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Abstract. A new global approach for the variational equations of fluids is given.
The concept of prefluid is introduced, together with its variational equations
and examples.

1. Introduction

The intrinsic description of perfect fluids in Newtonian space-time that appears
mostly in the literature (see [1, 3]) resembles the one used for elastic media: the
study of a one-parameter (the time) family of diffeomorphisms. Besides its
kinematic flavor, the limitation of this approach is evident for example in the case
of general relativity, where there are no preferred spacelike slices for the
parametrization of those diffeomorphisms.

For compressible fluids the situation is even worse, for in addition to the above
relativistic remark, we are confronted with the heterogeneous role of the equation
of continuity, which is to be imposed as a constraint. Also there are two classical
pictures, Euler's and Lagrange's, with corresponding variational principles
(variations on the velocities, variations on the initial positions, see [7] for
discussion), that cast more confusion into the differential geometric core of the
problem.

To avoid these shortcomings we introduce two innovations. The first one is to
take fluids as what they seem to be, i.e. vector densities. The second refers to the
variational equations and consists of taking variations that proceed from vector
fields on the base space instead of vector fields tangent to the fibres.

Thus, let π: E{r)-+Mn be the bundle of r-vector densities on M, where M could
be a configuration space-time. Let π^ : J°°(π)->M be the bundle of oo-jets of local
cross-sections of π. Then an abstract fluid is a section of π. If a πw-horizontal
w-form λ (the Lagrangian) is given on J™(π), it defines a functional on abstract
fluids in the standard way. If X is a vector field on M with flow φt, it induces a
vector field on the bundle of frames F(M) via the flow φt#. This new vector field
induces a vector field in each associated bundle, and in particular, a vector field X
on E{r) that induces the desired variation on abstract fluids.

We show that the variational principle that corresponds to such variations
leads in the case of conservative fluids to Euler's equation plus the equation of
continuity. Therefore, the latter becomes a consequence of the variational
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principle and no longer an external constraint. More precisely, our variational
equations show that the equation of continuity holds except in the circumstance of
cavitation, and this is a nice feature that lends more strength to our approach.

One could think therefore that fluids are vector densities with roots in the base
space, whereas fields (in the physical sense) have their ground on some bundle over
it. In fact, the usual image prescribes that the variation must be vertical, or at least
that the variation vector field on E must be π-projectable (really, these two types of
variations are almost the same thing), but otherwise freely chosen. To show that
perhaps this is not always the case, we study also another variational principle that
appears sometimes in disguise in the literature. It is given by variations that
commute with the divergence operator; equivalently, π-projectable vector fields
that vary the divergence of a section as if it were a true fluid (in the sense we have
described above). In other words, sections of E{r) that are not fluids, but their
divergences are; in view of this we call those sections prefluids. We compute their
variational equations and give three examples.

First, we prove that if we consider a classical fluid of noninteracting particles as
a prefluid, its variational equations are simply the Hamilton-Jacobi equation (plus
the equation of continuity).

Second, we show that Schrόdinger's equation is the equation of a prefluid (of
course, this is a wholly unorthodox derivation of that equation).

Third, Maxwell equations. We start from a Lagrangian built as usual, except
that we drop the term A j and do not assume that the electromagnetic field comes
from a potential. Taking it as a prefluid (its divergence is the current, i.e. a fluid!),
we obtain the correct Lorentz force plus the condition that the electromagnetic
field must be not only a closed but also an exact form in any Lorentzian space-time.

2. Preliminary Notations and Results (cf. [5])

Let π: E->Mn be a fibre bundle with n^ 1 (all objects are C00). We denote by Γ(π),
the set of local cross-sections of π. Jfc(π), 0 rg fc rg oo, the manifold of fc-jets of local
cross-sections of π. Thus J°(π) = E. πhtk: Jk(π)-+Jh(π) for fc^/ι, and πk: Jk(π)->M,
the natural projections./(s), the fc-jet of seΓ(π). V(M), the Lie algebra of vector
fields on a manifold M.

Let X e V(M). Its horizontal lift or total vector field XH e V(J™(π)) is defined as
follows. If /6Cω(J r o(π)), meM, seΓ(π), and w=/°°(s)(m), then XH(f)(u)
= X(f oj°°(s))(m). This map F(M)->F(J°°(π)) is C°°(M)-linear and a Lie algebra
homomorphism.

