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Abstract. Ruelle has found upper bounds to the magnitude and to the number
of non-negative characteristic exponents for the Navier-Stokes flow of an
incompressible fluid in a domain Ω. The latter is particularly important
because it yields an upper bound to the Hausdorff dimension of attracting sets.
However, Ruelle's bound on the number has three deficiences: (i) it relies on
some unproved conjectures about certain constants; (ii) it is valid only in
dimensions ^ 3 and not 2 (iii) it is valid only in the limit Ω-» oo. In this paper
these deficiences are remedied and, in addition, the final constants in the
inequality are improved.

Ruelle [1] has derived upper bounds on the magnitude and number of non-
negative characteristic exponents of the Navier-Stokes equation for the flow of an
incompressible fluid in a domain ΩeΊRd. The bound on the number, JV(μ) [defined
in (42)], is particularly interesting because it leads to an upper bound on the
Hausdorff dimension of a compact attracting set [1, Corollary 2.3]. Un-
fortunately, the bounds in [1] on N(μ\ unlike those on the magnitude, have
certain deficiencies which are

(i) They rely for their validity on some conjectured, but as yet unproved,
relations between the sharp constants in two known inequalities,

(ii) They are valid only for d ̂  3.
(iii) Because WeyΓs asymptotic formula for the eigenvalues of the Laplacian in

Ω is used, the inequalities are not valid for any fixed Ω, but only in the limit Ω-> oo.
In this paper a different proof of Ruelle's inequality for the number will be

given so that the above three deficiencies are remedied. The result is contained in
Eqs. (40)-(43).

Let v.Ω^W denote a solution to the Navier-Stokes equation, and let
μ 1 ^ μ 2 = be the characteristic exponents corresponding to a probability
measure ρ(dv) on the space of solutions that is ergodic with respect to the Navier-
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Stokes time evolution. Ruelle shows [1] that for all π ^ l

nd n

Σ/*,£-<* Σ<e«> =-<*<Ό (i)
ί = 1 ί = 1

n

The brackets < > denote average with respect to ρ, En = Σ ei9 and the et = et(v) are
1

ordered such that e1Se2S and are the eigenvalues of the Schrodinger operator

H=-vA-w(x) (2)

with Dirichlet boundary conditions on Ω. Here, v is the kinematic viscosity and
w(x)^0 with

wM2 = [{d- l)/4d] Σ (δvβxj + dvj/dxj2 = [(d- l)/2vd] ε(x). (3)

The quantity ε(x) is the rate of energy dissipation per unit mass in the flow v. In (2),
(3) and henceforth, explicit dependence of the various quantities on υ is understood
but not explicitly indicated unless necessary.

One might try to take additional advantage of the fact that divι> = 0 but, as in
[1], we shall merely assume that w is some given non-negative function. It will,
however, be assumed, as in [1], that

weL1+dl2(Ω). (4)

Remark. The definition (3) has a factor (d—l)/d, which is an improvement over
that in [1]. The reason is the following: Ruelle starts with an operator on
L2(lRd)(x)IRd given by Jf = -vAδij+ Wυ{x\ where Wtpc) is the dxd symmetric
matrix Wtj{x) = (dvjdxj + dvJdx^/2. Ruelle notes that the eigenvalues of Jf will
satisfy (1) if w(x) in (2) is the largest eigenvalue of the matrix W^(x). This he
estimates by (TrW2)112, and this leads to (3) without {d-l)/d. Since divt; = 0,
however, ΎrW=0. If λx ^λ2 ^are the eigenvalues of W, then Tr W2 = YJλ

2 and
d Id \2

T r W ^ Σ ^ B u t (d- l )Σλ 2 ^ \Σλi) =λv a n d h e n c e (d-l)TϊW2^dλ2

v In
2 \ 2 /

addition to the condition divι; = 0, Jf is supposed to be restricted to the space of
divergenceless functions. This restriction might improve (1) but, as in [1], it will
not be used here.

The domain ΩeW is assumed to be an open set of finite volume |Ω|;
boundedness is not required. Condition (4) insures that the quadratic form on
Hl{Ω\ defined by

\ 2 - \ w φ 2 , (5)

is bounded below and thus defines H as a self-adjoint operator. (Integrals, here and
henceforth, are over Ω.) For our purposes, self-adjointness is not important; the
only important consideration is the max — min principle which can be used as a
definition of the e{:

Σ
Φ i =

where φ = {φv ...,φn} is any L2 orthonormal set in Hl(Ω). It is, in fact, the right
side of (6) that enters in the derivation of the bound (1).
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The goal is to find upper bounds on the following two quantities

(a) E(y)= Σ My>

(b) En itself for fixed n. (8)

It is a consequence of (1) that for γ ^ 1

Σ ti^d Σ Ke^SdiEiy)}. (9)

This is Karamata's theorem which, more generally, states that when /:1R->IR is
convex and non-decreasing then (1) implies that

Σ M)^d Σ f(-<ei»^d( Σ A-ed) (10)
i= l i=l \ ί = l /

for all n. If, in addition, /(ί) = 0 for ίgO, then

[Actually, Karamata's inequality gives the left-hand inequalities in (9)-(H) The
right-hand inequalities come from Jensen's inequality </(#)> ^/(<#>).]

