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Abstract. The system of equations studied in this paper is —Au—gXu) on Rd,
d^2, with w R ^ R " and gi(u) = dG/dui. Associated with this system is the
action, S(u) = J {i|Fw|2- G(u)}. Under appropriate conditions on G (which
differ for d = 2 and d_-3) it is proved that the system has a solution, wφO, of
finite action and that this solution also minimizes the action within the class
{v is a solution, v has finite action, ι>φθ}.

I. Introduction

The purpose of this paper is to demonstrate the existence of solutions to a class of
systems of partial differential equations that arises in several branches of
mathematical physics (e.g. calculating lifetimes of metastable states, estimates of
large order behavior of perturbation theory, Ginzburg-Landau theory, density of
states in disordered systems). The systems to be considered are of the form

- j M i ( x ) = flf
i(fi(x)), ί = l , . . . , w . (1.1)

Furthermore, it will be shown that among the nonzero solutions to (1.1) there is
one that minimizes the action, S(«), associated with (1.1).

The meaning of the quantities in (1.1) is the following: u = (uv ..., un) e R" and
each i/;:Rd->R with d^2. We require that W;(x)->0 as |x|->oo in a weak sense
described below (namely u e Ή). (Note: In some applications it is required that u(x)
->c = constant as |x|-»oo but, by redefining u^u — c and by redefining g\ the
problem can be reduced to the u(x)-»0 case.) The n functions gι: IR"->IR are the
gradients of some function Ge C1(RII\{0}), namely

= dG(u)/dui9 w + 0,

= 0 u = 0 l " )
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and G satisfies certain properties described in Sect. II (d ̂  3) and Sect. Ill (d — 2). In
particular, we emphasize that G(u) need not be differentiable at u = 0 so that, for
example, G{u) could be —\u\ near u = 0.

The Action associated with (1.1) is

S(u) = K(μ)-V(u)9 (1.3)

(x)|2dx, (1.4)

V{ύ)=\G{u{x))dx. (1.5)

In general, S(u) is not bounded below, and one of our goals is to show that, under
suitable conditions, S(u)> -oo if u satisfies (1.1) and that S(u) actually has a
minimum in the set of non-trivial solutions to (1.1). The word non-trivial (meaning
i/φO) is important; it will be shown later that when d = 2 the function u = 0
satisfies (1.1) and minimizes S(u), but the non-trivial solutions to (1.1) all have
S(u)>0. When d ^ 3 , the u = 0 solution never has the minimum action.

The class of functions to which we shall restrict our investigation of (1.1) as an
equation in 3)' is

<β = {u\u e L\oc(Έidχ Vu e L2(Rd), G(u) e JJQR*), μ([|u| > α]) < oo for all α > 0}. (1.6)

Here, the symbol [/>α] denotes the set {x|/(x)>α}. The same symbol, [/ >α],
will also be used to denote the characteristic function of this set. Lebesgue measure
is denoted by μ. The set

^ { φ 6 « , g ( ! i ) e L { 0 C ( R d ) , u satisfies (1.1) in ®', uφO} (1.7)

is the subset of ̂  which we shall prove is non-empty and in which there is a ΰ such
that

S(u)^S(u), all ueδ. (1.8)

The solution of this problem was reported in 1983 and an outline of the proof
was given [13]. The purpose of the present paper is to present all the details of the
proof and certain additional refinements.

Probably the earliest general treatment of existence of finite action solutions to
(1.1) was by Strauss [20] for n= 1, d^ 1. (The case n= 1 is called the scalar case.)
While this work was very important because it introduced new techniques, it
imposed severe restrictions on the function G. Moreover, Strauss did not explicitly
consider the question of whether or not his solution to (1.1) minimized the action.
Strauss and Vazquez extended this work to the vector case and to the "zero mass"
case [22]. The next step was taken by Coleman et al. [10] who made
an important contribution to the problem by their "constrained minimum
method" which not only yields a solution for d ̂  3 but also yields a minimum
action solution. They discovered almost optimal assumptions on G so that the
problem has a solution, but their method for finding a minimum action solution
was restricted in an essential way to d ̂  3 and n = 1. A detailed treatment of the
Coleman, Glaser, Martin method, together with some improvements and other
theorems useful in the analysis of this and related problems was given by
Berestycki and Lions [5, 6]. Then, in the same generality, Berestycki and Lions [6]
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went on to prove the existence of infinitely many finite action solutions to (1.1).
Strauss [20] also had results in this direction. (Infinitely many solutions for the so-
called zero mass case was done in [7].) As before, all of this was for n= 1, d^3.

