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Abstract. For the case of exact, area preserving, monotone twist
diffeomorphisms, we give formulas relating the amount of rotation about an
orbit and certain Morse indices.

1. Introduction

This paper continues the study of exact, area preserving, monotone twist
diffeomorphisms of the annulus which I have pursued in [14-19]. I should point
out that Aubry earlier found ideas similar to many of those in [14-19] (see [1]). See
[3] and the references therein for later developments in Aubry's theory. See also
Katok [11,12] for other recent developments.

Precise definitions of the terminology used in this introduction will be given in
Sects. 2-4.

An exact, area preserving, monotone twist diffeomorphism / (Sect. 2) admits a
definition in terms of a global generating function. It is then possible to give a
variational formulation (Sect. 3) of periodic orbits: periodic orbits of type (p, q) are
in one-one correspondence with critical points of an "energy" functional Wq

defined on the space 3Cpq of "states" of type (p, q). Our first result relates the amount
of rotation ρ about a periodic orbit of type (p, q) and the Morse index / of Wq at the
corresponding critical point x in 9£pq.

In order to state this result, we now give the definition of ρ for the case of a C1

diffeomorphism / of T x R = (1R/Z) x R, which is isotopic to the identity and a
fixed point P of /.

Definition of the Amount of Rotation of f About a Fixed Point P. Let τp denote the
tangent space to T x R at P. Each ray emanating from the origin in τp intersects
the unit circle in τp in exactly one point. Hence, we may identify the set RP of such
rays with the unit circle, and provide RP with the topology which makes this
identification a homeomorphism. The derivative dfp:τp^τp induces a
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homeomorphism of RP onto itself which we continue to denote by the same

Since / is assumed to be isotopic to the identity, it is orientation preserving, and
consequently, so is dfp. It follows that the Poincare rotation number of
dfp'.Rp^Rp is defined as an element of T=R/Z.

The amount of rotation ρoϊf about P will be defined to be a real number which
is congruent (mod 1) to the Poincare rotation number of dfp. We further require
that ρ depends continuously on /, with respect to the C1 topology, for
diffeomorphisms which leave P fixed, and that ρ = 0 when / is the identity.

It is an easy consequence of known results concerning the topology of the space
of diffeomorphisms of a surface that these conditions are consistent and uniquely
define ρ, as we will explain in Sect. 4.

Returning to the case of an exact, area-preserving, monotone twist
diffeomorphism / and a periodic point P of period q, we have the following
relation between the amount of rotation ρ oϊfq about a given orbit and the Morse
index / of Wq at the critical point x which corresponds to the orbit :

Theorem 1. // / is even, then ρ = //2. // / is odd, then [7/2] < ρ ̂  [7/2] + 1 , with
equality if and only if x is a degenerate critical point.

Here, we use the standard notation: [α] denotes the greatest integer <^α. The
definition of Wq is given in Sect. 3.

The proof of Theorem 1 is based on a formula of MacKay and Meiss which
generalizes a formula of Bounds and Hellemann (see [9, II, formulas (15) and (16)).
A similar formula is contained in [2, Appendix H]. Indeed, the formula of MacKay
and Meiss implies immediately that ρ is an integer if and only if / is even or x is
a degenerate critical point of Wq, so that all that is left for us to do is determine
which integer it is when / is even or x is a degenerate critical point of Wq,
and which integers it lies between otherwise.

Our second result concerns any orbit, not necessarily periodic. Using a framing
of the tangent bundle of T x R, homotopic to the standard framing, we may still
define the amount of rotation ρq(P) of fq about a point P in the annulus T x 1R.
While this has an invariant meaning when P is a periodic point of period q, it has
no invariant meaning in general, since it depends on the framing of the tangent
bundle of T x R. Nonetheless, it will still be interesting to consider this quantity,
because lim q~iρa(P) has an invariant meaning, when it exists and the orbit

g-»oo

through P is relatively compact (see Sect. 4).

