some k
and /, then [ X, Y]eg***. To describe explicitly the relevant operation [,] let us use
the following correspondence. For every X eg®* ™Y, k = 0, one can construct a vector
field on RY with the following homogeneous k™ order polynomials as the vector
components

1
Xy = t51 P LA

Here (y%)eR", while t;, ; are the tensor components of X eg®~ Y. For an arbitrary
element X eg,, one has in such a way a formal power series X*(y) which is a formal
vector field X(y) on RN, We identify the vector fields on RN with first order
differential operators: X(y) = X%y)0/0y". According to the definition of g, a formal
vector field X on R corresponds to some element X of g, if and only if it satisfies

a a4
(aiy(g(y))eg, 22)

order by order in y. It can be easily seen that the set of vector fields satisfying Eq. (2)
is closed under the usual commutator and that the resulting operation [,] in g,
obeys [g®), ] < g**7. Let us remark that g, has, in particular, the subalgebra g'®,

1 ie. the linear space of formal sums X _; + X, + X + X, + -, where X,eg® and the number of non-
zero terms may be infinite
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which coincides with g, and the subalgebra g~ + g'*, which is the semidirect sum
of the Abelian algebra W and the algebra g acting on W.

We denote by G, the group corresponding to the Lie algebra g, . This group will
be described below in terms of formal power series on RY.

Now, if €F, a,m=1,..., M is a frame field representing a G’'-structure in .#, let
e® = ¢%(x)dx™ be the corresponding coframe field. Then we define on .# the 1-form
field ® with values in W as follows:

O’ =gpeb (2.3)

(i.e. we prolong e to ®@%, taking @ =0fora’ = M + 1,..., N). We are ready to state
the following:

Theorem. A G'-structure in M is equivalent to the structure induced on a surface in the
space RN by the trivial G-structure in RN (i.e. Eq. (1) has a solution) if and only if
there exists on M a 1-form field Q=0 (x)dx"(m=1,...,M =dim .#Z < N) with
values in g, satisfying the following conditions

Q-v=p, 2.4)
dQ +1[Q A Q] =0. 2.5)

Here @ is connected with a coframe e, admissible for the G'-structure in view, by the
relation (3); 2® denotes the g™-component of 2 in the decomposition g, = Y g%,
k

while [2 A 2] in Eq. (5) denotes the usual operation on the Lie algebra valued
forms.

We remark that the criterion stated in the theorem is self-consistent, that is it
does not depend on the choice of the frame field e'(x) (coframe field e%), for the
following reasons. Condition (5) is nothing but the requirement that the gauge field
2 has vanishing curvature (strength). For every x-dependent G'-rotation of e(x) we
can find a G-gauge transformation of the field 2, which preserves (4). Then condition
(5) will be maintained as well. (Note that G is the subgroup of G, corresponding to
the subalgebra ¢ =g of g...)

Let us show first that the G’-structure induced on the surface y* = f9(x) in RY
necessarily has the property described in the theorem. Equation (1), determining the
induced structure, can be rewritten using the previous definitions

df'=glo’. (2.6)
Now there is a g,-valued 1-form @ defined as follows:
QU =g-14f,
QO =g""dg,
QW =0 for k>0,
where the indices have been suppressed. From (6) it is obvious that this 1-form 2
satisfies (4). One can check in a straightforward manner that 2 satisfies also Eq. (5).
Instead one can observe that the so-defined 2 is merely a pure gauge2 = h~ ! dh with

a G -valued gauge function A(x). Then condition (5) becomes trivial. (Although in
this case h(x) can be chosen to lie for all x in a subgroup of G, corresponding to the
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subalgebra g~ + g'©, there may be some other pure gauges, which need not have
such a property, but do satisfy (4).)

Let us inquire whether the existence of a field £2, obeying Egs. (4) and (5), is also
sufficient for a G'-structure to be induced. The above consideration suggests the
following arguments. Let us suppose first that the Lie algebra g is of finite type, that
is g® = g?* 1 = .- = 0 for some finite p. Then the algebra g, and the corresponding
Lie group G, are finite dimensional. If there exists a field 2 satisfying the conditions
of the theorem, then in the case of a finite dimensional Lie group G, the vanishing
curvature requirement of Eq. (5) leads to a well known conclusion that this field Q2 is
a pure gauge. In other words,

Q=h"1dh, (2.7)

where h is a function on .# with values in the group G,. For an arbitrary group G
this statement will be proved in Appendix C. Thus we proceed here with a general G.
To complete the proof of the theorem we have to show only that the existence of a
field 2, obeying Egs. (4), (7) for a G'-structure on .#, implies the existence of a
solution to (6).

To make the meaning of (7) clear we have to consider the structure of the group
G, in more detail. As it was already mentioned, g.,, may be thought of as a Lie
algebra of formal vector fields on RY satisfying condition (2). Such vector fields form
infinitesimal automorphisms of the trivial G-structure in RY (cf. [1,4]). Therefore the
group G, consists of formal transformations of RY, which can be represented as
y%— ¢%(y), where ¢%(y) is a formal power series obeying

6 a
(W(y))eG. (2.8)

The group G, is thus the formal analog of the group I'(G) of automorphisms of the
trivial G-structure in RN (cf. [1,4]).

Let X ;‘:,(x, y) correspond to the g, -valued 1-form 2 =, (x)dx™, as explained in
the text before the theorem. Then condition (7) means that there exists an x-
dependent element h(x)e G, which corresponds to such an x-dependent transform-
ation y*— ¢%(x, y) of R¥, that

Xi(x,y) = —[a(g:m) (x,z)] s (2.9)

where ¢~ ! is the inverse of ¢ at each x. Since (¢ ~!(x, ¢(x, y)))* = )’, we have

d
67 e g )
—1\a 1\a b
=20t + 1% L gt ) 2 .

After the substitution into (9) we obtain

1\a b
Xi(x,y) = %Bl(x B ) 22 ) 2.10)
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Remember that X% (x,0) = @%(x), due to (4). Taking into account (8) we see that
Eq. (10) at y =0 gives just the desired relation (6) with

a a
g5(x) = @g(x, 0, fx)="(x,0).

We find that Eq. (7) does imply the existence of a solution to Eq. (6). This completes
the arguments.

To conclude this section, a few remarks concerning the general situation may be
useful.

Let us denote the left-hand side of Eq. (5) by R, = dQ + 3[2 A Q7. The equation
R, =0 turns out to be an infinite set of the conditions R® =0, k= —1,0,1,2,....
Here R,, = )" R® is the decomposition of the 2-form R, with valuesin g, =Y g®.

k k

Using the matrix notations for 2 =3 Q®, Q"Y' =@, we have explicitly
k

REV=dO + 0 A @ =0,
RO =dQ© 4 QO A QO 4 QW A @ =0, etc.. 2.11)

To find out whether the field €2 satisfying the conditions of the theorem for a given
G’-structure exists, one may try to solve the equations RV =0, R9=0,...,
successively with respect to 29, QW etc. Then one has to find at first such a 1-form
QO with values in g¥ = g, that d®@ + Q2@ A @ =0 holds. It is clear that d® must
obey certain algebraic conditions at each point, in order to ensure the existence of a
solution 2. Consequently, the G'-structure under consideration must satisfy
certain conditions on the first derivatives of the frame field €;(x). (Remember that © is
connected with e™, as described before the theorem.) Suppose such a field 29 exists.
Now onehastofind2® = (24,), the 1-form with values in g™, such that R = 0 holds
true (2 A @ in (11) must be understood as 2%, A ©F). The requirement of the
existence of such a field 2 clearly amounts to certain conditions on the second
derivatives of e(x) at each point, and so on. At first sight we obtain in this way an
infinite chain of the integrability conditions for Eq. (1) of increasing order. However,
only a finite number of these conditions is non-trivial. As is explained in Appendix C,
when we solve the equations R(™ Y = 0, R©® = 0, etc., successively, we have to deal at
eachstep withasort of cohomology equation. The obstructions to the compatibility of
these equations lie in certain Spencer cohomology groups H*? (g,), which are
generally vanishing for k sufficiently large.