In view of the aforementioned work, two natural extensions suggest them-
selves. One is to d = 2 and the other is to n > 1. We thank Ian Affleck for suggesting
both problems to one of us (E.L.). Affleck was interested in the d = 2 case for
physical applications [1]. Some results for both d = 2 and for n^ 1 were obtained
by one of us (E.L.) in 1983, and these were subsequently strengthened in
collaboration with H.B. to the level of generality given here and in [13].
Independently, in 1982, Berestycki, Gallouet and Kavian had solved the d = 2,
n= 1 case (with stronger hypotheses than in the present paper; in particular they
do not treat the zero mass case) and this was published recently [3] (see also [4]).
[However, they also showed there are infinitely many solutions of (1.1) for d = 2,
n = l . ]

The proofs for n = 1 all relied on the fact that one could look for minima in the
class of radial functions (by rearrangement inequalities), and that these functions
have certain compactness properties [20,6]. For n>\, one can still restrict
attention to radial solutions, although it is not known whether the minimum
action solution lies in this class (because rearrangement inequalities are not
applicable). Berestycki and Lions [5] showed how to prove the existence of radial
solutions that minimize the action among all radial solutions of (1.1).

The extension to n > 1 requires a new compactness device. In this paper, the
heart of the matter is contained in Lemma 2.2. It should be noted that Lions has
developed a general compactness principle [15, 16] which allows him to deal with
the cases d ̂  2, n ̂  1.

II. The Case of Three or More Dimensions

A. The Minimization Problem

Let G: Rn->IR be continuous with G(0) = 0. In this subsection we shall consider a
minimization problem that leads to (1.1) if G happens to be differentiate, but here
we shall make no assumptions about the differentiability of G. Here, and
henceforth, C>0 will denote an inessential, positive constant. G satisfies the
following four conditions (2.2)-(2.5). [Note G{u\ not \G(u)\ in (2.2), (2.3).]

(2-2)
|u|^oo

where, for d^3, p always denotes

p = 2* = 2d/(d-2),

(2.3)
\u\->0

G(u0) > 0 for some u0 e R", (2.4)

For all γ>0 there exists Cγ such that for all u,weΊR.n

(2.5)
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Remark 1. Condition (2.5) looks awkward, but it holds in several cases such as (2.6)
or (2.7) or (2.8):

lim \u\-p\G(u)\ = 0, (2.6)
|M|->CO

G e C 1 (R"\{0}) and g = VG satisfies)

igiu^C + QuΓ1, allw + 0. J ( " }

GeC1(R"\{0}) and g = VG satisfies 1
1, allwφOand

«-C, allweR" j [ ' '

for some q^p, and C, α > 0 . J

The main result of this section is the solution to the following minimization
problem. We define

^\}. (2.9)

Theorem 2.1. Assume (2.2)-(2.5). Then there exists veW such that

\\\Vυ\2 = T, (2.10)

and

f G ( i 7 ) = l . (2.11)

Remark 2. Using (2.4) it is easy to see that there is some ueΉ such that J G(u) = 1.

Remark 3. Let ueL\0C and VUEL2, such that w->0 as |x|->oo in the weak sense of
(1.6), namely μ([ |u |>α])<oo, all α>0. Then weU and | | M | | P ^ C | | Γ M I ^ . Thus, the
class ί? in (1.6) can be characterized (for d ^ 3 ) as

# - {u\u e Lp(Rd)5 Vu e L 2(Rd), G(w) e L1 (]Rd)}.

To prove this, let χn(x) = χ(x/n), where χe C^ and ^ Ξ 1 near 0. Let ε > 0 be fixed.
Assume, provisionally, that w e ^ and also ueL 0 0 . By Sobolev's inequality,

where A = [}u\ > ε] and Cε is some constant depending on ε. We conclude (in this L00

case) by letting rc-> oo and then ε->0. If u e <£ but uφU°,we may truncate w, then use
the foregoing, and then remove the truncation by Fatou's lemma.

In the following, {uj} denotes a minimizing sequence for (2.9).

Lemma 2.1. There exist ε, <5>0 such that for all j , μ{[_\uj\>ε\)^δ.