Let VJβ) C V(E) be the subalgebra of π-projectable vector fields on E. Let
X e Vπ(E) and φt, φt be the flows of X and its projection π(X), respectively. If
seΓ(π) is defined in a neighborhood of ra e M, then st = φt°s°φ-t is also a local
cross-section of π on a neighborhood oίφt(m). If w =/(s)(m), the tangent at t = 0 to
the curve t-+jk(st)(φt(ni)) depends only on X and u, thus defining a vector Xk(u). The
map u->X\u) defines a vector field Xk e V(Jk(π)). The limit X00 e F(J°°(π)) of the
Xk when k-+ oo is called the integrable vector field defined by the variation X. This
map Fπ(£)-»F(Jk(π)), 0^/c^oo, is a Lie algebra homomorphism, and we have
[X00, 7H] = [π(X), Yf for every Ye V(M).
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Let TΓ be the π^-vertical subbundle of TJ00^). The horizontal subbundle, jf, is
given by the horizontal lift of TM and we have TJ™(π) = Y®#e. Thus the algebra
of differential forms on J°°(π) becomes bigraded and we put ω e Hr

s(π) if the (r+ s)-
form ω on J°°(π) is r times vertical and s times horizontal. Thus d = D + d, where D
and d are the horizontal and vertical differentials, respectively, and D2 = d2 = Dd

A form ωeHn(π) is called a source form if for each ue J°°(π), ω(u) can be
looked at as the pullback of a (rc+l)-form on πO f O O(«)e£. In other words, if
X e TJ°°(π) and (π0, J+X = 0, then i(X)ω = 0. A fundamental result of Takens [5] is
the following.

Lemma. Each ωei/,J(π) can be written uniquely as ω = ω1 + ω2, where ω1 is a
source form and ω2 e ImD.

3. Densities

In the following, £ = £ ( r ) = (Λ rTM)®(yTT*M), i.e. E will be the bundle of
r-contravariant skewsymmetric densities on M. We recall the concept of
divergence [2]. Let κ:E(r)-+Λn~rT*M be the bundle isomorphism given by

κ(s)=~s(σi\...,σi> ;eiί,...,eir,...),

where seE{r\ {e{} is a base of Tπ{s)M, {σ1} its dual, and we sum over repeated
indices. Then, if 5 e Γ(π), divs = (— lf{κ~ι °d° κ)(s).

We can regard K as an (n — r)-form on E since, iϊssE and X r + x,..., Xn e TSE, we
can put κ(s)(Xr+±,..., Xn) = κ{s){%^.Xr+1,..., TΓ^X^) thus K t

We also define the (n — r+ l)-form Div on J 1 ^ ) by

or, equivalently, Div = D?c.
We shall use the following subalgebras of Vπ(E):

Now, if X e F(M), we denote by X e Vπ(E) the vector field induced on E via the
tangent and cotangent map of the flow of X. Also, let z: Γ(π)-> VV(E) be the vertical
injection. With these notations we have:

Proposition.
i) If XeV(M), ^en X eVκ(E)nVdiv(E);

ii) if XeVκ(E% then X = π(X); therefore, Vπ(E)=Vκ(E)@Vv(E);
iii) let X e Vπ(E); then X e Vdiy(E) if and only ifX- π(X) = is for some s e Γ(π)

such that divs = 0;
iv) if X e V(M) and s e JΓ(π), then
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Proof. Let seE and φt,φt be the flows of Xe Vπ(E) and π(X), respectively. Then

' " " x d (#Ίc)(s). But i fX r + 1 , . . . ,X n GΓ s £, we have
ί=0

-

\
1

where φf stands for the flow of π(X). Thus (φfκ)(s) = κ(φttφts). Since K is injective
as a map, (J>?xκ;)(s) = 0 for all seE if and only if φt — φf, that is if and only if
X = π(X). This proves ii) and also that for each X e V(M) we have X e VK(E). Since
for each YeVJfi) we have J£γooD = DJ£Yoo, it follows that if^iDiv = if^ooDiv
= Ĵ £ooDκ; = Do£?£κ; = 0, and this is i).