The resulting finite number of the integrability conditions on a G’-structure can be
formulatéd as constraints on the so-called structure functions. The conditions of the
first and second order amount to certain constraints on the torsion and the
curvature in the G’-structure. It may occur that the higher order conditions are
trivial. This is just the case, for example, in the classical problem of the induced
Riemannian metric on a surface in Euclidean space. This situation is described by
the Gauss—Codazzi theorem [4, 5], which turns out to be a particular case of the
theorem stated in the present section (see Appendix D for details). Fortunately, in
applications to N = 1 supergravity it will be also sufficient to consider the conditions
of first and second order only.
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3. Deriving the Torsion and Curvature Constraints

Here we shall show that the supergravity torsion and curvature constraints (1.1),
(1.3) follow from the theorem of the preceding section?.

The following notations will be used. We consider a real (4|4)-dimensional
manifold .# and an SCR({)-structure in it, assuming the relevant definitions of
ref. [1]. Let e=dxME{(x,0,0) be an admissible coframe field, with
xM = (x™, 0", 0") being coordinates in .#. The coframe may be thought of as a vector-
valued 1-form, e = (e#), which takes its values in a real (4|4)-dimensional vector
space V.1t will be instructive to identify ¥ with a real subspace of the complex vector
space W = C*". If z4 = (29, 6%, ¢") are the complex coordinates in W, we set V to be a
subspace defined by the following equations:

2% = (2%, 0% = (¢%)*, ¢" = (0. G.D)
After such an identification one may consider the coframe 1-form as taking values in
the space W, or, rather, denote the resulting W-valued 1-form field by ®. The

components of @ that correspond to coordinates in W are complex valued 1-forms,
which we denote, along with their conjugates, as follows,

@) =(0406")=(2,0°0%2",0° 0. (32)
Here the index A = (4; ) = (a, 0, ; d, 4, ) refers to coordinates z* = (z*, z%), where
2z = (2% P, @™ are the complex conjugates of z4 = (z%, 6% ¢"). We have just defined

a W-valued 1-form (2)in terms of a coframe field (e*) = (¢°, €% ¢%). This can be expressed
by the following somewhat tautological relations:

Z0=Z0=¢",
@zx — @a — ea,
O =@ =", (3.3)

Note, however, that e® are always real valued 1-forms, while e* and e” are always
conjugated, for e is a coframe in the real (4|4)-dimensional manifold .#. Thus the
definitions (3) of a W-valued 1-form @ makes its values satisfy Eqs (1) of the real
subspace V in W, as it must be.

The above notations, though cumbersome, have been introduced to be close to
the general context of Sect. 2 and to make its use here mogt straightforward. In
Sect. 2 we dealt with a W-valued 1-form field ® too, the vector space W being
arbitrary. In the theorem about induced structures we used © tied to some coframe
field of a G’-structure under consideration. This forced the values of @ toliein a fixed
subspace (also denoted by V) of the space W. The dimension of W equaled the
dimension of the ambient space (or superspace) while that of V equaled the
dimension of the manifold (a would-be surface in R¥, N = dim W), where the given
G'-structure was defined. Although V can be an arbitrary subspace of W, it must
always coincide with the subspace, that appears in the definition of regular surfaces
induced G'-structures and of the group G’ itself. When we considered in preceding

2 Ofcourse, the statement of the Theorem must be generalized to superspace in a straightforward manner
as explained in Sect. 1
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sections the general case of induced structures, we choose for definiteness the
standard M-dimensional subspace of W = R". So we did, in particular, in the
formulation of the theorem (cf. Eq. (2.3)). In the present case, when G’ = SCR({), it is
convenient to use W = C* and its real (4|4)-dimensional subspace V defined by
Eqgs. (1). Thus, for instance, Eq. (3) of the present section is parallel to Eq. (2.3). These
conventions for W and V are coherent with those of ref. [1], which concern the
definitions of SCR({)-structures and induced SCR({)-structures. Note, finally, that
in order to be in agreement with generalities of the preceding sections, we must treat
W =C*" as a real (8/8)-dimensional space. This can be achieved by the use of
complex coordinates along with their conjugates. Now the application of the
theorem must cause no trouble.

Let us consider an SCR({)-structure in a real (4]4)-dimensional manifold /.
Let ® be a W-valued 1-form field connected with some admissible coframe,
et = dxMEf(x, 0,0), in .4 by means of Egs. (3). Our aim is to specify the conditions
ensuring that this structure in . is equivalent to an SCR({)-structure induced on
some surface by the trivial G({)-structure in the ambient space C*. Let g({) denote
the Lie algebra of the group G({). According to the theorem of Sect. 2 we must
inquire into existence of a 1-form field 2 on ./ that takes values in g({),, = Y. ¢({)®

and satisfies (2.4) and (2.5). Let us consider the components Q% of Q Corres-
ponding to the decomposition of g({),, into the sum of subspaces g({)*; let us
decompose also the infinite dimensional equation (2.5) into its g({)* components.
Thus, instead of dQ2 +i[Q2 A2]=0, we consider the equations R® =0 for
k=-1,0,1,2,..., where R® form the decomposition of R, =dQ2 +
12 A 2]. An explicit expression for R~V involves QY only with —1 < j<k,
moreover, 2% enters linearly and without derivatives. (This can be seen, using
the property [g(0)®, g())"] < g(0)¥*?, of the Lie algebra g({),, as stated in
Sect. 2.) Hence one may consider each equation R*~Y =0 as a linear equation,
to be solved for 2® in terms of 2V with — 1 <j<k. Starting with 2"V =0
(cf. Eq.(2.4)) one may try to find successively 2® for k=0,1,2,..., from
R®~1 =0, If a solution exists at each step, a field ©, satisfying the requirements
of the theorem, will exist too. It follows that the compatibility of arising linear
equations is necessary and sufficient for the given SCR({)-structure to be induced.
That is to say, the integrability conditions for the differential equation (2.1) are
rewritten as compatibility conditions of certain linear algebraic equations. In the
case of the algebras g({), it turns out that these equations for *® with k=2
are always compatible, provided the first two equations, R =0, R® =0,
are compatible. In other words, the existence of a solution 2©® to RV =0
and QW to R®=0 implies that &% for k=2 exist too, satisfying
R® =D =0, When { = o0, moreover, the existence of 2 is already sufficient for Q®
withk = 1toexist. The proofcan befound in Appendix E;itfollowsfrom the vanishing
of certain Spencer cohomology groups related to g({).

Thus in the present case it suffices to investigate the compatibility of the system
R1D =0, R9 =(. The former equation takes the following explicit form:

R-M=dot— 0% A Q% (3.4)

where the matrix 1-form (.Q’g) stands for the g({)-valued 1-form Q2. Thatis to say, we
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are looking for a solution .Q’g to (4), which is a 1-form that satisfies the conditions
corresponding to the algebra g({). The group G({) was defined as a group of complex
linear transformations of C**(see [ 1]). We are using now the space W, which is, strictly
speakmg, C*considered asareal space Hence we have to use the matrices of the form
(X}, which consist of blocks (X3 £),(X ), (X4 and (X7), where X1 = (X£)*, X = (X3)*.