Proof. Since Vuj is bounded in L2, Sobolev's inequality implies that

\\u%ύC. (2.12)

Let y = ί/(2C). By (2.2), (2.3) there exists l > ε > 0 such that

G(v)Sy\v\p for |ϋ |^ε or N ^ l / ε . (2.13)
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Thus, we have that

1S i G(ui) ̂ γ I \ur{ί\uj\ Sε] + [ M ^ 1/ε]} + J G{u*) [ε < M < 1/ε]

This implies the lemma with δ = l/(2Cε). D

Next, we recall the following [14]:

Lemma 2.2. Let v be a function such that veL\0C, VveL2, \\Vv\\2SC and
μ([|ί;|>ε])^<5>0. Then, there exists a shift Tyv(x) = v(x + y) such that, for some
constant ot = oc(C,δ,ε)>0, μ{Bn\_\Tyv\>εβ~])>a, where B = {xeWLd\\x\<L\}.

Using Lemmas 2.1 and 2.2 we can shift each uj in such a way that
μ(Bn[]Ty.u

j\> ε/2])^α, where α>0 is independent of j . Thus, we may assume
without loss of generality that μ(Bn[]uj\ > ε/2]) ̂  α. After extracting a subsequence
we may also assume that (cf. (2.12))

uj-^u weakly in LP, Vuj^Vu weakly in L2,

uj->u a.e. on Rd, μ(Bn[|w|^e/2])^α.

Finally, we have G(u)el}. To prove this, let us write

G = G+-G_ with G+ = Max{G,0} and G_ = Max{-G,0}.

We have

+ j G+(wJ) [ε < |wJ'| < 1/ε] ^ const.

(The last integral is uniformly bounded because \\uj\\p<C => μ([\uj\>έ])
< (C/ε)p; moreover, G+( ) is bounded on (ε, 1/ε) since G+ is continuous.) We also
have J G_(z/J)^ J G+(uj)— 1. Hence, J |G(uj)\ ^const, and we deduce from Fatou's
lemma that G(w) e L1. Thus, ueΉ.

We conclude the proof of Theorem 2.1 with

Lemma 2.3. The limit function satisfies jG(w)=l and \\\Vu\2 = T, where T is
defined in (2.9).

Remark 4. It follows from Lemma 2.3 that in fact Vuj-> Vu strongly in L2 and thus
uj-+u strongly in LP.

Proof of Lemma 23. It is easily seen by scaling [i.e. v(x)-+v{λx)~] that

If \Vv\2^ Tl\ G{vψ-2)ld, <ύlvG% with j G(v)>0. (2.14)

Let φ e II with G(φ) e L1 and with φ having compact support. We claim that, as
J->00

+ o(l). (2.15)

[Note that the integrals in (2.15) make sense because of (2.5).]



102 H. Brezis and E. H. Lieb

Verification of (2.15). Let K = Snppφ; we have

The last equality follows from Egorov's (or Vitali's) lemma. Indeed, given ε > 0 we
fix y > 0 small enough so that

By (2.5) we have that

for any set A C K with μ(Λ) < δ (δ small enough). Thus we have established (2.15).
Suppose now that φeH1, φ has compact support, G(φ)eL1 and

G ( ! i ) ] > - l . (2.16)

For j large enough we may insert v = uj + φ in (2.14) and, in the limit, we find that

That is,

l 2 \ 2 l lG(u)γ-2ιd. (2.17)

Let λ > 0 be fixed. We can find a mapping S: Rd -»TStd, bijective with S and S
smooth such that

iλx, \x\<\
S(X)~ [x, \x\>R

(for some R depending on λ). Set Sn(x) = nS(x/n) and φn(x) = u(Sn(x)) — w(x), so that
φn G Hι and φn has compact support and G(φn) e L1. [The last assertion is obtained
by choosing u=^φn(x), w = u(x) in (2.5).] We claim that as

(u + φn)= J G(u(λx))dx + o(l) = λ-dS G(u) + o(l), (2.18)

and

ί\V(u + φn)\2 = UVMλx)-]\2dx + o(\) = λ2-dJG(u) + o(\). (2.19)