Now, let X e Vv(E)n Vάiy(E). We have £eχί Div = D^xκ. But if φt is the flow of X
and u e E, then as before

(JSf κ)C«)= — κ{φtu) = κ [ -

under the identification of the tangent spaces to a fibre of π with the fibre itself.
Thus J£xκ = κ°X, whence D(κ°X) = 0. This is equivalent to say that for each
u e Γ(π) we have div(I°w) = 0 (cf. [5, Remark 3.7]). If r ^ 1, by using a coordinate
expression it follows easily that the map X°u\ M-+E cannot depend on u. In other
words, X = is for some s e Γ(π) such that div 5 = 0, which is iii) having in mind that
the case r = 0 is trivial.

As for iv), we observe first that XH — X™ is vertical and commutes with all
horizontal lifts of vector fields on M. Hence, it is determined by its action upon
functions on E. So, let fe C°°(E) and φt9 φt be the flows of X and X, respectively. We
have

dt
fo(Soφt-φtoS)= —

ί = 0

~~Jt

by the definition of X and the Lie derivative, and our claim follows.
We shall need some technicalities about contractions. Let β be a p-form on M

and s SL cross-section of π:£ ( r ) ->M. If r ^ p , β s will be the cross-section of
π: £(r~~p)->M given by

where {ej is a local frame with dual {σ*}, α p + 1 , . . .,α r are 1-forms, Xu...,Xn

e V(M), and we sum over repeated indices.
If r<p, β - s will be the cross-section of Λp~rT*M®ΛnT*M given by

+ 1 , . . . ,y p ;x 1 ? . . . ,x j=/?^
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We shall use the following formulae:

'——dβ s, r > p , (1)
p + 1

XeV(M), (2)

p = r+l. (3)

4. Interpretation

In the calculus of variations we must keep in mind that the variation could affect
both the field s and its domain of definition, and therefore, the domain of
integration. For if s is a local section of £ on UcM9Xe Vπ(E) and φt, φt are the
flows of X and π(X) respectively, then st = φtos°φ_tis the varied section and it is
defined on φt(U). Thus, φt drags the section along M and π(X) measures the rate of
this dragging. This vector field reflects itself on the image of s as s^ ° π(X) then I ° s
— ŝ  o π(X) is a π-vertical vector field along s and measures the rate of variation of s
as reckoned by an observer that remains fixed on M. In this sense, VJJE) can be
regarded as the space of general or unrestricted variations. However, if we consider
only first variations of the functional, the volume term depends only on the
π^-vertical vector field (X00 - π(X)H) ° j 0 0 ^), which is the extension to J°°(π) of the
vertical variation X°s — s^. °π(X). Due to this, the interpretation of the choice of
VV(E), VJJE), Vάiy(E) as spaces of variations could be limited to the restrictions
imposed upon (X °° — n(X)H) °jco(s) by those choices. As always, these restrictions
can be regarded as constraints upon the system represented by the section s.

4.1. The Case VV(E)

Given Ye Vπ(E), there is always some X e VV(E) such that
(7°° - π(Y)H - X00) oj00^) = 0, as it is easily proved. Hence, to take VV(E) or Vπ(E) as
the space of variations is essentially the same thing. Thus, there is no restriction,
the field s has no constraints. Therefore, the fact that E may be a tangent tensor
bundle is irrelevant as far as the formal variational equations are concerned. We
could say that s represents a field in the usual physical sense, but not a fluid.

For instance, let M = ΊR4 be the Minkowski space-time and A a 1-form on M
representing the electromagnetic potential. The usual Lagrangian form for the
electromagnetic field in absence of charges is given by F2τ, where F = dA,
F2 = FijFij, and τ = dt A dx A dy A dz. Maxwell's equations are obtained from the
condition δ$F2τ = 0 for free variations δA. Thus, here E=T*M, s = A, the
Lagrangian form λ = F2τ is a 4-form on Jx(π) that belongs to ff2(π), and the space
of variations is VV(E). The fact that E is the cotangent bundle is used explicitly only
in the exterior differential of A, that is in the definition of λ. From this point the
formal process of obtaining the variational equations is the same used for any
bundle.