(Remember that an 1ndex A =(4; A) runs over the values correspondmg to the
complex coordinates z* and their complex conjugates z*.) Then accordlng to the
definition of the group G((), its Lie algebra, g({), consists of the matrices (X 3) obeying

Xe=X'=0, X=X’ =0, X¢=X3=0, (3.5)
and also a {-dependent condition
tr, X =0, (3.6)
where the following notation is used. If { # oo,
tr, X = {(X5%— X% — X7, (3.7)
whereas for { = oo, we set
trp X = X°— X° (3.8)

The existence of a 1-form .(2;? satisfying Egs. (4), (5) and (6) is equivalent to certain
constraints on d@, that is on the first derivatives of a frame field representing the
given SCR({)-structure. It is convenient to express these conditions in a more
covariant form.

Let us consider a connection in the SCR({)-structure, that is an SCR({)-valued 1-
form w. The Lie algebra SCR({) consists of linear transformations of a real (4|4)-
dimensional space. We consider this real space as a subspace V in W, given by (1).
According to the general definition, the algebra g’ consists of transformations of
V that can be extended to linear transformations of the space W, belonging to
the algebra g and leaving the subspace V invariant. In the present case, g = g({),
g'=SCR({), and each extension is unique. In partlcular for a matrix (Y3) in
SCR({), we get a matrix (Yg) in g({) taking YB =Y#, Y4=0. (Remember that
(Y5)eSCR({) satisfies the same equation as X7 in (5) (6) and still obeys Y§ =
(Y§)* and (Y§)* = 6365 Y}.) Let @3 be the g(() extension of the SCR(()-valued 1-form
4. (Were this extension not unique, we could choose an arbitrary one. This may
happen for a different couple g, g'.)

For the coframe 1-form field e# and connection wj the torsion 2-form T# is
defined as usual,

T4=de! —e® A wj. (3.9)
Replacing e and wi by ®4 and cb‘g, it is straightforward to check that the 2-form
Ti=d0"— 0% A &} (3.10)

is connected with T in the same way as ©@* is connected with e in Eq. (3).
Combining Eq. (4) with the definition (10) of T4, we get TA=©@8 A I}, where

;= =T 3¢ 1s a g({)-valued 1-form given by I' =2 — &. Expanding in the basis
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of e* and turning back from @, T to e, T, we obtain the following expression
for T4 =1e A eBTy"., the torsion of the connection

Ty'c=Tty— (=T (3.11)

Finally, the first order integrability condition for an SCR({)-structure to be
induced is satisfied (i.e. Eq. (4) is compatible) if and only if the torsion, Tp", of some
arbitrary connection in this SCR({)-structure can be represented in the form (11),
with some quantities I"3. satisfying for each fixed value of the index C the conditions
(5), (6) of the algebra g({)®. Now it is easy toread off the resulting torsion constraints.
The algebraic conditions on the right-hand side of Eq. (11) imply that the torsion
must obey

T, =0, T/;=0, (3.12)
and one more constraint, for { = oo only,
T.h,— T} =0. (3.13)

(For example, I';; =0 due to (5). Consequently, T,, must vanish, since T, , =
I, + 17, and we have also T, = 0, for T, is related to T, by complex conjuga-
tion.) The resulting torsion constraints are just those claimed at the end of Sect. 1.
One may stop at this point if { = co, as we have already mentioned. When { # oo,
one has to proceed further and derive the curvature constraints from the
requirement of compatibility of the equation R® = 0. Explicitly one has

ROI=40f — QS A QL —@° A QWi =0, (3.14)

where .Qg is the same as in (4). Equation (14) is to be solved with respect to the 1-
forms QM3,, which represent a g({)"-valued 1-form 2. Thus according to the
definitions of Sect. 2, for each value of C the 1-forms Q214 satisfy Egs. (5) and (6) of
the matrix algebra g({), and also

Q0% =(=yQ" (3.15)
Let us introduce the following notation:
Ri=doi—0§ 0L (3.16)

Equation (14Lmay be rewritten, expanding in the basis of I1-forms et:
Ri=1e A ePRE.,), QWi =ePQWE,  while @7 is related to e4 via (3). Then
Eq. (14) assumes the following form:

ngcp - (—)CDQ(UgDc = ﬁgcm (3.17)

and similarly for complex conjugates. This equation is to be regarded as an
inhomogeneous linear equation with respect to 2. The right-hand side, Ry,
satisfies Egs. (5), (6) for any fixed C and D, and still obeys

R =0. (3.18)

3 Itiseasy to verify that if this condition holds for some connection, then it does for any. In the general case
the first order integrability condition as a torsion constraint was derived in ref. [2], see also [3]
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The last condition is a form of a Bianchi identity, which can be also written as
©® A R} =0. Thisidentity can be obtained from (4) by external differentiation. Note
that the condition (18) is necessary for compatibility of the linear system (17), as the
left-hand side of (17) vanishes obviously due to (15) under the super-anti-
symmetrization in B, C, D. The question* we are interested in is what conditions
beyond (18), if any, have to be imposed on Ricp to ensure the compatibility of
Eq. (17).

One can verify that it is always possible to match a solution to (17) satisfying the
relaxed conditions: Egs. (5) and (15), but not (6). Let ¥4, be such a solution, that is

‘chz) = ( - )Bc‘pgm)s (3~19)
‘/’gcp - ( - )CD‘//gDC = Rgcna (3~20)

with Egs. (5) satisfied by y4«,, for any C, D. The desired solution, 2"4.,, however,
must obey one more condition, corresponding to Eq. (6), {(Q™4cp — QM%) —
QW7 =0, or, symbolically, tr, Q™ =0. Let us try to find Q‘” in the form

QW = — ¢. Combining (15) and (19), (17) and (20), we see that ¢ 4., must obey
qb[BC]D =0 and ¢gicp; =0, which yields

‘f’ga) = (lsf}scn)- (3-21)

The condition tr, Q" =0 requires that tr ¢ =tr,)y. Thus the compatibility of
Eq. (17) for satisfying (5), (6), (15) amounts to the compatibility of the equation

Uicp — Picp) — Piep = (tre¥)ep (322

for the unknown ¢ satisfying (5) and (21). To work out these conditions, let us
observe that the left-hand side of Eq. (22) vanishes identically for C=p, D=g.
Indeed applying successwely (21) and (5) we find ¢g;; = paa =0, and similarly

ws = 0. Finally, ¢7;, =0 vanishes, for it is antisymmetric in three indices, as
required by (21), whereas each of them takes two values only. By the same arguments
(tr1),; reduces to a single term, namely, (tr,¥),, = — ¥, This term need not be
zero a priori, since Y, unlike ¢, need not satisfy (21). However, we observe
immediately thatit should vanish, (tr,i/),; = 0, to ensure the compatibility of Eq. (22)
where (tr;¢),, = 0 identically. Thus we have to require

Wi, =0. (3.23)

A direct inspection reveals that if (23) holds, there are no further obstructions for a
solution ¢ of Eq. (22) to exist. Then Eq. (17) will be compatible too, with a solution
given by QM =y — ¢.