Indeed we write

ί G(u + φn)=\ G(u(Sn(x)))dx = ί G(u(y))Jn(y)dy,

where Jn denotes the Jacobian determinant of the mapping y->S~ x(y); it is easy to
see that \Jn\^C,Cindependent of n, and Jn(y) ^>λ~d as n->oo for all y. Thus (2.18)
follows by dominated convergence. The same argument applies to (2.19). We fix
λ > 0 with μ -11 so small that {λ ~d -1) j G(u) > - 1 . Thus φ = φn satisfies (2.16) for n
large enough. Hence (2.17) holds for φ = φn and in the limit (as τι->oo) we obtain

\1-2ld. (2.20)
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Finally we choose λ= 1 ±ε in (2.20) and, as ε->0, we see that %\ \Vu\2 = Tj G{u).
Since wφO we have J G(u)>0, and we deduce from (2.14) (applied to v = u) that
J G(w)^ 1. On the other hand, since Vuj—^Vu weakly in L2, we obtain, by lower
semicontinuity, that \\\Vu\2<,T. Therefore jG(κ) = l and ±\\Vu\2 = T. This
concludes the proof of Theorem 2.1. D

B. Further Properties of u

Throughout this section we assume that G is differentiate on JRw\{0}. More
precisely, let G: JT-^R be continuous (on all of R") with G(0) = 0. Assume that G
satisfies (2.2)-(2.4) and Ge^CR^O}). We set

rΛ (VG(v) if vή=0
Φ)=\0 if v = 0.

We assume (2.8). For every ve^we define its action to be S(υ) = ̂ $ \Vv\2 — J G(v).

Theorem 2.2. Let u be given by Theorem 2.1. Then after some appropriate scaling,

u(x) = u(θx), (0 > 0), u satisfies
-Δu = g{u) inQ)f. (2.21)

Moreover,
, ϋφO, -Δv = g{v) in 2?.

[In some cases, any solution v is automatically in Lfoc (see Theorem 2.3).]

Proof. Fix ΦECQ. We see easily by dominated convergence that as ί->0

J [G(u + tφ) - G(M)] [M + 0] = t ί ίg(u) -φ ] [u + 0] + o(ί). (2.22)

Here we use (2.8). Also, we have that

$\G(u + tφ)-G(u)\[u = 0-]^CtUΦ\lu = 0-] + o(ή. (2.23)

From (2.14), and using (2.22) and (2.23) we deduce that, for |ί| small enough,

Consequently,

^ " 9 V (u)-φ

We deduce from the Riesz representation theorem that there exists some h e L?
such that

Finally, we have ueL\0C (by (2.8)) and gf(M)eL^(«"1). We deduce from the elliptic
regularity theory that ueWι

2ίqKq~1) [since q/(q—1)> 1]. Therefore Δu = 0 a.e. on
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the set [w = 0] (see [19] or [11]). Hence we have proved that

and therefore that u(x) = u(θx) satisfies (2.21) with θ2 = d [(d - 2) T] " x . In order to
complete the proof of Theorem 2.1 we must establish Pohozaev's identity [18] in a
setting slightly more general than usual.

Lemma 2.4. Assume G e C1 (R"\{0}) and let v e <βnl£c be any solution of (I Λ) in 2'.
Then

^ (2.24)

Proof. Since vel£c, it follows from (1.1) and the elliptic regularity theory that
veWfoi*, all ί<oo. Note that dG(v)/dXi = g(v) - dv/dxi in 2'. Indeed, choose a
smoothing sequence Gk for G so that Gk^G uniformly on compact sets of R" and
gk=VGk tends to g pointwise on Rn\{0}. We have dGk(v)/dXi = gk(v) dv/dxi9 and
thus, for

and

by dominated convergence (recall that dv/dx^O a.e. on the set [u = 0]). Next we
multiply Eq. (1.1) by φ Σ^Sv/dxh where φeC$. Note that

while

Finally we choose φ(x) = φn(x) = φ^x/n), where φγ is any function in CQ such that
φΐ(x)=\ for |x|< 1 and φ1{x) = Q for |x|>2. As n^oo we obtain (2.24). D

Proof of Theorem 2.2 Concluded. We have

and on the other hand we also have
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Combining these relations we see that J G(v) ̂  J G{u). However,

and we obtain 0 < S(u) ̂  S(υ) for all ve^nLf0C, yφO, —Av = g(v) in 3)'.

