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Abstract. Complete integrability in Liouville’s sense is proven for rotation of an
arbitrary rigid body with a fixed point in a Newtonian field with an arbitrary
homogeneous quadratic potential. A consequence is the complete integrability
of rotation of a rigid body with fixed center of mass in the field of arbitrary
sufficiently remote objects (in the second approximation). Explicit formulae are
obtained expressing angular velocities of the rigid body in terms of f-functions
for Riemannian surfaces. Integrable cases are found for rotation of a rigid body
in nonlinear Newtonian potential fields.

1. Introduction and Summary

Investigation of dynamics of a rigid body with a fixed point in a Newtonian
potential field o(x!,x?, x*) is a classical problem of mechanics. For a linear
potential, ¢ =a,x'+a,x*>+a,x>, rotation of a rigid body is described by the
Euler-Poisson equations, that are not integrable in the general case. The dynamics
is integrable only in three special cases which were discovered by Euler [1],
Lagrange [2], and Kowalewski [3]. In the two former cases the problem is
integrated in terms of elliptic functions, in the Kowalewski case — in terms of the
Riemann 6-functions of two variables.

The main result of the present work is that rotation of an arbitrary rigid body
with a fixed point in a Newtonian field given by an arbitrary quadratic potential,

3

¢=5 '21 a;;x'x7, is always completely integrable in Liouville’s sense. The
L=

dynamical equations are integrated explicitly in terms of the Riemann #-functions

of 4 variables, restricted to a three-dimensional manifold (a Prym variety).

The problem of rotation of a rigid body in a quadratic potential field appears
naturally in the following situation. Let us consider an arbitrary rigid body T fixed
at its center of mass O under the action of the gravitational field of an object V
(consisting, say, of several disconnected massive bodies). Suppose /is a linear size of
the body T, R is the minimal distance from the point O to the field source V, and
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I<R. If the center of mass O is fixed, the linear terms in the expansion of the
Newtonian potential ¢ near the point O produce no effect on rotation of the body
T, and quadratic terms are dominating for /< R. Therefore, Theorems 1 and 2,
which are crucial in the present work, lead to the following statement: in the
Newtonian field of a remote gravitating object V, rotation of a rigid body which is
fixed at its center of mass is a system completely integrable in Liouville’s sense in
the second-order approximation; the problem is integrated explicitly in terms of
Riemann’s f-functions.

Until now the only integrable case known for this problem (which was
investigated earlier in [4-6]) was the case, where the gravitational potential ¢
had an axial symmetry (with the center O in the symmetry axis). In that case the
potential was of the form ¢=a(x')* (Brun’s problem), and the equations
describing the rotation of a rigid body T were reduced there to Clebsch’s case of
integrability [7] for the Kirchhoff equations.

In Sect. 2 of the present work we show that the equations describing rotation of
a rigid body in a quadratic potential field are Euler’s equations in a space
conjugate to a nine-dimensional Lie algebra Lo, so these are the Hamiltonian
equations in six-dimensional orbits .#°®. The resulting Hamiltonian systems in the
symplectic manifolds .#° have three involutive first integrals J,, J,, J; (the
integral J, is the system Hamiltonian), so they are completely integrable in
Liouville’s sense. Note that the dynamics of trajectories in the problem in view is a
linear winding of the three-dimensional invariant tori T3. For all the classical
integrable cases [1-4, 7-11], which are known for real (three-dimensional)
physical problems, dynamics of the trajectories takes place in two-dimensional tori
T?, so the authors used the method of the “last Jacobi factor” to prove the
integrability. In the problem under consideration the manifolds, where all the first
integrals of the system acquire fixed values, are three-dimensional (as in the general
case of the Euler-Poisson equations), so the method of the last Jacobi factor is not
applicable here, and the proof of the system’s integrability is based upon an
investigation of its Hamiltonian structure.