Returning to Eq. (17), the condition of its compatibility given by (23) is now to be
expressed in terms of Ri.,. By definition,  satisfies (19) and (20). It follows from
Eq. (19) that /%, can always be represented as

ip6
Vs = Vit (3.24)

4 This is, in fact, a typical problem of the Spencer cohomology calculus, see Appendices A, C, E
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where ¢, is the antisymmetric symbol. Then from the relation (20) we have

‘rpo’ = l/]a'gtp + l//p 1G° (325)
Using a notation ¥, = /i, we obtain
Rl =5+ ¥, (3.26)

Note that the 2-form RB obeys (tr,R R) = 0, because it is a g(¢)-valued 2-form, as the
definition (16) shows. By arguments already stated and using, in particular, the
identity (18) the equality (tr,R),, = 0 can be reduced to

npo' - 0 (327)

Then Eqgs. (26) and (27) give ¥, = 4¢,, for some function 4, and Eq. (15) can be
rewritten,
=¢,,R? = Me,,e

Tipo PP Vipe

(3.28)

G -:p np ‘m)

Note, however, that this expression is, in fact, a mere consequence of the Bianchi
identitie_s. Now condition (23) can be expressed in terms of R. Using (24) and
Yt =16}, we obtain first 4= 0. Then Eq. (28) gives a condition equivalent to (23),

Rt ¢ =0. (3.29)

17[0'

Let us notice that this is equivalent to R;‘pd = 0. The last condition could be read off
already from Egs. (23)-(25). However, Eq. (29) is the weakest form of such a
condition, which is simpler to use, while R};, = 0 can be restored by means of Bianchi
identities.

We have derived Eq.(29) as a condition on the right-hand side of Eq. (17),
required for its compatibility, or, equivalently, for the compatibility of the equation
R© =0 (see Eq. (14)). Remember that the compatibility of this equation amounts to
the second order integrability conditions in the problem of induced SCR({)-
structures. Let us notice that condition (29) is indeed a constraint on the SCR({)-
structure. The 2-form Rf was defined in Eq. (16) in terms of a 1-form Q4 which in
turn was introduced as a solution of Eq. (4). Thus (29) implies certain restrictions of
the first order in derivatives on the field 23, and hence, by Eq. (4), certain second
order constraints on a coframe field representing the SCR ({)-structure in view. (Note
that a coframe enters Eq. (4) via the relation (3), and that the resulting constraints on
the SCR({)-structure does not depend on the particular admissible coframe field.) Of
course, the condition (29), as it stands, is still of little use. What we wanted is to
express the second order integrability condition in terms of curvature of connections
in the SCR ({)-structure, rather than of the g({)-valued 1-form 27. It is straightfor-
ward to extract this from Eq. (29).

It would be inconvenient, however, to deal with arbitrary connections. Let us
instead reduce the set of connections to be considered. For this purpose one may
impose certain conditions on the torsion. A possible choice of such conditions is
given by Eq. (1.2) of the next section. One can see that given a coframe field e#, one is
always able to find such an SCR({)-connection in Eq. (9), which satisfies (1.2). Of
course, a connection obeying (1.2) is by no means unique, and we consider any such
connection. Let wj = e“wpe be an SCR({)-valued connection 1-form, which satisfies
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(1.2). Let also @& be as above, a g({)-valued 1-form, the extension of wa. Assuming
that the first order integrability conditions are satisfied, the torsion of the connection
i must obey the constraints (12) in addition to the “conventional constraints” of
Eq. (1.2). Remember that the torsion tensors satisfying (12) are just those, which can
be represented as in Eq.(11). That is to say, there exists a g({)-valued 1-form
Iy = T3, satisfying (11). A possible choice may be as follows:

aﬁ_rﬂa_ o po
Iy =Tg=3T0,
Fﬁa_zT" 5,;,
I, =3T750,
I_'zd=0, (3.30)

while the other independent components of I';. vanish. (Note that the last line in
Eq. (30) serves to ensure tr,J" =0 if { # co, as required for a g({)- valued 1-form).
Then, if we set Q5 = & + I 3, it will satisfy Eq. (4). Thus it is the 1-form 27, that is to
be substituted into the constraint (29). Taking into account the definition (16), we
have

RE=Ri+dI'f —o§SATE TSN —T§ATE,
where
Ri =doj — 0§ A of

is the curvature of the connection wj. Then using Eq. (30) we obtain finally that
condition (29) is equivalent to the following curvature constraint

2 eh1 =0 (3.31)

Bay

Of course, this final form of the second order constraint depends on the choice of
conventional constraints in Eq. (1.2), which could be different. (The only purpose of
Eq. (1.2) was to reduce the set of connections.)

To conclude, we have proved that the given SCR({)-structure is induced on a
surface by the trivial G({)-structure in C** if and only if (i) the torsion of some (and
hence any) connection in this SCR ({)-structure satisfies (12) for { # oo, or (12) and
(13) for { = co; (ii) when { # oo, the curvature of some (and hence any) connection
obeying (1.2) satisfies (31). This is just what we claimed at the end of
Sect. 1.

Appendix A. Spencer Cohomologies®

Let us consider some linear space g that consists of M x N matrices, or linear maps
from V to W, where V and W are vector spaces: V ~ R with coordinates (x), while
W ~ RY with coordinates (y°). (The generalization of the considerations that follow
to the case of superspaces is straightforward.) That is to say, consider some subspace
g < Hom(V, W). The k'™ prolongation, g%, of the subspace g is defined as the space of

5 See, e.g. [6,7]
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tensors, tﬁlmbkﬂ, symmetric in the lower indices and such that the matrix 5, .,
corresponds to an element of g for any fixed values of the indices b,,...,b., .
Furthermore, we set g =g and g~V = W. For i,k=0,1,2,..., consider also the
space C¥{(g), which consists of tensors, &, ., .. that are, roughly speaking,
arbitrary tensors from g*~ ! supplied with additional antisymmetric indices
Cy,-..,c;. The elements of C*¥(g) will be called cochains. The Spencer differential o is
an operator acting from C*i(g) to C*~1i*1(g) as follows:

a a
tbl...bk;cl...ci —?(at)bl...bk_ 1;€1.0:Ci4 1
= tbl.,.bk_l[c‘;czu,cHl]: (Al)

where the antisymmetrization in the i+ 1 last indices (with a factor of 1/(i + 1)!
included) is assumed. The operator (1) satisfies clearly 00 =0. One says that a
cochain ae C*¥(g)is closed if o = 0, and exact if « = 03 for some fe C** 11~ 1(g). If we
denote by Z*(g) the subspace of closed cochains and by B*(g) the subspace of exact
cochains in C*i(g), then from 80 = 0 it follows that B*(g) = Z*¥(g). Therefore we may
define the cohomology group of degree (k, i) as a coset space H*(g) = Z*(g)/B*(g).
The cosets H*¥(g), k,i =0, 1,2,..., are called the Spencer cohomology groups of the
space g < Hom(V, W).

The space g s called p-acyclic, if H*¥(g) = 0 for k > 0 and 0 < i < p. Furthermore,
g is called involutive, if H*/(g)= 0 for k>0 and i > 0. (Note that every space g is
1-acyclic).

Let us consider, as an example, the space of all M x N matrices, i.e. g=
Hom(V, W). It can be demonstrated in a direct way, using, for instance, the Young
tableau calculus, that the space g = Hom(V, W) is always involutive. We remark in
passing that this statement is essentially the Poincaré lemma for W-valued
differential forms on R™ with arbitrary polynomial coefficients. Another example is

= gl(n, C), that is the space of all complex linear maps of C"~ R?" into itself,
conmdered as a subspace in gl(2n, R) = Hom(R?*",R*"). To see that gl(n,C) is
involutive too, it is convenient to arrange the coordinates of R?" into two sets of
complex numbers, (z%), a = 1,...,n and (z°), which are the complex coordinates in C"
and their conjugates Then gl(n C) becomes the space of complex 2n x 2n matrices
X¢ with 4, b=1,. .7, such that X?=(Xg)* and X&=Xj;=0. In this
representation the problem is factorlzed in an obvious way and the computation of
cohomologies of gl(n, C) is reduced essentially to the previous example.