C. Regularity and Behavior at Infinity

In this section we shall only assume that g: R"-*R n is any mapping bounded on
bounded sets and such that g(υ)-v^C\v\ + C\v\p, all D G R " .

Theorem 2.3. Let veΉ with g(v)eL\oc be any solution of —Av = g(v) in $)f. Then

ve W^, all q< co (and consequently ve C\Q* for all α < lj (2.25)

and

VGL™ with lim u(x) = 0. (2.26)

Assume, in addition, that

g(v)>υ^-C\υ\r, all υeΈLn with \v\<δ, (2.27)

for some constants C > 0 , δ>0, l ^ r ^ 2 . Then

if r = 2, v(x) decays exponentially as |x|->oo , (2.28)

if 1 ̂ r < 2 , v(x) has compact support. (2.29)

Proof. By Kato's inequality (see Kato [12]) we have

v
Δ\υ\^Av — in <&'9

and thus

Therefore

- ^ M + M ^ C + C I ^ - ^ C + Xlϋl, (2.30)

where

A = C\vΓ2ί\v\^U,

so that ^ e L d / 2 and μ(Supp A) < oo. We deduce from (2.30) that

\υ\^Y*(C + A\υ\)^C + iY*(A\v\)],

where 7 denotes the Yukawa potential (recall that Yeϋ).
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Applying Lemma A. 1 (in the appendix) with α = d/(d — 2) and β = 2d/(d — 2), we
see that

$\v\q<oo, all Bwith μ{B)<oo, all q<oo. (2.31)
B

In order to prove (2.26) we note that

-A\v\2=-2vΆv-2\Vv\2^2vg(v). (2.32)

Given ε > 0, we have, for some δ > 0,

and thus

φ), (2.33)

where ^ =
From (2.31) we deduce that φ e 13, all q < oo. Since, on the other hand, Ye L! for

all 1 S t<d/(d-2), it follows that (Y * φ) (x)^0 as |x|->oo. Using (2.33) we obtain
veU° and

This implies (2.26) since ε is arbitrary.
Therefore we have ^ ( Ϊ ) G L 0 0 and consequently ve W^q for all q< oo.
Finally we assume (2.27). Combining (2.26), (2.27), and (2.32) we see that

v\r^0 for | x |>Λ, (2.34)

(R large enough). We easily deduce (2.28) and (2.29) from (2.34) by comparison with
radial supersolutions. (When r = 2 this is standard, when 1 ̂ r < 2, see e.g. Benilan-
Brezis-Crandall [2]. A systematic survey of available methods for proving
compact support can be found in the book of Diaz [23].) D

III. The Two-Dimensional Case

Let G:1RM->]R be continuous with G(0) = 0, and GeC^RΛίO})- We set

.λ (VG(υ) if υ + 0
g{v)=\o if ^ o .

We make the following assumptions

G(v)<0 for 0 < φ | ^ ε for some ε > 0 , (3.1)

G(v0)>0 for some v0, (3.2)

\g(v)\^C + C\v\p-\ for all υ, for some l < p < o o . (3.3)

The class ^ of functions is given in (1.6).

Theorem 3.1. Assume (3.1), (3.2), (3.3). Then

T=lni{^\Vυ\2\υe%, i; φ 0, j G(i ) ̂  0} (3.4)
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is achieved by some UEΉ, wφO such that f G(u) = 0. Moreover u satisfies

-Au = g(u) in2\ (3.5)

and
0<S(u)SS(v), (3.6)

for all ve^ such that vφO and —Av = g(v) in Q)f.

It is important to note that Theorem 3.1 states that the unique minimizer of
S(u) in the set of functions that are in ί? and that satisfy (1.1) is, in fact, u = 0. The
existence of this trivial solution of (1.1) of lowest action is special tod = 2. It is the
chief difficulty in the two-dimensional case for the obvious reason that the
minimum of J | Vu\2 with J G(ύ) = 0 would be u = 0. Therefore we must impose the
extra condition u φ 0. (Independently, Keller [21] introduced the u φ 0 constraint,
but for d^.3. Berestycki et al. [3, 4] used it for d = 2.)

We do not have a general result (as in the d ̂  3 case) for the existence of a
minimum in (3.4) without assuming the differentiability of G on Rn\{0}. However,
if we assume that for some ε > 0,

sup \G(tv)\^C\G(v)\

for all \v\ < ε, then we can prove the existence of a minimizing u for (3.4) under the
assumptions (3.1), (3.2) and \v\~pG(v)-+Q, as |u|->αo for some fixed p<oo.