4.2. The Case VK(E)

If XeVκ(E), then X = MX) and {X™-π{X)H)oj™(s)=-{itf^sT oj™(s).
Therefore, the variation takes place in M rather than in E. To show in what sense
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we can say that s is a fluid, let us consider that r = 1. If s e Γ(π) and s(m) φ 0 for all m
in an open subset U C M, we can interpret s as a line field together with a density of
lines. Indeed, the line field is given by the directions that are parallel to 5, and if
i: B-+U is a hypersurface, where i denotes the inclusion, ϊ*(/φ)) is a volume form
on B which is nonzero if B is transversal to the lines of s and measures the flux or
density of lines through B. Thus, let X e Vπ(E) and φt, φt be the flows of X and π(X).
The varied section is st = φt°s°φ_t; then st has its own lines of current, and the
question is whether the line of st passing through φt(m) is the variation of the line of
s passing through m, for any m in U. In other words, whether integral curves are
applied by the variation upon integral curves. This can be studied as follows: in the
manifold ί/xRwe have the line field given at (m, t) by (st(m), 0), where we identify
st(m) with the direction determined by itself; we also have the "variation line field"
(π(X)(φt(m))9 d/dt). The condition is then that the plane field determined by both
line fields should be integrable. After calculation we can express this as

for some function / on U.
As for the flux, let φt ° i: B-+M be the varied hypersurface; the flux through it is

given by (φt ° ΐ)*(κ(st)). Then we can say that the variation is flux preserving if and

only if ^{φt°i)*(κ(st)) = {soi)*&xκ = 0. Since Sexκ=<ex^κ and X-π(X)

E VV(E), we have the condition i*κ((X — π(X))°s) = 0 (cf. Sect. 3), which together
with (4) gives i*κ(fs) = 0. Thus, if B is transverse to the lines of s, we have (/s) ° i = 0.
So, the variation carries lines into lines and preserves the flux if and only if
X e VK(E). Hence, the choice of VK{E) as the space of variations amounts to the
constraint of preserving the "identity" of the lines of current and their density. We
say that s represents a fluid.

Example 1. Let M = R x R 3 with coordinates (x°,xa) represent the Newtonian
space-time. We take coordinates (x°, xa, y°, ya) for £ ( 1 ) in such a manner that for a
fluid with current s = (s°d/dx° + sad/dxa)(S)τ, where τ = dx° Λdx1 Λdx2 Λdx3, we
put y°(s) = 5°, ya(s) = sa. Then, if s is the current of a compressible non-viscous fluid,
its usual Lagrangian form is

where V and e are, respectively, the potential energy and the internal energy per
unit of mass. The function V can depend on (x°, x% and e is supposed to depend
only on the mass density yΌ. Let X = X°d/dx° + Xad/dxae V(M). Then
X = Xadldx«+yβ{dXηdxβ-δa

βdXyldxy)dldy\ where the indices run from 0 to 3.
Note that if we consider τ fixed, 5 could be regarded as a vector field, and we

would have the same coordinates ya for TM. However, the extension of X to TM
would be X = Xadldx« + yβ{dXaldxβ)dldy\ that is the term -ya(dXγ/dxy)d/δya,
that depends essentially on the divergence of X, would be missing. The choice of

instead of TM is thus essential in our approach. If we put ρ = s°, ρvι = s\ then

which is the usual expression for the Lagrangian form.
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43. The Case XeVdiw(E)

There is some u e Γ(π) with divu = 0 such that X = π(X) + IU. Then, the left-hand
side of (4) is (m)°s. Since u is not necessarily a multiple of 5 and κ(ιu°s) + 0 in
general, we conclude that neither the flux nor the lines of current are preserved by
the variation. Therefore, s is not a true fluid. However, since eS?xiDiv = 0, the
variation preserves the flux and the lines of current of div s. In other words, s is not a
true fluid but its divergence is; in this sense, we shall use the name prefluids for such
entities.

Let us clear this up. If X e Vπ(E), we put φt, φti φf to denote the flows of X, n(X)
and π(X), respectively. If s e Γ(π) and m e M, we have after computation

?π(x) div s -h — divs,I (m),
ot t=o )

where st = φt°s°φ-v

Now we define the map p(X):JΰO(π)-^TE{r'1) as follows. If u=j">(s)(rn\
p(X)(u) is the tangent at t = 0 to the curve t->(divst)(φt(m)). In other terms, p(X) is
the variation induced by X upon div5. By computation we get

(divsf)(m),
ί=0

where π{X) denotes the extension of π(X) to E(r~X). Then
= π(X) ((div s) (m)) if and only if £Cχί Div = 0. If we put (div s)t = φ*odivs°φ- ί? we
have divst = (divs)t if and only if 5£x\ Div = 0. That is, div 5 is varied as a fluid if and
only if s is varied as a prefluid.