The same factorization occurs in a more general case of a subspace gc
Hom(V, W), which consists of matrices satisfying the only condition that some of
the matrix elements on certain places must vanish for all matrices in g. Following the
authors of ref. [8], we call such spaces multifoliate®. Multifoliate subspaces in
Hom(V, W) are always involutive. Let us consider an example of this sort, which
proves to be useful in our study of supergravity (Sect. 3 and Appendix E). Let us gake
the superspaces ¥V = W = C* with coordinates arranged into two groups: (z*) =
(z% 2%, where (z%)=(z%0%¢"), a=1,23,4 a=1,2; i=1,2, are the complex
coordinates in C**, while (%) = (z%, &%, ™) are their complex conjugates. Consider the

6 In [8] the matrix Lie algebras of this type were considered
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space g, which consists of matrices X g? obeying the following conditions
Xi=X%=0, X{=X3=0. (A.2)

(Of course, X5 = (X#)*, while the last line of Eq. (2) means that g consists of complex
linear maps.) The so defined space g, being, in fact, a Lie algebra, is multifoliate and,
hence, involutive. This example is intimately connected with the algebras g({)
appearing in the context of supergravity (see, in particular, Appendix E).

Appendix B. Criterion of Formal Integrability

Our aim in this appendix is to make it manifest that some mathematical methods,
used in the theory of nonlinear partial differential equations, survive the advance of
superspaces. For this purpose we review at an elementary level the relevant
mathematical constructions.

The modern status of the subject and further references can be found in refs. [6]
and [7], that we shall follow in the main. However, we will use throughout local
coordinates and make no attempts to account for the conditions like non-
degeneracy or constancy of ranks of some maps, etc. The advantage of such a
cavalier treatment will be that the superspace generalization becomes self-evident.

Let us consider a system of partial differential equations, with y* (a=1,...,N)
being the unknown functions of the arguments x™ (m = 1,..., M). Without loss of
generality we may study a first order system of the following form:

a

ay
Fl—=,y%,x™|=0, B.1
< e VX > (B.1)
where F = (F*,..., F"), with t being the number of distinct equations in the system.
The function F will be understood throughout to satisfy the condition that the
equation

F(po, p*,x™) =0 (B.2)

is compatible with respect to p%, for any given p* and x™. We can proceed from the
first order equations to an equivalent system of the second order by adding the
equations that correspond to

F (P> Py D%, X™) =0 (B.3)
for /,n=1,..., M, where we set, as a definition,
d OoF 0F OF
F, F=p, n (B.4)

Tae P Py o

The resulting second order system consists of Eq. (2) together with Egs. (3), where
the second derivatives of the unknown function p* = y“(x) are to be inserted in place
of p%,, and so on. Proceeding further in an obvious way, at the i step we obtain a
system of the order (i + 1), called the i prolongation of the system (1). The top order
equation is of the form

F . s Dy 05 XM =0, (B.5)

nion\Pmymipqot
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with F, ,, defined by applying i times d/dx to the function F (cf. Eq. (4)).
Let us try to find a solution to Eq. (1) as a formal power series,

1
yie)=p*+ ;k—,Pi‘m.,.m,‘(xm‘ = xg%)... (x™* — xg%). (B.6)

Then the coefficients of this expansion must obviously satisfy an infinite chain of
equations, namely, Eq. (2) at x = x, and Eq. (5)at x = x,,fori=1,2,3,... . Note that
Piny...mi., €nters Eq. (5) linearly. Therefore, if some p* pj, satisfying (2) at x = x,, have
been found and we are looking for higher coefficients successively, then at each step
we have to solve a certain system of linear algebraic equations. The following
definition is in order.

The system of partial differential equations (1) is called formally integrable if,
given arbitrary p%, p° x§ satisfying (2), the arising linear algebraic equations are
compatible at each step in an order by order search of higher coefficients for every
choice of solutions at the preceding steps.

Let us consider the conditions for the formal integrability. For this purpose we
assume that the formal integrability holds up to the (k + 1)* order. Then we have
to ascertain the conditions for this to be valid also in the next order. Suppose
some solutions p*, p& ,...,Pm,..m,,» have been chosen at the steps from the first to
the k™ one. With the choice made in all points x, these coefficients may be considered
as functions of x. Let x, be an arbitrary point. Under the above assumption it is
always possible to arrange it so that the functions p“(x), py,,(X), ..., Pm,...m, . ,(X) Obey
the following conditions. They satisfy at every x Eq. (2) and Egs. (S) withi=1,...,k,
whereas p*(Xo), ph, (Xo), - - - s Py...m, , ,(X0) correspond to an arbitrary given solution of
these equations at x = x,, and, moreover,

op° . OPmy...m
m _ =pm1(x0)w~~a——k

At the next step we have to be interested in the compatibility of Eq. (5)fori=k + 1 at
the point x = x,,. This equation may be written symbolically as
A:lnlp‘:nlmz...mka»z-l-Bmz...mk+2 =07 (B'8)

where the following notation is used,

= Dmy...mp1(X0)- (B.7)

=X

X0

oF
Ap = A7(ph, p°, x5) = P (B.9)
p

m

Xx=x0

Equation (8) is a system of linear inhomogeneous equations with respect to
Domy...ms o> While B, in Eq. (8) stands for the terms depending on p’s of order less
than k + 2. The solution of Eq. (8) is requested to be symmetric in the indices
m; (i=1,...,k + 2). Note, however, that the existence of solutions at the preceding

steps guarantees at any rate the compatibility of the equations
A;nlvfmmz---mkﬂn + Bmz...mk+1n =0, (BlO)

where v}, ., is required only to be symmetric in k + 1 indices m;, but not
necessarily in all k + 2 indices. The compatibility of Eq. (10) can be shown by
substituting the above functions p(x) into Eq. (5) for i = k, giving zero on the right-
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hand side and by the subsequent differentiation of the left-hand side with respect to
all entries of x. Then vy, .. .n = OPm,..m.,/0X"lx=x, gives, on account of (7), a
particular solution to Eq. (10). Furthermore, from the explicit form of the terms
B in (10), one can conclude that

A?‘Ufnl...mk[ln] =0. (B.11)

(Here [ ] denotes the antisymmetrization, whereas ( ) will denote the symmetriz-
ation). Since vy, min = Vm,...mam» WE have also

ma...mg41h

v 0. (B.12)

a J—
my...my—1[m[ln]] —

Any solution of the linear inhomogeneous equation (10) differs from the above
particular solution, v, ... by an arbitrary solution, uj, . ..., of the cor-
responding homogeneous equations:

Aznluamx...mk+ 1h = 07

a _,.a
Umy..omp1n = u(m1--~mk+ n

(B.13)

One may try to match some solution of Egs. (13) to the particular solution of (10) so
as to get

v‘rznl,..mk[ln] + U, i) = 0. (B.14)

If one succeeded in doing so, one would obtain another solution of (10), which is
symmetric in all k + 2 indices due to (14). That is to say, Eq. (8) would be compatible
in such a case, and, hence, the hypothesis concerning the preceding steps would be
valid at the (k + 1)* step as well. Now we need the following definition.

The symbol of a system of differential equations is the vector space o of solutions
of the linear algebraic equations

A qm=0, (B.15)

where A is defined in (9). This space ¢ is to be considered as a subspace in
Hom(V, W), where dim W = N, the number of the unknown functions y“(x), and
dim V = M, the number of the arguments x™. (Note that since A may depend on
5, p%, x", so may the space 7.)