Definition of ρq(P). We consider a fixed framing of the tangent bundle of T x R,
homotopic to the standard framing. [By the standard framing, we mean the one
which corresponds to the product decomposition τ(TxR) = τ(T) x Γ(R) of
the tangent bundle.] Given such a framing, we may think of d/p as a linear
mapping of R2 onto itself. Hence, we have an induced mapping

dfβ:R-*R

on the space of rays emanating from the origin, just as before. We require that ρq(P)
be congruent (mod 1) to the Poincare rotation number of dfjl :R^R. We further
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require that Qq(P) depends continuously on /, and that ρ^(P) = 0, when / is the
identity.

In Sect. 4, we will show that these conditions are consistent and uniquely define
Qa(P). We will also show that limsupq~ίρq(P) and liminfq""1ρβ(P) are

q-+ao g-"co

independent of the framing of the tangent bundle, as long as the orbit through P
lies in a compact set.

Definition of Iq(P). Orbits of / are in one-one correspondence with equilibrium
states (see Sect. 3). Let x = (..., xt, . . . ) denote the equilibrium state corresponding
to the orbit through P. By definition of equilibrium state, (x0, ..., xq) is a critical
point of an "energy" functional W0q defined on the space [̂0,^(^o? *J of truncated
states (xQ,...,xq) satisfying the boundary condition x'0 = x0, xq = xq (see the
end of Sect. 3). Let Iq(P) denote the Morse index of W0q on ^[0,^(^o?^) at

(x0, ...,xq).
Our second result is the following:

Theorem 2. For an exact, area-preserving, monotone twist diffeomorphism, there is a
framing of the tangent bundle, which is homotopic to the standard framing, such that

holds for all P in the domain of f and all q ̂  1 .

The precise framing for which these inequalities are valid is defined at the end of
Sect. 4.

Theorems 1 and 2 are easy consequences of appropriate results in linear
algebra, stated in Sect. 5 as Theorems 3 and 4, respectively. Theorem 3 is proved in
Sect. 6. Theorem 4 follows easily from Theorem 3 (see Sect. 5). We prove that
Theorem 3 implies Theorem 1 in Sect. 7 and that Theorem 4 implies Theorem 2 in
Sect. 8.

We have written this paper so that the results about linear algebra (Sects. 5 and
6) can be read independently of the rest of this paper.

We conclude this introduction by discussing some examples.

Example 1. Suppose P is a periodic point of period q. Clearly, ρgZ(P) = /ρ9(P), so we
obtain from either Theorem 1 or Theorem 2 that

N-»oo

Note that dfq(P) has a positive eigenvalue if and only if ρq(P)eZ; it has a
negative eigenvalue if and only if Qq(P) =^(mod 1); and dfq(P) has an imaginary
eigenvalue if and only if ρq(P)φ2~lZ. In the last case Λ, = exp(2πίρg(P)) is an
eigenvalue of dfq(P).

Thus, the asymptotic Morse index lim N~ ̂ (P) determines whether dfq(P)
N-*oo

has a positive eigenvalue, a negative eigenvalue, or an imaginary eigenvalue, and in
the last case determines what the eigenvalues are.

Example 2. Consider an invariant circle Γ in the annulus and let P e Γ. Suppose
that Γ is not null-homotopic, so it goes once around the annulus.
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A theorem of G. D. Birkhoff asserts that Γ is the graph of a Lipschitz function
T-^R (where the annulus = Γ x R). (See [4, Sect. 44], [5, Sect. 3], [6, VIII, Sect. 5],
[10, Chap. 1], [8], and [18, Sect. 7] for various discussions of this result.) It follows
that ρq(P) < 1/2, for all q ̂  1 . From Theorem 2, it then follows that Iq(P) ^ 1 , for all

ί^l.
Aubry and Le Daeron have proved a stronger result [3]. Under the hypothesis

that Γ is not null-homotopic and PeΓ, they show that if x = (..., xi9 ...) is the
equilibrium state corresponding to the orbit through P, then (x0, . . ., xq) is a strict
local minimum of W0q on <F[0 q](x0, xq). This beautiful theorem obviously implies
that/β(P) = 0.