It is well known (cf. [7, p. 147]) that the first attempts to obtain Euler's equation
from an Eulerian variational principle led to an irrotational velocity of the fluid
when the entropy was supposed to be constant. Now it is clear, where the mistake
was: the equation of continuity was regarded as a constraint and introduced in the
Lagrangian by means of a Lagrange multiplier. This is equivalent to take
variations that preserve the divergence, that is to choose Vdiv(E) as space of
variations. Thus, those attempts were considering the fluid as a prefluid.

5. Variational Equations. Conservation Laws

Let λeH®(π) be the Lagrangian form, i c M b e a n orientable regular compact
domain with boundary dA, X e Vπ{E\ and s e Γ(π). Then we consider the integral

J(0= ί .TWA,
Φt(A)

where, as always, st = φt°s°φ_t and φt, φt are the flows of X and π(X), respectively.
By the change of variables formula,

I(ή=ί(j™(st)oφt)*λ.
A

Thus, the derivative of this integral with respect to t at t = 0 is

ir(s)*κχ«>)λ.
dA
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Since dλ ε #*(π), it decomposes as dλ = ω + Doc, where ω is a uniquely defined
source form and α ε H*_ x{π). Now, it is a trivial matter to prove the following slight
generalization of [5, 3.7]:

Proposition. Let α ε Hζ(π), s ε JΓ(π), and Xu...,Xpbe integrable vector fields (not
necessarily vertical). Then

p sr(i(Xί)... i(Xp)0L).

Also, since ω is a source form, j0O(s)*i(^'oo)ω=70O(s)*i(Λ:0O-π(A')H)ω.
Therefore,

J= jjx(s)*i(Xco-π(X)H)ω + J jC 0(s)*i(X a ))(A-α). (5)

Now, in order to have a well stated variational problem we must choose the
subspace of VJE) that specifies the type of variation. That is, we choose that
subspace, impose that X belongs to it and satisfies X0 0 °j°°(s)|cL4 = 0, and then the
condition that J has to vanish for all such vector fields. The choice of the subspace
VV(E) is the standard one and it leads to the necessary and sufficient condition
ω°jco(s) = 09 which is the well known Euler-Lagrange equation. Fluids are tied,
however, to the variational subspace VK(E). So, assume that in (5) we have

r(s)*i(X«> - π(X)H)ω = - (i(

because ω is a source form.
It is obvious that there is a unique r-form ωs on M such that ωs u

= (ί(ιu)ω)oj0O(s) for all weΓ(π). Then, by repeated application of (1), (2), (3)
we have:

r(s)*i(X«> - π(X)H)ω = - ωs J?π{X)s

= ( - l)ri(π(X)){dωs s -r(ωs divs)} + ( - l) r + Hκ(ω5 (π(X) Λ S)) .

Thus

J = ( - iy J i(π(X)) {dωs s- r(ωs divs)}
A

r ( ) K ) (
dA

and therefore, we have

Theorem 1. Let λeH^(π)9 ACM be an orientable regular compact domain with
boundary dA, and s e Γ(π). Then I(t) is stationary att = O for all variations X e VK{E)
with X™°r(s)\dA = Q if and only if

dωs 5 — r(ωs di v s) = 0 (6)

in A.

Corollary 1. With the above assumptions, if r = 1 (ordinary fluids) and s satisfies
(6), then divs = 0 in the open subset, where ω s s φ 0 (equation of continuity).

Proof. It is enough to compute the contraction of (6) with a vector field parallel
to s.
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Now we consider prefluids. So, let X — n(X) -f- IU with divu = 0 be a vector field
in Vdiy(E). We have as before

J = J ωs u + ( - l)rKπ(X)){dωs s- r(ωs divs)}
A

+ J r(s)*i(X°°)(λ-a) + (- iγ+ικ(ωs• (π(X)As)).
dA

Then, if we take π(X) = 0 and u = divK withΓ(K)\dΆ = O,

J=$ωs-divK= j (-l) rdiv(ω s K) + -dωs K
A A Γ-f 1

Therefore, a necessary condition for J = 0 whenever X e
X0 0 °j°°(s)|(L4 = 0 is dωs = 0. So, assume that dωs = 0 and take X = π(XK Then we
obtain the necessary condition cos-divs = 0. Then, assuming that dωs = 0 and
ω s divs = 0, the condition becomes