One can observe that the obstruction to the compatibility of Eq. (8) corresponds
to an element of the Spencer cohomology group H*?(o) (see Appendix A). Indeed,
from Eq. (11) we see that hy, ., 1y = Uy, meumy COTTESPONds to a cochain, heC**(o).
Moreover, Eq. (12) means that this cochain is closed, i.e. dh =0. Similarly, any
solution of (13) corresponds to some ue C** 1+!(g). Since v, _.un» @ solution of (10),
is defined only up to an arbitrary solution of (13), we see that & is defined up to an
exact cochain (because uy,, .,y cOTrEsponds to du). Therefore only the cohomology
class, [h]e H*?*(s), of the closed cochain h is relevant. Now Eq. (14), if compatible,
implies that h = ou for some u, or, equivalently, [4] = 0. From the above reasoning
we conclude that, under the assumptions made, Eq. (8) is compatible if and only if
the corresponding cohomology class [k] is trivial. Remember that Eq. (8), being
identical with (5) for i =k + 1, is considered as an equation on the (k + 2)*¢ order
coefficients of a formal solution (6), provided some coefficients have been already
found in all orders up to k + 1.
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Finally, for a system of partial differential equations (1) to be formally integrable,
the obstructions arising in solving it in terms of a formal power series must vanish at
each step. This gives a set of integrability conditions of increasing order imposed on
the functions F in Eq. (1). We can conclude, that if H*?*(¢) = 0 for k greater than some
K, one must take into account the integrability conditions of order not greater than
K + linderivatives of F. (It can be shown that, in general, only a finite number of the
cohomology groups H*?(c) may be non-zero.) In particular, one has the following
theorem.

If the symbol of the system (1) is 2-acyclic (i.e. H**(g) = 0 for k > 0) and Egs. (3)
are compatible for any x™, p° pi satisfying (2), then the system (1) is formally
integrable.

We see, that, in the case of a 2-acyclic symbol, only the first order integrability
conditions are required; these are the constraints on the first derivatives of the
functions F ensuring the compatibility of Eq. (3). When H*?(¢) become zero for
higher k only, more integrability conditions must be involved. Till now we have
nothing to do with the convergence of our formal solutions. As to the existence
of genuine solutions, we remark only the following: If the system (1) is formally
integrable and the functions F are real-analytic, then it is known that there are
solutions which correspond to convergent power series [6, 7]. If, moreover, the
symbol is involutive (i.e. H*Y(¢) = 0for i = 0, k > 07), then more detailed information
is available converning the number of different solutions. Such partial differential
equations correspond to the involutive systems of Cartan. In applications to our
problems, however, we will use only the mere existence of solutions.

Appendix C. The Proof of the Theorem

We continue the proof of the theorem of Sect. 2, using the results recapitulated
in Appendices A and B. Remember that the theorem is intended to describe the
necessary and sufficient conditions for the induced structure. These coincide, as
we have already seen, with the conditions ensuring that a certain system of partial
differential equations has a solution. The aim of the theorem is to give an equivalent
formulation of these conditions, which can be more easily applied. Before
proceeding with the proof let us study directly the above-mentioned system of
differential equations by means of the methods discussed in Appendix B.

When considering the induced structure, we have to fix a vector space W, a sub-
group G of the group of linear transformations of W and a subspace V in W. Let
us consider the restrictions to V of linear maps defined on W and belonging to the
group G. Let G, denote the manifold of the resulting maps from V into W. It is
a submanifold in the space Hom(V, W) of all linear maps from V into W. The
notations of Sect. 2 correspond to the following particular choice made for
simplicity: W =R", while ¥ must be the standard M-dimensional subspace
generated by the first M vectors of the standard basis in R". In this case G is
to be considered as consisting of N x N matrices. Assuming these conventions, the
system of differential equations, to be studied in the problem of the induced

7 Note that H*%g) = H*'(¢) =0 for k> 0 and for any ¢
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structure, takes the form of Eq. (2.1). Then the manifold G, corresponds to the
rectangular M x N matrices that appear on the right-hand side of Eq. (1.1). Then
(1.1) gives a system of equations with respect to the unknown functions y%(x),
4=1,...,N, defined by the requirement that the rectangular matrix g% =
e(x) dy“(x)/0x™ should belong to G, for each x. In this case the symbol of the
resulting system (see Appendix B) can be identified with the subspace in Hom(V, W)
that corresponds to the tangent space of the submanifold G,, « Hom(V, W). Let g,
denote the linear subspace in Hom(V, W) that corresponds to the Lie algebra g of the
group Ginthesame way, as G, corresponds to G. One canidentify the tangent space to
Gy at each point with this subspace g,.. Thus g, € Hom(V, W) can be considered as
the symbol of our system of differential equations. To see all this explicitly one can
write this system locally as

~( oy B
(D<5x—"'eb (x)) =0, (C1)

where @ = (®1,...,®*) are some functions singling out G, as submanifold defined
(locally) by the equation @(g)=0 in the space of all M x N matrices (ie. in
Hom (¥, W)). Then the correspondence with Appendix B(in particular, with Eq. (B.1))
can be established by setting F(pZ, p%, x™) = @(p’el(x)), the rest being straight-
forward. According to Appendix C we are able, in principle, to specify the conditions
ensuring that system (1) has a solution. In this way we would obtain a finite number of
integrability conditions corresponding to non-vanishing groups in the chain of
Spencer cohomology groups H**(g,), k = 0 of the subspace g, in Hom(V, W). These
integrability conditons would then arise in the form of differential constrains on the
frame field ejJ(x) in Eq. (1), the orders of these constrains being equal to those k’s for
which H*"*%(g,) #0. Our final aim is, however, to obtain the constraints on the
induced structure in the form established in the statement of the theorem. In order to
avoid somewhat tedious calculations that might be encountered at this point, let us
proceed differently.

In Sect. 2 we succeeded in reducing the problem to another equation, which was
written symbolically as Eq. (2.7). That is to say, we have shown the following: for an
induced G'-structure, that is if Eq. (2.1) has a solution, we constructed explicitly a 1-
form field ©2 that satisfies the conditions of the theorem, thus proving one part of the
statement. Assuming, conversely, that such a field £2 really exists, we showed that if
Eq. (2.7)hasasolution,so does Eq. (2.1),i.e. the G’-structure under consideration does
correspond to aninduced one. To complete the proof of the theorem, it must be shown
that the condition dQ + 1[2 A 2] = 0 is sufficient for the existence of such a G-
valued function h(x) that satisfies 2 = h™! dh. For an arbitrary matrix group G (i.e.
G < GL(N, R)), the corresponding group G, may be infinite dimensional. The exact
meaning of the expression 2 = h ™! dh was already explained, allowing in the general
case for infinite dimensional groups G . Thisled us to a system of equations (2.8),(2.9).
Now we are going to find the conditions that are sufficient for the compatibility of
these equations.