In Sect. 3 we present an equivalent representation of the dynamical system in
terms of the isospectral deformation equations, depending on a spectral parameter
E (some dynamical systems with a spectral parameter were studied previously
[12-19]). In view of the existence of such a representation, the system is related
naturally with a family of Riemannian surfaces I" which depend on magnitudes of
the first integrals and have the genus g(I') =4. The arising Riemannian surfaces are
not hyperelliptic, this is an essential feature in which the physical problem in view
is different from all known classical integrable cases [1-4, 7-11]. The Riemannian
surfaces I" admit an involution ¢ : I'-T", 6? =id. It is shown that the dynamics of
trajectories of the system is linearized in the three-dimensional Prym variety,
Prym, I'CJacI (the Jacobi variety JacI is four-dimensional). Explicit formulae
have been obtained which express the angular rotation velocities of the rigid body
wl(t) in terms of the A-functions of the Riemannian surfaces I'.

In Sect. 4 the integrability in terms of the Riemann 6-functions is proven for an
n-dimensional analog of the rotation problem for a rigid body in a quadratic
potential field, and it is shown that the dynamic is linearized in the corresponding
Prym varieties. In Sect. 5 we indicate certain integrable cases for the rotation
problem for a rigid body in some more complicated Newtonian fields.
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2. Liouville Integrability for Rotation of an Arbitrary Rigid Body
with a Fixed Point in Newtonian Field with an Arbitrary Quadratic Potential

Equations describing rotation of a rigid body T with a fixed point O are considered
in a reference frame which is related to the body. Let ¢(x!,x2,x3) be the
Newtonian potential in the resting frame F, having its center at the point O; o, B, ¥
are the unit basis vectors of the resting reference frame, as given in the moving
frame S. The potential function is defined as

U(a. B,v)= i oMe((x, &), (r, B), (r, y))dr' dr>dr?, 2.1)

where ¢(r) is the mass density of the rigid body T at a point r. The equations
describing rotation of the rigid body T in the Newtonian potential field
o(x!, x2,x%), in the reference frame S, are as follows

M=M x o+ (0U/da) x o+ (0U/0B) x B+ (30U /0y) x y,

. ; . 22)
g=ax®, Pf=Ppxo, J=yxo,

where M is the angular momentum vector, and o is the angular velocity vector.
Their components are related by the equality

3 3
M= Y Iyw,, I;=/]o( <5ik > (r)?*— rir"> drdridr?, (2.3)
k=1 T =1

where I;, are components of the inertia tensor of the rigid body T in the reference
frame S.

Theorem 1. Rotation of an arbitrary rigid body T with a fixed point O (x*=x?
=x%=0) in a Newtonian field given by an arbitrary quadratic potential

3
p(x)=2"1 Y a;x'x/ (2.4)
i,j=1

is completely integrable in Liouville’s sense.

Note that in Theorem 1 we mean an arbitrary point O (not necessarily the
center of mass of the body), and the potential ¢(x) may not satisfy the Laplace
equation, 4@ =0.

We introduce a basis in the resting frame F with the unit vectors along the
principal axes of the quadratic form in (2.4); then we have 2¢(x) = a,(x")* +a,(x?)?
+a5(x*)?. Let the basis vectors of the reference frame S coincide with the principal
axes of the inertia tensor in Eq. (2.3), so I, =1;0;. Now the potential function in
Eq.(2.1) is

2U=Uqy—ay(I 03 + 1,03 +1503) — a,(I, f3 + 1,83+ 1,83)
—a3(113’% +Iz')’% +13?§) 5 2.5)
Uo=(a;ta,+az)(I+1,+13)/2. .