A

whenever divw = 0 and jCΌ(u)\dA = 0. Since ω s is closed, we get by Poincare duality
that ωs must be exact. Thus we have proved

Theorem 2. Let λeH®(π), AcM be an orientable regular compact domain with
boundary dA and seΓ(π). Then I(ή is stationary at t = 0 for all variations
X e Fd i v(£) with X00 oj*>(s)\dA = 0 if and only if

ωs divs = 0 and ωs is exact (7)
in A.

Corollary 2, With the above assumptions, if r = 1 and s satisfies (7), then divs = 0 in
the open subset, where ωs + 0 (equation of continuity).

Let us assume that ωs is exact, say ωs = dθs, and that ωs - divs = 0. Then for each
X e Vάiy(E), X =Ίϊ(X) + iu, we have

dA

The (n~ l)-form under the integral sign can be considered as the momentum
associated with the vector field X. This, and the corresponding expression for
fluids, leads immediately to the following conservation laws.

Theorem 3. Let λeff^(π), seΓ(π) be a cross-section satisfying the condition (6)
(respectively {!)), X e VK(E) (respectively X e Vdiy(E)) be such that <g

?

χooλ = Dβ for
some βeH^^π), and A CM be an orientable regular compact domain with
boundary dA. Then

dA

(respectively

dA

where X = π(X) + iu and ωs = dθj.
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6. Examples

In order to make sure that our first variational principle works correctly for the
usual non-viscous fluids, we take the Lagrangian form of Example 1. The standard
formula for the Euler-Lagrange variational equations gives

de
where p = (y0)2 -—^ is the pressure (see [7]). If s = ρ(d/dx° + vad/dxa)(g)τ, we get after

putting t = x°:

QJ

Then Eq. (6) splits into

(8)

1 dv2 ίυ2 p\fdρ
2 at \2 Q/\ut

where grad, div0, and — are the spatial gradient, the spatial divergence and the
at

Eulerian derivative, respectively. If we multiply (8) by v and subtract from (9) we get
the following equation of compatibility (cf. Corollary 1)

+divo(ρt;)) = 0 .

Thus, the equation of continuity holds in the points, where

In other words, the kinetic energy of a fluid cannot reach the sum of the
energies given by the potential, the internal energy and the pressure; otherwise, the

fluid may not satisfy — + div0 (ρv) = 0, i.e. it could cavitate. This is a nice byproduct
ot

of our approach. If the equation of continuity holds, then (8) and (9) become

dv 1 dv2

^-Γ+^gradF+gradp^O, - ρ — + ι ; (ρgradF+gradp) = O,
at 2 at

which are the usual Euler equations for the momentum and the energy.
Example 2. Now, we shall point out the relation existing between prefluids and
Hamilton-Jacobi equation. Let M = R x Q , where Q is any configuration space
and R represents time. We consider a particle as a section of the bundle Af-»R. Let
(qa), (<f, va), (t) denote coordinates in β, TQ, and R, respectively, and L=L(ί, qa, va)
be a function on R x TQ, the Lagrangian of a particle. We want to define the
Lagrangian form of a fluid constituted by non-interesting particles, each subject to
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that Lagrangian. To do that, we first make homogeneous L by defining a new
function on (TM)° = (TlR~{0})x TQ. We put U = L°η, where η\(TM)°->WL

xTQ is given by η(t,υ°,(f,if)=lt9cia

9-δ\. Note that L depends on the

coordinates of M and on the direction of the world-line (υ°9 v
a\ but not on its

length. So, we multiply L by an n-form on M that we can write
y°dtΛdq1 Λ ... /\dqn~1 and obtain the Lagrangian form

λ = y°Lχt,v°,qa,υa)dtΛdq1 Λ ... Λdq"'1.