Let us rewrite Egs. (2.8) and (2.9) as follows:

@(%ﬁ) —0, (C.3)
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0d*(x, )
ox™

where @ = (@1,...,®") are some functions singling out the group G as a submanifold
defined (locally) by cD(gb) 0 in the space of all N x N matrices. Remember that
X2 (x,y) depends on y b(a,b=1,...,N) as a formal power series corresponding to the
given g -valued 1-form field .Q(x) Analogously the unknown “functions” ¢%(x, y)
are, in fact, formal power series in y, with coefficients being usual functions of x™
=1,..., M. Equations (3) and (4) are to be understood, of course, order by order
in ¥. According to Appendix B, to obtain the desired result we have to find out
whether or not the system (3)—(4) is formally integrable. It means that we must
consider the compatibility of that system, regarding ¢“(x, y) there as a formal power
series in both variables, x and y. It doesn’t matter that X? (x, y) itself is a formal
power series in y, the methods of Appendix B are still applicable. A straightforward
calculation reveals that there are only the following integrability conditions:

+ Xo(x, §(x,) =0, (C4)

a
00(9) X)) _ o it i) o, ©5)
6g5 6
4 a a
i) X)X a
o0x 0x 6y
0X%(x
+ )y b (%,9) =0. o)

As it can be easily seen, the condition (5) means that for each fixed m the matrix
(Y%), = dX% /0y’ should belong to the Lie algebra g of the group G. This require-
ment is, however, satisfied merely by definition of X% (x, y) which is the counterpart of
the g,-valued 1-form field Q (cf. Sect.2). Recalling the description of the Lie
algebra g, in terms of formal vector fields on RY, we observe also that Eq. (6) can
be rewritten as dQ +1[Q2 A Q] =0, using the above-mentioned correspondence
between X%(x,y) and Q. We obtain finally, that dQ+3[Q2 A Q2] =0 is indeed
the integrability condition for the equation 2 = h~! dh with h being a G -valued
function. Then, in view of the reasoning of Sect. 2, the theorem is proved.

We remark that the proof is valid if everything is real-analytic. However, it is
valid also in the smooth case if the group G is of finite type, i.e. when G, is finite
dimensional. (In the latter case the formal integrability need not to be involved; one
can rather use the Frobenius theorem for the equation h~! dh = ).

Some particular examples of how to apply the theorem are contained in Sect. 3
and Appendix D. There only the constraints on the torsion and the curvature of an
induced structure appeared. Such constraints correspond to the integrability
conditions of the first and second order if dealing with Eq. (1), or to the terms of
order not greater than two with respect to y if dealing with Eq. (6). These may not
suffice, however, in the general case. As it was discussed at the end of Sect. 2,
generally one has a set of constraints of increasing order. To establish them, one has
to find the compatibility conditions for the equation dQ + 3[Q2 A Q] = 0. Maintain-
ing the notations of Sect. 2, this equation, when solved successively with respect to
QO QW Q@ etc., amounts to an infinite chain of linear algebraic equations. Here
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0Q® is a 1-form field with values in g*; it must be a solution of the equation
R*™D =0 that arises at the (k+ 1) step. Specifically, one has Q®! . . A
@ =p-1! . where P4V is a 2-form with values in g*~!. which
depends on 2“s with £ < k. Since @” =0 for b =M +1,..., N, we observe about
the equations on those components of 2 for which at least one of b;’s assumes a
value from the set M +1,..., N, that such equations are always compatible. It
remains to consider the truncated components of 2® and P*~ Y. These obviously
correspond to the forms taking values respectively in g and g %
(see the definition above). Now, a g-form w with values in g{? corresponds
some Spencer cochain &eCP(gy). Furthermore, the (g + 1)-form wy , A @
corresponds then to dweC? !41*(g,). Hence the equation on 2% can be
rendered in terms of CP4(g,)-valued functions, giving aQ2(x)= P(x), where
0(x)eC*(g,) and P(x)eC*~'?(g,). Note that the consistency requires 9P =0.
This is, however, always satisfied, by virtue of Bianchi identities (namely,
R*"Y A @ =0, provided R =0 for £ <k—1). If H*~1*(g,) =0, the condition
0P=0 is sufficient for the compatibility of the equation 2= P. Con-
sequently, the non-trivial constraints may arise only in orders k, for which
H*"12(q,) #0. (This agrees, of course, with what we discussed in connection
with Eq. (1).) It is known that for any given g, one can find, in principle, such a
finite number k, (depending on gy), that H**(g,) =0 if k = k,. (This is valid in
the superspace too.) Thus in order to verify the existence of the field (2 that satisfies
the conditions of the theorem it suffices to examine the compatibility of a finite
number of linear algebraic systems from the infinite chain contained in the equation
dQ +1[Q2 AQ]=0. The resulting necessary and sufficient conditions on the
induced structure are of orders not greater than k,, where k, depends on the
particular properties of the space gy.

Appendix D. Gauss—Codazzi Theorem

Let us consider an example, well known in mathematics, from the point of view of
the general results obtained in Sect. 2. In Riemannian geometry one deals with the
metric, which defines a non-degenerate scalar product in the tangent space at each
point. Therefore one can define the fields of orthonormal frames (vierbein fields in
General Relativity). These orthonormal frames are defined up to arbitrary rotations
of the group O(n) (if the dimension of the manifold equals n) and determine the
corresponding metric uniquely. Hence every Riemannian metric corresponds to an
O(n)-structure and vice versa. The flat metric corresponds to the trivial O(n)-
structure.

Let us consider the flat Euclidean space of dimension n + p, i.e. the space R"*?
with the trivial O(n + p)-structure. Every n-dimensional surface in this space receives
an induced metric in a familiar way. It can be easily seen that this metric corresponds
precisely to the induced G’-structure, where G’ = O(n) in this case. The necessary and
sufficient conditions for a given n-dimensional Riemannian geometry to be
isometrically (locally) embedded in the flat (n + p)-dimensional Euclidean space are
described by the theorem of Gauss and Codazzi (see, e.g. [5]). We are now able to
show that this is a particular case of our theorem stated in Sect. 2. To make contact
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with the notations of that section we set W = R"*? with coordinates y* = (y*, y*),
a=1,...,n+p; a=1,...,n; d=n+1,...,n+p. We choose V to be the
space R" considered as the subspace of R"*? defined by the equations y* = 0.

First of all, we observe that o(n + p)* = 0 that is all the prolongations of the
algebra o(n + p) vanish (see, e.g. [4]). Consequently the only integrability conditions
that might be non-trivial are R©"V =0, R® =0. According to Sect. 2 we must
introduce a W-valued 1-form, (@% = (e 0), where ¢* are the 1-forms of an
orthonormal (i.e. admissible) coframe field corresponding to the given Riemannian
geometry on an n-dimensional manifold .#. Next we must find out under what
conditions there exists an o(n + p)-valued 1-form field £2¢, that obeys

RTM=4d0'+ QA 0" =0, (D.1)
RO =dQi + dQi A Q5 =0. (D.2)

Then the compatibility conditions for the systems of Egs. (1), (2) will give the Gauss—
Codazzi theorem. Explicitly Eq. (1) reads

de® +Q8 A e =0, (D.3)
QF et =0. (D.4)

These equations, however, are always compatible. Indeed, if we denote the
components of Q% by I't., i.e. Q% =I'¢. ¢, then Eq. (4) amounts to I'¢, = I'%, . Notice
also that since 2%, corresponds to o(n + p), its part,Q¢, is a matrix 1-form with values
in o(n). It is well known that a connection wj compatible with the metric can always
be chosen to have vanishing torsion: T* = de® + wf A e’ = 0. We see that Egs. (3), (4)
and, hence, Eq. (1), always have a solution. Thus only Eq. (2) remains non-trivial,
giving a constraint for the induced metric.

Finally, it is necessary and sufficient for a Riemannian geometry to be realized on
a surface in Euclidean space, that there exists an o(n + p)-valued 1-form field

ay _ w} hee
(QE)‘<—rz;ec Qs )

satisfying (2) and such that I"%, = I'%,, while ¢ is the unique torsionless connection
1-form corresponding to the given orthonormal coframe e“. Equations (2) for w{,

¢, Q% are precisely those of Gauss and Codazzi. To see this clearly consider the
simplest case, p = 1. Then 2¢ = 0. Furthermore, no explicit indices of type a’ are
needed. In this case Eq. (2) reads as follows,

Rabcd = racrbd _Fadrbm (DS)
pr, =0, (D.6)

where 3R,0¢ A e =dwy, + @, A @,, is the Riemannian curvature, and
DI, = D(T %) = dI', — o} A T, If a symmetric tensor, I, = I',,, satisfying (5) and
(6) does exist, then the given Riemannian geometry corresponds to the internal
geometry of a hypersurface in Euclidean space. In that case I',, defines a quadratic
form called the second fundamental form of the hypersurface.
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Appendix E. A Calculation of Spencer Cohomologies in Supergravity

Here we intend to prove that in the problem of the induced SCR({)-structure it
suffices to consider the integrability conditions of the first and second order only.
(That is to say, no higher order conditions beyond the algebraic constraints on the
torsion and the curvature arise in N = 1 supergravity.) In order to prove this, we
have to show that certain Spencer cohomology groups vanish, namely H*%(g({),)) =
0 for k> 1. (The definitions of Appendices A and C will be used throughout.)