Use the known isomorphism between three-dimensional vectors, with
components v, and skew-symmetric 3 x 3 matrices, with elements Vj,

. 3 .
Vo V=— ~=Z1 Ve - (2.6)
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This isomorphism maps the vector product x x y to a commutator of the matrices,
[X,Y]=XY~-YX. Apply this isomorphism to the vectors a, B, vy, M, ®; in view of
(2.2), the corresponding matrices «, f8, 7, M,  satisfy the following equations

M =[M, w]+a,[a, Ca+aC]+a,[B, CB+BC] +as[y, Cy+yC],
o'c=[oc,w], B=[ﬂ,a)], '}}z['}),w]’

where the matrix C has the elements C;;=[3(I, +1,+I5)—I;16;, and M;;=1,;;
@i,j,k=1,2,3). Because of Egs. (2.7), we have

@) =[? 0], B =[], )=D*a].
We introduce a new matrix u=a,a? +a, B> +asy?, and use the following identities,
[x,Cx+xCl=[x*C], [u,C]l=—[u1].

2.7)

A consequence of Egs. (2.7) is
M=[M,0]—-[u,I], i=[u,w]. (2.8)

Here the matrices M and w are skew-symmetric, matrices u and I are symmetric.
Another derivation of Egs. (2.8), in a more general case, is presented in Sect. 5.

Equations (2.8) are the Euler equations (a definition is given in [207]) in the
space conjugate to a Lie algebra L, elements of which are [= M + u, where M and
u are 3 x 3 matrices, M'= — M, u'=u. The commutators are defined as follows

[M,u]=Mu—uM, [M ,M,1=MM,—M,M, [u;,u,]=0. (2.9)

The orbits ¢ of action of the corresponding Lie group G, in L% are symplectic
manifolds .#°®=R3 x SO(3)= T(SO(3)), the latter is a tangent bundle to the Lie
group SO(3). The manifolds .#° are determined by the conditions ;(u) = const,
Where Aju) are eigenvalues of the matrix u. If A;=21,%4,, the orbit is

—R¥x §?,and if 1, = A, = A5 the orbit is just R3. The Poisson brackets in L% are
1ntroduced as follows

(o= 3 Cp i 22 .10
where C}; are the structure constants for the Lie algebra Ly in a basis x’ (linear
functlons in L%, say x', belong to the Lie algebra L,, by definition). The functions
A(u), or equivalently, Tr(u), Tr(u?), Tr(u®), are annulators of the Poisson brackets
(2.10); that is to say, for any function f in L} one has {f, 2,(u)} =0 (this fact is an
analogue of that established in [21] for the Kirchhoff equations). Restrictions of
the Poisson brackets to the manifold .#°® [1(u)=c,] is non-degenerate.

Equations (2.8) have a Hamiltonian form,

—{M H}y, d;={u;,H}, (2.11)

where the Hamiltonian is H=J, =Tr(z Mo —ul).
Let us introduce a matrix B with components B;;=1,I,1,I; '5;; It is used to
write down two additional first integrals of the system (2.8),

J,=TrGM>+Bu), J,=Tr(M?u+Bu?). (2.12)

ij>
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Evidently, the integrals J,, J,, J; are independent functions. Because of Egs. (2.11),
one has J,={J,,J,} =0, J;={J;,J,}=0. A direct calculation, using Egs. (2.9)
and (2.10) shows that the Poisson bracket of J, and J; is vanishing, so the three
integrals J,, J,, J5 are in involution. Therefore, the Hamiltonian system given in
Egs. (2.8)(2.11) is completely integrable in Liouville’s sense in six-dimensional
symplectic sub-manifolds .#°, and the dynamics of trajectories is quasi-periodic in
three-dimensional tori T® in L¥, which are defined by the conditions J;=c;,
Aw)y=k;.