Proof Let {uj} be a minimizing sequence for (3.4). Note that μ([|wJ| > ε]) > 0, since
M-'φO and J G(wJ)^0. On the other hand the expression J \Vu\2 is invariant under
scaling. Thus we may always assume that

μ(ί\uJ\>ε])=l. (3.7)

Also, after a shift, we may assume that

(3.8)

where B is the unit ball (the argument is the same as for d^.3).
The following lemma is needed in the proof of Theorem 3.1.

Lemma 3.1. We have that

ί\uJ\q[\uJ\>ε]^Cq9 allq<ao9allj. (3.9)

Proof First we claim that

^ , forall l ^

all φ G L{oc, Vφ E L2, μ(Supp^) < oo .

The conclusion of Lemma 3.1 follows by choosing φ = (\uj\ — ε)+ in (3.10), and we
obtain \\(\uj\-ε)+\\q^Cq \\Vuj\\2, which implies (3.9). For the proof of (3.10) we
argue as follows:

Step (i). We start with the well-known inequality

\\φ\\2ύC\\Vφ\\l9 aΆφeCh. (3.11)

(See e.g. Nirenberg [17].)
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Step (ii). Inserting φ2, φ3, ...,φn,... in (3.11) and interpolating, we find

β J « , (3-12)

with α = 2/q, q < oo, all φ e Cj.

Step (Hi). Smoothing by convolution, we see that (3.12) holds when φeL^.VφeL2

and φ has compact support.

Step (ίυ). Inequality (3.12) still holds when ^ G L 0 0 , VφeL2 and μ(Supp^)<oo.
Indeed use step (iii) with (χnφ), where χn(x) = Xi(x/ή) and χt e C1 with χx(x) = 1 for
|x |<l . Note that \\φVχn\\1^O and \\φVχn\\2->0.

Step (v). Inequality (3.12) is valid for φ e L\oc, Vφ e L2 and μ(Supp^) < oo. Indeed,
we can use Step (iv) on truncated ^'s.

Step (υί). We obtain (3.10) from (3.12) by the Cauchy-Schwarz inequality. D

Returning now to Theorem 3.1, we deduce from Lemma 3.1 that
\\uj\\Lq(Q)^C(q, β), all q< oo, all Q bounded. We may now extract a subsequence
(still denoted by {uj}) such that

uj-+u in I?(<2), all q<co, all Q bounded,

uj^u a.e. on IR2,

Vuj^Vu weakly in L2(R2),

(in particular M

Moreover, we have G{u)eU. Indeed, writing G = G+ — G_, we have that

[here we use (3.3)]. On the other hand J G_(w7)^ J G+(uj), and therefore
J \G(uJ)\^C, which implies, by Fatou, that G(u)eU.

We also deduce that ί i e ^ since μ([|w|>ε])^l and G{u)el} [here we use
assumption (3.1)].

Note that for any set B of finite measure we have

B\), all<z<αo, (3.13)
B

and, also in the limit

Indeed we may write

B\), all«<oo. (3.14)
B

ί \uj\q S ί \uj\q \_\uj\ ^ ε] + j ε ^ C + εqμ(B).
B B

Let us introduce the class of functions from ]R2-^]RΠ,

We recall that by (3.10) φejf implies φ e UQR.2), all q, 1 ̂  q < oo.
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Lemma 3.2. Let φe$C be such that

$G(u + φ)-G(u)>0. (3.15)

Then

\Vu Vφ + \\\Vφ\2^. (3.16)

Note that f G{u + φ) makes sense for φ e Jf; indeed iϊ B = Suppφ then

ί \G(u)\s

Proof. We have, with B = Suppφ,

$G(uj + φ)=$G(uj + ψ) + J G(uj)^
B ~B B

For the last assertion we note that

G(uj + φ)- G(uj) -> G(u + φ)- G(u) a. e..

On the other hand, if A C B we have

A \B B J

and the last term can be made arbitrarily small by choosing μ(A) small enough. We
conclude the proof by Egorov's or Vitali's lemma. Thus, if (3.15) holds, we have
j G(uj + ψ)>0 for j large enough, and therefore \\ \V(uj + φ)\2^ T. Since if \Vuj\2

->Γ, we obtain (3.16) in the limit. D

Lemma 3.3. There is a constant Cγ (defending only on G) such that if φe Jf, then

(3.17)

Note that $g(u)φ makes sense since g(u)eL2(B) and φeL2(B) (here
£ = Supp< )̂. On the other hand, f \φ\ [w = 0] also makes sense since φel}(B).