Let z% = (z4;z") be the coordinates in W ~C**, which is considered as a real
(8/8)-dimensional space. Here z* = (z°, 0% ¢*) and z* = (z°, F, ™) are, as in Sect. 3, the
complex coordinates in C** and their conjugates respectively. We must consider
also the real (4|4)-dimensional subspace V in W. Let x4=(x%v* ") be the
coordinatesin ¥, where x*, a = 1,...,4, are real, while v* = (¥)*, & = 1, 2, are complex.
We shall use the same fixed subspace ¥, as in Sect. 3, see Eq. (3. 1) It can be deﬁned
also by the embedding into W, so that (x 4) is mapped to (z%) = (z*; z*%) with z4 = x*,
or, explicitly, z* = x“, 0% = v*, ¢" = . The Lie algebra g({) consists of linear maps of
W into itself, with matrices X3 2 satisfying Eqgs. (3.5-6). Then, by definition, g({),
consists of maps from ¥ into W, that are the restrictions to the subspace V < W of
maps belonging to g({). In other words, g({), consists of maps, (x*) - (2% = (X3xP),
where the rectangular matrix X5 obeys

X3=0, Xj=0, (E.1)
and
tr, X =0, (E.2)

as well as the reality conditions: Xj = (X7)* X4 = (X/* and X#'= (X})*. The notation
tr, X is to be understood as before. tr, X = {(X§— X3) — X} if ( + oo and tr, X = X3
—X%if { = o0.

In order to work out the Spencer cohomologies of the subspace® g({), =
Hom(V, W), it is instructive to consider first § = Hom(V, W), where § corresponds
to matrices satisfying (1), but not (2). Thus g includes g({), as a subspace, the kernel
of the map tr, of g into® C. The space § is multifoliate and, hence, involutive, that
is H*(g)=0 for i=0, k>0 (see Appendix A and, particularly, the last example
therein). As a matter of course, tr, maps § on C, and we have an exact sequence!?
0-g({)y >3- C—0. We can extend this to a sequence for cochains. Indeed,
let us introduce the following notations for the spaces of Spencer cochains:
F*i(() = C*Y(g({)y) and %' = C*¥(g). Then tr, can be extended, for any'' i,k, to a
map of 2% into F*~ 1 where % = C*/(¥) for V = Hom(¥, C), the space of linear
maps of the real space V into C. It follows that #*(() is the kernel of the map
trp @ > S0 Let #*V{(() be the image of this map. Thus, for any

8 The superspace Hom(4, B), with 4 and B being vector superspaces, may be thought of as the space of all
supermatrices of size (p|q) x (r|s), where (p|q) = dim A, (r|s) = dim B

9 Strictly speaking, we should have written C ™. In what follows, we will continue to refer, somewhat
incorrectly, to this (1|0)-dimensional complex superspace, as C

10 One says that 0 » A > B 5 C -0 is an exact sequence of vector spaces 4, B, C, if A = B, with i being

the inclusion map, while C = B/A, with 7 being the projection
11 If some of the integers i, k is negative, we set C¥¥() = 0 for any space ¢
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i,k=0,1,2,..., we obtain exact sequences

tr,
T 0o @R - TR - FE () 0. (E.3)
The action of the Spencer differential 0 is defined on the complexes €({) = @ €0,
D= @@’” and ¥ = @V’“ It is easy to check also that %(C)— @.@’“

is a subcomplex in & (1 e. the subspace Z({) in & is closed under the actron
of 0). Moreover, the sequences (3) are compatible with the operation 0 (in particular,
Ootr, = tr,°0). In other words, there is an exact sequence of differential complexes that
corresponds to (3). In such cases it is known that if the cohomology groups of the
middle complex in the sequence are trivial, those of the peripheral complexes are
related by certainisomorphisms. In our case, recalling that H*{(%/(()) = H*(g(),) and

H5(9)= H*(3) =0 fori=0,k>0,
we have the following isomorphisms:

H*Yg(0)y) = H*'" (&), i20,k>0, (E4)

The problem is reduced thus to the properties of the complex Z({).

Let us consider the case { = co. Firstofall V = Hom(V, C) consists of all complex
covectors v 4. Consequently, every cochain se. %! = C*{(¥) corresponds to a tensor
s.......,wherethe dotsstand for the set of k symmetricindices (before the comma) and of i
antisymmetric indices (after the comma); % corresponds to the space of all complex
tensorss.__ . withtheabovesymmetry properties. Of course, the symmetries of indices
are being understood properly to superspace (an obvious modification of the
definitionscited in Appendix A). Now, the space 2% = C*(g) consists of tensorsdy__ |
(where B is one among k symmetric indices), satisfying dj =0 and d£ _______ =0, in
correspondence with Eq. (1). Then the space #*(c0), beinga subspace in ¥} consists

of tensors r___, that can be represented asr__ =dp —df  for some cochain

............................

.............................

definition of 2%, By a careful exammatlon one can find that these tensors r_ _are
otherwise arbitrary. That is to say, #*(c0) consists of all tensors satisfying r , =0
Consequently, #*(o0) coincides with a space of Spencer cochains C*(h), where hisa
subspace in Hom(¥, C), that consists of complex covectors v, satisfying v, = 0. The
space his obviously multifoliate, henceitisinvolutive. On account of #%(c0) = C*(h)
and in view of the isomorphism (4), we conclude finally that H*(g(c0),,) = 0 fori = 0,

k> 0. Thus the space g(c0), is involutive.

.......
.......
.......

.......

correspondsto v 7', #, the complex conjugates of the coordmates vi,v2inV.)In analo gy
with the previous case, wehaver , =d; , forsomedeZ** " Since for de 2" the
components d" _are quite arbrtrary (except for symmetries prescribed), we obtain,
that, unlike the | previous case, Z1(() = S 1if { # c0. On the other hand, we still have
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r .. = 0 for any re#%{(() with k> 1. Indeed, r ;4 must be equal to d; ;; , but
these vanish for any de 2** ' due to antisymmetry in the fermionic indice d, B, 7&. We
observe that %) = #*(o0) for k > 1, while Z*/({), { #+ 0, is larger than #*(c0).
Consequently, the cohomology groups H*{(%(()) for {# oo coincide with
H"{(Z(0)) if k > 1, while for k = 1 they may differ. On account of the results con-
cerning { = oo and of the isomorphism (4), we conclude that H*(g({),)=0 for
i20, k> 1. The cohomology group H**(g({)y), { # oo, which is needed in the
problem of induced structure, can be calculated and proves to be non-trivial. (This
is what we have done implicitly in Sect. 3.)

Finally, H*(g({),) =0 for i =0,k > 1 and for all {, while for { = co, moreover,
H*i(g(00),) =0 for i =0,k > 0. That is why in minimal supergravity ({ = oo) the
torsion constraints alone suffice, whereas the non-minimal case ({ # co) requires also
the curvature constraints.
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