Example 3. Again, consider an invariant circle Γ in the annulus and let P e Γ. This
time suppose that Γ is homotopically trivial, i.e. it bounds a disk. Under suitable
regularity hypothesis on Γ, it follows from Theorem 2 that the Poincare rotation
number σr of f\Γ equals (1/2) lim N~1IN(P\ For instance, this holds when Γ is
C1. For, it is easy to see that N^°°

σr= lim JV-^(P),
W->oo

so the equation

then follows immediately from Theorem 2.
More generally, these assertions hold when Γ is locally Lipschitz, i.e., it may be

made linear in a neighborhood of a given point by a coordinate change which is
Lipschitz and whose inverse is Lipschitz.

2. Monotone Twist Diffeomorphisms (Definition)

Throughout this paper, A will denote the cylinder, or annulus, T x R, and / a C1

diffeomorphism of A onto itself, which will be fixed throughout. We will assume
that / is orientation preserving and fixes each topological end of A. In addition, we
assume that / satisfies the following monotone twist condition:

U'Sy
everywhere, where πi is the projection of T x R on its first factor.

We will assume that / is area preserving, in the sense that it preserves an area
form μ = u(x, y)dxdy, where u is a positive C1 function on A, and x(mod 1) and y are
the standard coordinates on T and R. In addition, we will suppose that / is exact,
i.e. the flux of / (defined below) vanishes.

It is easy to see that there is a C1 embedding e:A-+A which commutes with the
projection of A = T x R on its first factor, which is orientation preserving, and
which satisfies e^μ = dxdy. In fact, if we further require that e is the identity on the
circle y = 0, then e is uniquely defined by the formulas

y
TΓiφc, y) = x , π2e(x, y) = } u(x, y)dy ,

o

where πi denotes the projection of A = T x R on its ith factor.
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Let F = efe~1: e(A)^>e(A). Obviously, F satisfies the monotone twist condition

8y
Moreover, F preserves the area form dxdy. Consequently, d(F*(ydx) — ydx) = 0
and the flux ] (F*(ydx) — ydx) is independent of y, as long as y is a closed curve

y
which winds once around T x IR.

Definition of the Domain B of the Generating Function h. Let ,4 = IR2 denote the
universal covering space of A. Let e:Ά-*Ά and F:e(A)^>e(A) be liftings of
e and F. We set

B = {(x, x') e IR2: there exists y e IR

satisfying (x, y) e e(A) and n^F(x, y) = x'} ,

where πί denotes the projection of IR2 on its first factor.

The Generating Function h. We have assumed that / is exact, i.e. the flux of /
vanishes. Consequently, there exists a C2 function H on e(A) such that f*(ydx)
— ydx = dH. Let φ: e(A)^>B be defined by φ(x9 y) = (x, π1F(x9 y)). The monotone
twist condition on F implies that φ is a diffeomorphism. Let pr: e(A)->e(A) denote
the projection. We set

h = H o pr o φ 1.

The function /κβ->]R is what is called in classical mechanics a generating
function for / (or F). It satisfies

$y=-dh(x,x')/dx,

Moreover, h is uniquely defined up to an additive constant by this condition. D

3. Variational Formulation

An area preserving mapping is an example of a "Hamiltonian system". At least for
exact, area preserving, monotone twist mappings, there is a corresponding
"Lagrangian formulation". For the Lagrangian formulation, we need the notion of
"state". A state will be a bi-infinite sequence of real numbers (..., xi9...) such that
(xi9 Xf +1) e B. Let /z^x, x') = dh(x9 x^/dx and h2(x9 x') = dh(x9 x*)/dx'9 where h is the
generating function for /, defined in the previous section. A state x = (. . . ,x i 9 . . .)
will be said to be an equilibrium state if

n . rj, - ,
ίor all i e /L.

In the Lagrangian formulation, one studies states; in the Hamiltonian
formulation, one studies orbits of F. This amounts to the same thing: there is a one-
one correspondence between equilibrium states and orbits of F, defined as follows:
Let x = (...,x ί ?...) be an equilibrium state. Let y~ — hv(xbxi+l) = h2(xi_1,xi).
Since h is a generating function for /, i.e. it satisfies (1), we see that F(xi9yι)
= (xi + ί,yί + 1). In other words, &x = (...,(xi,yi)9...) is an orbit. It follows easily
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from (1) that the correspondence xι— »0X is a bijection of the set of equilibrium
states onto the set of orbits of F.