Proof By dominated convergence we have, as ί->0,

J [ G ( M + tφ) _ G ( t t ) ] [M + 0] = ί f ff(n) ^ [u Φ 0] + o(t)

= tϊg(u).φ + o(t). (3.18)
On the other hand we have

|fG(^)[M = 0] |^C 1 ί f |^ |[t ι = 0] + o(ί) (3.19)

[here we use assumption (3.3) to deduce that ^(v^^C^ + Qvf, all vj). Let
φ e Jf be such that

fflf(tt)^-C1f|^|[tt = 0]>0. (3.20)

We deduce from (3.18) and (3.19) that f [G(κ + ί $ - G(κ)] >0 for ί>0 and small
enough. Therefore, by Lemma 35
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As ί->0 we have J Vu Vφ^.0, which is precisely (3.17). D

Lemma 3.4. Consider the linear functional L(φ) = \Vu Vφ. There is some φeJf
such that L(^)φO and φ = O on [w = O].

Proof. Assuming the contrary, we should have L(φ) = 0, for all φ e Jf such that
φ = 0 on [w = 0]. In particular, taking φ = (φί90, ...,0), we should have
j Vuγ Vφγ = 0, for allφeJf such that φί = 0 on [wx = 0]. We choose ̂  = (MX — δ) +,
(5 > 0. Then, from the above, J | V{uγ — δ) +12 = 0, which implies (i^ — δ) + = C, which
in turn implies (u1—δ)+=0 (since w 1 ^0 at infinity in the weak sense). Hence,
ux ^ δ, and thus i^ ^ 0. The same argument applied to each component leads to u
= 0, which is a contradiction. D

Lemma 3.5. There is a constant k ̂  0 such that

= O], for all φetf. (3.21)

Proof We fix some φoeJf such that L(φo)=— 1 and ^ 0

 = 0 on [w = 0]. (See
Lemma 3.4.) Given φeJΓ, note that

ψ = φ + L(φ) φ0 + α^ 0 , α > 0,

satisfies

L(ψ)=-oc<O

and, by Lemma 3.3, we have that

(since φo = 0 on [w = 0]). As α-»0 we find that

\g(u) φ-kL(φ)-C1\\φ\[u = Q]^, for all

where k= — §g(u)'φo^0 [by (3.17)]. By considering the two choices ±φ, we
obtain (3.21). D

Lemma 3.6. For v e H\QC we have that

dG{υ)ldxi = g(υ)> dv/dxi in $'. (3.22)

Note that g(v) dv/dXiGL\0C and G{v)eϋ, so that (3.22) makes sense in 3)'.

Proof. Choose a smoothing sequence Gk for G so that Gk-+G pointwise on IRΠ,
gk= VGk tends to g pointwise on IR"\{0}. Moreover,

and i

We have that dGk(v)/dXi = gk(v) Sϋ/Sx,., and thus, for

ί φdGM/dxt = ~ ί Gk(υ) dφ/dx^ - j G(t ) dφ/dxt,

and

by dominated convergence (recall that dv/dxt = 0 a.e. on the set [̂  = 0]). D
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Proof of Theorem 1 Concluded. The linear functional M(φ)= J g(ύ)-φ — kL(φ),
φeCo, satisfies, by (3.21), \M(φ)\^Cί \\φ\\Li. Thus by the Riesz representation
theorem there is some function h e L°°(R2), h: IR2->IRn, such that M(φ) =$h-φjor
all φ e Cξ. Moreover, by (3.21), we have \\h-φ\<LC\\φ\ [w = 0], for all φ e Cg\ and
hence for all φeL1. Thus, h = 0 for wφO and, therefore, g(u) + kAu = [u = 0']h. It
follows that kφ0 (and thus k>0), for otherwise k = 0 => g(u)Ξ0^> dG{u)/dxi = 0
by Lemma 3.6 => G(u) = C => G(u) = 0 (since G(M) G L1) => for a.e. % we have either
w(x) = 0 or |«(x)|^ε. On the other hand, |w| EH\0C, and thus it has a mean value
property; therefore we would have either u = 0 a.e. on R 2 or |w| ̂  ε a.e. on IRA Both
cases are excluded (since uφ0). Hence we have proved that fc>0 and u satisfies