’ The fgeneral equations (2.2) describing rotation of a rigid body in an arbitrary
Newtonian field around a fixed point are Euler equations in a space L}, which is
conjugate to the Lie algebra L, ,, that has the following commutators in a basis X,
Y (i), ko, =1,2,3),

(X, X]=e3 Xy, [XoY]=epYe, [Y5 Yjﬂ]=0~ (2.13)
Dynamical equations (2.2) have the energy integral, J, =3(M, ®)— U(a, B, ), and
six additional geometrical integrals J,,...,J, that are constant scalar pair
products of the vectors a, B, y. The surface, where all the integrals J,, ..., J, are
constant is a submanifold .#¢ = T(SO(3)). Equations (2.2) are Hamiltonian in .42,
with the Hamiltonian J,, within the symplectic structure defined in Egs.
(2.10)~2.13). These equations are the first example of physically relevant Euler
equationsin a Lie algebra, with an arbitrarily nonlinear potential function U in the
Hamiltonian J;. [In the definition (2.1), the density o(r) is an arbitrary positive
function, and the potential ¢(x*, x?, x*) satisfies the single condition 49 =0.] In all
other known examples, the Hamiltonian H is a quadratic function.

With the potential function of type (2.5), the Euler equations (2.2) are reduced
to Euler equations (2.8); in this case the manifolds .#¢ and .#° are identical. The
symplectic structures in these manifolds, which are introduced by non-isomorphic
systems of commutators, (2.13) and (2.9), are apparently different, though the
Hamiltonian functions of both systems are coinciding.

3. Integration of the Dynamics in Terms of Riemann’s §-Functions

1. There is an equivalent representation of Egs. (2.8) as isospectral deformation
equations depending on an arbitrary parameter E,

L=[L,Q], L=BE*+ME+u, Q=w—EI. 3.1)

Actually, the dynamical equation in (3.1) is a third-order polynomial in E. The
requirement that the coefficients at E* must all vanish results in the following
equations,

E3: [B,1]=0, E*: [B,w]—[M,I]=0,
E': M=[M,w]—[u,I], E° u=[u,w].

The first and the second equations in (3.2) hold because of the definition of the
matrix B and as M;;=I,w;; (i,j, k=1, 2, 3); the third and the fourth equations in
(3.2) coincide with the system (2.8).

(3.2)
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The integrals (2.12) are the coefficients at E? in the polynomial decompositions
of the functions Tr(L*(E)) and Tr(L*(E)), and they are independent of ¢ in view of
Eq. (3.1).

The eigenvalues of the matrix L, w,, w,, w, are integrals of the system (3.1);
they satisfy the equation

R(w, E)=det(BE%+ ME +u—w-1)=0. (3.3)

Thus a Riemannian surface I', determined by Eq. (3.3), is related naturally to
Eq. (3.1). All coefficients in the polynomial present in (3.3) are first integrals of the
system (2.8), and they are expressed in terms of the following six first integrals

J =Trli(Mo—ul)], J,=Tr&M?+Bu),

3.4
J3=Tr(M?*u+Bu?), J,=Tru, Js=Tru?, Js=detu. G4

Explicitly, Eq. (3.3) looks as follows
R(w, E)=kgE® + k,E*+ k,E* + £ ,WwE* + £ ,w?E* + m,wE?
+ 13w +nyw? +nyw+ne=0,
ke=k2, k=ILI,, ko=—kJy, {4=—kTr(D), (3.5)
ly=Jy— Iy T +2 (2= T Tr(I"Y), £,=kTr(IY),
my=J,—kTr(I"Y),, ny=-—1, n,=J,, n=UJs—=JD2, ny=Js.

As E goes to infinity, Egs. (3.3)3.5) have three roots, w;=B;E*(1+0|E|™1).
Therefore, the surface I' is a 3-sheeted ramified covering of the complex E line. The
projective closure of the curve I' has a singular point with coordinates
xo=w 1=0,x; =Ew~ ! =0, where all three sheets of the surface I' are intersecting
for E—>o0. In order to resolve this singularity, we introduce new coordinates
z=E~!, W=wE ™% In terms of these variables the equation in (3.5) acquires the
form

ke+kaz? +kpz* + L WA £, W2+ my W2 +ny W3 +ny, W22 + 0y Wzt +1ngz8=0.
(3.6)

This equation has three roots for z=0; the roots are W,=1,1,1,1; ! = B, and they
determine three points P9, P9, P3, which realize a nonsingular closure of the
surface I' at infinity.