Orbits of Type (p, q). Periodic orbits of F do not lift in general to periodic orbits of
F. Instead, the lifting ( . . . 9 ( x i 9 y ^ ) 9 ...) to e(A) of an orbit of F period q satisfies
xi+q = Xί + p, yi+q = y» for some integer p. Such an orbit of F will be said to be of
type (p, q).

The corresponding equilibrium state obviously satisfies xi+q = Xi + p>

States of Type (p,q). We let 3Cm denote the set of all states which satisfy
Xi+q = Xi + p'9 such states will be said to be of type (p,q). Clearly, 3Fpq is an open
subset of IRA

The "Energy" Functional. We let Wq be the real valued function on SEptp defined by

Obviously, a state of type (p, q) is an equilibrium state if and only if it is a critical
point of Wq. Hence, there is a one-one correspondence between critical points of
Wq and orbits of F of type (p, q).

Let x be a critical point of Wq. By the Morse index of Wq at x (or the Morse
index of x), one means the number of negative eigenvalues of the Hessian matrix
(of second partial derivatives) of Wqatx. By the nullity of Wq at x (or the nullity of
x), one means the number of zero eigenvalues of the Hessian matrix of Wq at x.

The "Energy" Functional on Truncated States. For m<n, and a, ί?eR, we let
^[m,n](a> b) denote the set of sequences (xw, . . ., xn) such that (xi9 xi + ί)εB [so that
(xm, . . . , xn) is a "truncated state"] and xm = a, xn = b. We let
W= Wmn : %,,„(«, fc)-»R be defined by

If P e e(A) and x = (..., xf, ...) is the equilibrium state associated to P, we let Iq(P)
be the Morse index at (x0, ...,xβ) of W^'.^^-fa^Xq)-^^.

Amount of Rotation

Let g be a C1 diffeomorphism of A, isotopic to the identity, and let P be a fixed
point of g. In the introduction, we defined the amount ρ of rotation ofg about P.
To show that this is a correct definition, we must show that there is an isotopy
connecting g to the identity and leaving P fixed, and that ρ is independent of the
isotopy chosen.

Let 2 denote the space of C1 diffeomorphisms of A with the C1 topology. Let
P e A. We see easily that the evaluation mapping eυp \Q)-^>A, defined evp(g) = #(P),
is a locally trivial fibration. Let ̂ 0 denote the connected component of the identity
in 3). It is easy to see that ̂ 0 is locally arcwise connected. Consequently, ̂ 0 is the
set of diffeomorphisms of A which are isotopic to the identity. It is also well known
to differential topologists that evp: @0^>A is a homotopy equivalence. This fact is
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an easy consequence of the theorem proved by Smale in [20]. (For another proof of
Smale's theorem, see [7].) Let ̂ OP = et;~1(P)n^0. From the above comments, it
follows that @QP is a contractible space.

It follows that for any g G £&OP, there is an isotopy to the identity which leaves P
fixed. Moreover, two such isotopies are homotopic (rel. endpoints) as curves in
@QP. The fact that ρ is well defined follows immediately.

The proof that the definition of ρq(P) is consistent is similar. Again two
isotopies of g with the identity give the same value of ρ^P), provided that they are
homotopic (rel. endpoints) as curves in SfQ. However, since ^0 is homotopy
equivalent to A and therefore to T, it is not true that two such isotopies are
homotopic (rel. endpoints). But it is true that for any two isotopies / l 5 / 2 of A
connecting g to the identity, there is a 1 -parameter family R of rotations of A,
beginning and ending at the identity, such that 7X is homotopic (rel. endpoints) to
the juxtaposition R * I2 in @0. Juxtaposing with .R does not change ρ/P), since the
given framing of the tangent bundle is homotopic to the standard one, so we obtain
that the definition of ρq(P) is consistent.

Independence from the Framing. Let t and t' be two framings of the tangent
bundle of Γ x R, both homotopic to the identity. Let K be a compact set in T x R.
It is easy to see that there is a constant C > 0 such that if P and fqP are in K, then

where ρ^P and ρ^P are the rotation numbers associated to the framings t and t',
respectively.

It follows immediately that

lim inf ρq(P)/q , lim sup ρq(P)/q ,
q-+ + oo q~+ ± oo

are independent of the framing chosen, as long as the orbit of/ through P lies in a
compact subset of A.