va

By the homogeneity of L\ the change of coordinates ya= -^y0 gives

λ = y°L/(t,y°,qa,ya)dtΛdqίΛ ... ΛdqT 1,

where (yod/dt-\-yad/dqa)®(dtΛdqί Λ ... Adqn~1) is the vector density describing
the fluid. Note that in the points of (ΓM)°, where u° = 1, that is in the image of the
usual inclusion R x TQ-^(TM)° we have / = y V . This shows that (y°, ya) can be
interpreted as the current and y° as the density. If

s = (s°d/dt + sad/dqa)(g)(dtΛdq1 Λ ...

we have with a slight abuse of notation

ω = L o s - τ τ o 5 K )dt+ I - ^

Now, if we consider λ as the Lagrangian form of a prefluid, the equations (7) are

δL 8S dS
h

divs = 0, (11)
r)T

where hL= -L+va— is the Hamiltonian. Equations (10) are equivalent to the

Hamilton-Jacobi equation for the Lagrangian L [6, p. 91] and are complemented
in our scheme with the equation of continuity (11).

Example 3. We shall show that the Schrodinger equation can be looked at as the
variational equation of a prefluid. We start with the usual equation

i h

If we put Ψ = m~ll2μll2expί—θ), where μ and θ are real functions, (12)

decomposes into

| ^ (13)
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Now, (13) can be looked at as an equation of continuity for a fluid with density
μ and irrotational velocity u = grad#. The universal character of the equation of
continuity for the case r = 1 (cf. Corollaries 1 and 2) raises thus the question
whether (13) and (14) could be obtained via our second variational principle. The
answer is affirmative. In fact, let as before (ί, xa) be the canonical coordinates in the
space-time IR x ]R3, and (£, xa, y°, ya) be the corresponding coordinates for £ ( 1 ). We
apply Theorem 2 to a prefluid with Lagrangian form

, Λ y y v 0 h2

 y^
λ~\2 y° ~my ~8m2 y°2 y° ~my ~8m 2 y°

where (ί, xa, y°, y", y°, y°, y%, yζ) are the induced coordinates on Jι{E). Then, if

we obtain

/ h2 Λμ h2 (gradμ)2 1 2 V\ ,

ω= — -11- yB w _ V2 )dt + ifdxa.
s \4m2 μ Sm2 μ2 2 m)

By Theorem 2, ωs must be exact and ωs divs = 0. Hence ωs = dθ, which is (14),
and divs = 0 at the points, where ωsΦθ, which is (13).

A similar Lagrangian has been used in [4] for a stochastic deduction of the
Schrόdinger equation.

Example 4. Our last example refers to £ ( 2 ). Let (M,g) be an orientable
pseudoriemannian manifold, for instance a Lorentzian space-time. If H e Γ(π)
(therefore, H is a bivector density and may represent the electromagnetic field
density) and τ is the Riemannian volume element, we can build the 2-form F by
putting F* ®τ = H, where F* is the tensor field obtained by raising the indices of F
by means of g. Then F • H is an w-form on M, and if Ftj are the components of F in a
local frame, then FΉ = FiiFijτ. Also, we put ^divif and define ueV(M) by
u®τ=j. Let OφfceR; the map H-^bg(u,u)1/2τ + FΉ can be considered as a
Lagrangian form on Jι(E). Its first term represents the inertial energy of the
current u; thus, it could be thought of as the energy of a mass current with a rest-
mass density b times the absolute value of the charge density of the electric current.
Our Lagrangian differs from the traditional one in that the term A j , where A
would stand for the electromagnetic potential, is missing. But this is consistent,
because the energy of a system of charges can be attributed to the electromagnetic
field only, as it is well known.

After computation we find that ωH = 2F+^bdη, where η = g(u,u)~ll2g(u, ). It
must be remarked that in the computation we do not assume that F is derived from
a potential. If we consider H as a prefluid, we have the variational equations:

F is exact, that is F — dA, (15)

F(u, )=-b

4(dη)(u, ) . (16)
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If we denote by v the unit vector field g(u, u) ~ 1/2u that represents the velocity of
the current, the last formula can be written in the form

g(Vuυ, )=--bF(u, ). (17)

That is, we have the complete set of Maxwell equations together with the
Lorentz force and the charge conservation. In fact, (15) expresses the existence of a
global electromagnetic potential; j = άivH as usual, except that here; appears as
the definition of the electric current density; div/ = divdiv# = O expresses the
conservation of charge; finally, (17) is the usual Lorentz force upon a charged fluid
with rest-mass density b times the absolute value of its charge density.
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