— Δu= -g(u) + lu^0']h/ for some /z'eL00. It follows from the elliptic regularity
/c

theory that u e W^q, all q < oo, and therefore Au = 0 a.e. on [w = 0]. Consequently
/z'^0 a.e. on [u = O], i.e. we have

-Au = g(u)/k for some fc>0. (3.23)

When d = 2, Pohozaev's identity (the proof of which is similar to Lemma 2.4)
states that f G(μ) = 0. On the other hand, since Vuj^ Vu weakly in L2, we have, by
lower semicontinuity, \f |Fw|2 ^ Γ. Thus, in fact, \ J |Γw|2 = T and M is a minimizer
for (3.4). After scaling we can always assume that u also satisfies —Δu = g{u).
Finally, if veΉ satisfies —Av = g(v) in 3)\ then VGL\OC, all q<oo,
=>g(v) E L\oc=>v E Lfoc. By Pohozaev's identity we have J G(v) = 0, and thus if v φ 0
we obtain ^J |F ι ; | 2 ^ Γ Therefore,

S(t?) = i J | Γ ι ; | 2 ^ T = i f | Γ M | 2 = S(tt). D

Behavior at Infinity

Here we assume only that g: ]Rn->]Rn is any mapping such that for some p< oo,

for all i e R " .

Theorem 3.2. Let VEΉ be any solution of (1.1) m ί F

lim υ(x) = 0.
\x\^co

Assume in addition that g(v) v^—C\v\r for all υ E R" with \v\ < δ for some constants
C>0, δ>0, l^r^2. Then

(i) if r = 2, v(x) decays exponentially as |x|—xx),
(ii) if l ^ r < 2 , v(x) has compact support.

Proof For any (5>0 the function φ = (\v\ — δ)+ satisfies φeL\oc, VφEL2,
μ(Supp<^)<oo, and thus, by (3.10), φeI3(Έ.2) for all q<oo. Hence
ί \v\q [M > δ ] < oo, for all q< oo, all δ>0. We note that

Given any a > 0, we have, for some 5 > 0,

2 2£C\Ό\ + \v2
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and thus \v\2^Coc + (Y*ψ), where Y is the Yukawa (or Bessel) potential and
ψ = C(\v\2 + \v\p) [\v\ > δ]. Thus ψ e L\ all 1 S q < oo. On the other hand Ye II for all

. It follows that (Y*ψ)^>0 as |x|-»oo. Therefore,

which implies that v(x)^>0 as |x|-»oo, since α is arbitrary.
The rest of the proof is the same as in Theorem 2.3. D

Appendix

Lemma A.I. Let 1 < α <β < oo and 1/α + 1/α' = 1. Let Ye La

w (weak L*),Ae Lα' with
μ(Supp^4) < oo, andfe Lβ with A9Y,f^ 0. We assume that / ^ 1 + 7 * (Af), where *
denotes convolution. Then

for all q< oo and a// 5 of finite measure.

Proof. Let χ be the characteristic function of BuSuppA We have
χf^χ + χlY*Aχf]. Let g = χf, whence ^^χ + χ [ 7 * ( ^ ) ] , and geLβ with
//(Supp^f)<oo. Let Q:^f->7* (Aφ). Note that β is a well defined bounded
operator from U into U for all α<γ<oo ? with norm ^Cy | |Y||α > w ||̂ 4||α/. We
introduce βγ defined by

MR = Γl/>8—l/α% if β<a\
/ P l 11/08+1), if β ^ .

Note that βx>β. We shall prove that geLβ => geLβί. Iterating this fact with β
replaced by βί we find that geLβk for an increasing sequence /?fe->oo. This will
prove the lemma. Write A = Aί + A2 with A1eLco and A2 such that
K: φ h-> y * (42^) i s a bounded operator from ί/ into I? and Lβί into L^1 with norm
< 1. We have that

Note that heLβi. We have that

m

^ ^ Σ Kjh + Km+1g.

Kyft is a norm convergent series in Lβί while Kw + ^ ^ 0 in i f Thus gf e L^1. D

Lemma A.I is closely related to, and in fact implies some results in [8].
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