Linear Algebra. There is an alternative, but more specialized, definition of the
amount ρ of rotation about a periodic point P and of the number ρ€(P), which will
play an important role in the proofs.

Before stating the definition, we need some elementary remarks about linear
algebra.

Let GL(2,R)° denote the identity component of GL(2, R), i.e. the set of 2 x 2
matrices with real entries and positive determinant. Let R denote the set of rays
emanating from the origin in R2 with its usual topology, so that R is
homeomorphic to the circle. An element L of GL(2, R)° induces an orientation
preserving homeomorphism of R. By the rotation number ρ(L), we will mean the
Poincare rotation number of the induced homeomorphism of R. Then ρ(L) is
defined (mod 1).

If L has a positive eigenvalue, then ρ(L) = Q(mod 1); if it has a negative
eigenvalue, then ρ(L)=^(modl); if its eigenvalues are imaginary, then
Λ = (detL)1/2exp(2τπ'ρ(L)) is one of them.

Set G = GL(2, R)° and let G be its universal covering group. Let ρ be the unique
continuous, real valued function on G such that ρ(l) = 0 and ρ ° π ΞΞ ρ (mod 1), where
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π denotes the projection G->G. If Le G, the number ρ(L) will be called the rotation
number of L.

Alternative Definition of the Amount of Rotation. Now we give an alternative
definition for the amount of rotation about a point for /. This is more specialized
than our previous definition, since it applies only to monotone twist
diffeomorphisms and only for framings of the tangent bundle for which one of the
basis vectors points in the vertical, upward direction. We will call such a framing
special. This alternative definition is the definition which we will use in the proof of
Theorems 1 and 2. When it applies, it is equivalent to our previous definition.

We suppose given a special framing of the tangent bundle of T x IR. For
P e e(A), the derivative dFP: τP-*τF(P) may be thought of as an element of G, since
τp and τF(P) are identified with R2. Since F satisfies the monotone twist condition
and an upper vertical vector is one of the basis vectors at any point, it follows that
ρ(dFP)6[0,i)(modl).

We let dfp be the unique lift of dfp to G which satisfies 0 ̂  ρ(dfp) < 1/2.
If q> 1, we let dFP = dpq- ίpF... dFP. Then dFP is a lift to G of dFP, for all q^ 1.
It is easy to see that ρq(e~ *P) = Q(3fp\ where the left side is the quantity defined

in the introduction, and ρ: G-»R is the rotation number defined earlier in this
section. Indeed, we could have defined dF^ by requiring it to be a lift of dF^,
continuous in F, and equal to 1 when F = id. Of course, to have the formula
ρq(e~1P) = ρ(dFj>\ we must use the same framing for both sides, and it must be
special in order for the right side to be defined.

The Framing. The inequalities which appear in Theorem 2 depend on a particular
framing of the tangent bundle of A. This framing may be defined as follows: We
may pull back the standard framing of R2 to a framing of A via φ ° e, since
φ°e: A ->R2 is a diffeomorphism of A onto the open subset B of R2. Let (x, y) e A.
We have φe(x, y) = (x, x')? f°r a suitable x' e R. Moreover, φe(x + 1, y)
= (x + 1, x' + 1). Consequently, the framing of the tangent bundle of A is invariant
under the Deck transformations of A over A, and so it can be pushed down to a
framing t of the tangent bundle of A. It is easily seen that t is homo topic to the
standard framing of A.

We will show in Sect. 8 that the inequalities of Theorem 2 are valid for the
framing t of the tangent bundle of A.

5. The Mappings Φ and Ψ

We let Σq denote the set of sequences a = (al,...,aq,bί,...,bq)oϊ real numbers such
that bt < 0, for all i. To any such sequence, we associate certain matrices, ^(α),
Φ^α), ...,Φ^(α), Φ(α), as follows.

We let Ψ(a) be the q x q symmetric matrix [c^ ] with real entries, defined as
follows. If q= 1, we let cίί=a1+2bί. If q = 2, we let

+ b2 a2

^3, we let cu = ai9 citi+1=ci+ίtί = bi, cql = cίq = bq, and cίι7 = 0, otherwise.