The surface I, as given by Eq. (3.5), is invariant under an involution o : (w, E)
—(w, —E). Let us consider a map f: (w, E)—(w, E; = E?) of the surface I" onto a
surface I} =I'/o, that is given by the equation

RI(W, El) = kGE? + k4E% + k2E1 +/4WE% + [2W2E1
+m2WE1 +n3W3+n2W2+n1W+n0=0. (3.7)

This is a third-order equation, so the genus of the surface I is g(I7)=1, and its
Euler characteristic is y(I;) =0, so I; =T? The genus of the Riemannian surface I'
is calculated easily by means of the map f. The latter is a two-sheeted ramified
covering, and it has 6 branch points, f(P?), f(Q,), i=1,2,3, where Q; are three
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roots (in the general case) of Eq. (3.5) for E=0. So we obtain, by means of the
Riemann-Hurwitz formula,

wN)=2xI)—6=—6, g(I)=1—xI)2=4.

It is noteworthy that for the considered integrable dynamical system (2.8) the
genus of the corresponding Riemannian surface is g(I') =4, that is higher than the
dimension, d=3, of the invariant tori T?, where the quasi-periodical dynamics
takes place, as is shown in Sect. 2.

2. For a complete description of rotation of a rigid body, it is sufficient to know
the time dependence of components of the angular velocity vector, so the purpose
of our work here is to get explicit formulae for the components w(¢). The method
we are going to apply [22, 23, 12-14] is to construct certain analytical (except at a
finite number of points) functions in the Riemannian surface I' (functions of the
Baker-Akhiezer type [22-24]). On one hand, these functions depend on param-
eters of the system given in Eqgs. (2.8), (3.1); on the other hand, they are uniquely
expressed in terms of the Riemann 6-function for the surface I', in view of the
uniqueness theorem. This relation enables one to get an expression for the
components wi(¢) via the Riemann #-function.

Fulfillment of Eq. (3.1) is equivalent to commutativity of the matrix operators
F=0/0t+Q and L. Let us consider the common eigenvector functions for these
operators, which satisfy the conditions

0/0t+Qy=0, Ly,=wywy,, RWw,E)=0, k=1,2,3. (3.8)

In combination, components of the vector functions y, are a 3 x 3 matrix with
elements wi(t, E). Denote by ¢¥(t, E) elements of its inverse matrix (¢, E).
Introduce the matrix-valued function g(z, P) with the elements gi(z, P,), which
depend on a point P,=(w,, E) in the Riemannian surface I and time ¢; by
definition,

glt, P =yi(t, E)pi(¢, E) . (3.9)
The matrices y(t, E), ¢(t, E), g(t, P,) due to (3.8) satisfy the equations
dp/ot=—Qv, Jo/it=¢Q, dg/ot=[g,Q]. (3.10)

It is natural to consider three vector functions y,(t, E) as one vector function
y(t, P,) with the components y/(t, P,) depending on a point P,=(w,, E) in the
Riemannian surface I': y(t, P,)=vi(t, E). Analogously, the vector function
o(t, P,) with the components ¢;(t, P,) = ¢%(t, E) is determined. Functions y/(t, P,)
are entire in the affine part of the Riemannian surface I, functions ¢,(t, P,) are
meromorphic, their divisors in the affine part of I have the form

(wj(tv P))a = dj(t) ’ ((pi(t7 P))a = di(t) - Dr ’ (31 1)

where D, is the divisor of the branch points of the Riemannian surface I" over the
complex E-plane (it does not depend on time t). By the Riemann-Hurwitz formula
we have y(I') =3yx(S%) — deg(D,). After substitution y(I')= — 6, y(S*) =2, we obtain
deg(D,)=12.