It is (9) that gives information about the magnitude of the μ.. The bound used
in [1] [except for the factor (d— l)/d in (3)] was

(12)

The present knowledge about (12) is the following:
(1) Lγ d < oo for y > \ (d = 1), γ > 0 (d = 2), y ̂  0 (d ̂  3). No such bound exists for

y < \ {d = 1) or y = 0 (d = 2). The case y = ^d = \ does not seem to have been settled.
(The claim in [2] that L1/2 1 < oo is not justified.) Bounds on L 1 3 were first given
by Lieb and Thirring in [3] and on Ly d for γ>0 (d = 2,3) and γ>^(d=l)m [2].
Bounds on LOtd, d^3, were first given by Cwikel [4], Lieb [5, 6], and Rosenbljum
[7]. The best upper bound for L o 3 is in [6], namely 0.0780 = 4 π ~ 2 3 ~ 3 / 2 ^ L 0 3

:g 0.1156. The lower bound is from [2, Eq. (4.24)]. Recently, by a simpler method,
Li and Yau [8] derived upper bounds for Lo d, d ̂  3 which they claimed was better
than that in [6] unfortunately a numerical error was made in [8] and their bound
for L o > 3 is three times larger than that in [6].

(2) The sharp constant Lγ d in (12) cannot depend on Ω, i.e. Ly d(Ω) = Lγ d(IRd).
To see this, assume that OeΩ and, given w on IRd, consider wc(x) = c2w(cx) on Ω.
Then let c-> oo. This situation is in contrast with the |Ω| dependent bound for En to
be derived later.

(3) There is a natural "guess" for Ly>d given by the semiclassical formula

yi (13)

wi th \a\_ = m a x ( 0 , —a). A n easy i n t e g r a t i o n gives

Uytd = 2-dπ-ά'2Γ(γ + ί)/Γ(y + ί+d/2). (14)

(4) It is a fact [2] that

(15)
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In [2,3] it was conjectured that Lld = Lc

ld for d = 3. It is known [2] that for each
d^Ί there is a yd>0 such that Ly d>Lc

y d when γ<γd. When d = 1 or 2, yd> 1. It is
also known [9] that LyΛ=Lc

yΛ for y =3/2. In fact [9] the ratio Rd(γ) = Ly>d/Lc

7fd is
monotone non-increasing in y thus if #d(y0) = 1 for some y0, then #d(y) = 1 for all
7^?o Glaser et al. [10] have shown that LOιd>Lc

Otd for d^l. They also evaluate
L O j 4 exactly (it is a Sobolev constant) provided w is restricted to be spherically
symmetric. For related results see [11].

(5) Inequality (12) for y = l is equivalent [2] to

φ (16)
i= 1

where the {φ.} is any L2 orthonormal set in H1^) [or if J(Ω)] and

βΦW= Σ I ^ W I 2 - (17)
i = 1

The sharp constants in (12) and (16) are related by

[Note: If n is specified then the sharp constant in (16) may depend on n, i.e. Kd(ή).
Kd, the sharp constant in (16), (18) is defined to be supMKd(n).] Corresponding to
Lc

1>d in (14) there is a classical value Kd given by (18):

Kc

d = 4πdΓ{l + d/2)2/7(2 + d). (19)

An inequality related to (16), and which will be used later in the event that
Kd < Kd, was proved by Li and Yau [8]. It depends on the volume |Ω| and it is the
relation obtained by setting Kd = Kd and ρ(x) = n/\Ω\ in (16). For any orthonormal
set in ff J(β)

Σ ί l ^ , W I 2 ^ > ^ 1 + 2 / d | β Γ 2 / d (20)
i= 1

(The strict inequality in (20) is, in fact, implied by the proof in [8].)
Before turning to our estimate for En let us make a few additional remarks

about (12).
(α) Combining (3), (9), (12) we see that the right side of (12) is suitable for

passing to the "infinite volume" limit, i.e. in some vague sense it is proportional to
the volume. The upper bound we shall obtain later for the quantity introduced in

N{w) = smallest n such that En > 0, (21)

will also have this extensivity property. By (1), dN(w) is related to number of non-
negative characteristic exponents and an upper bound on N(w) will yield a bound
on the number of non-negative characteristic exponents [see (43)].

(β) The bound on N(w) in [1] relied on the fact that Lo d< oo (which is true if
and only if d^3) and on the conjecture that Lld<Lc

Od. While Lc

Oίd/Lc

ί>d = l
+ d/2>l, the best bound published so far [6] for L 1 3 is

Lλ 3^(6.844)L c

u 3 =0.04624, (22)

and this exceeds Lc

0 3 =0.01689. However, the bound can be improved slightly to
0.04030 [see (51) below].
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(γ) Inequality (12) can be used to derive a lower bound for each en. If en(V) is
the nth eigenvalue for the potential V in place of — w in (2) then, for any number e,
it is clear that en( — w) ̂  en{ — (w + e) +) + e. Take 7 = 0 in (12) and set e = en. Then the
number of non-positive eigenvalues for V= — (w + en)+ is at least n, and (12) yields

ngL 0 i d v-^ 2 ί (w(x) + e n ) f d x . (23)

The integral on the right side of (23) is finite if en<0 or if \Ω\ is finite. It is also
monotone in en and thus (23) yields a lower bound for en.

Now we turn to our main goal which is an upper bound for En. Let φv...,φn

be the eigenfunctions corresponding to eί^e2^...^en. By virtue of (6) and a
L ' n

limiting argument, any approximating orthonormal set such that ^ QiΦt, Φi)

^En + ε will suffice.
1

By (6), (16) and with p = l + 2/d,

(24)
with

F{Q) = vKd\\QVp-ί^Q (25)

which in turn is greater or equal to

G(Q) = vKd\\ρl\»p-\\w\\p,\\ρ\\p. (26)

Thus,

J (27)

(28)

However, [|ρ||p |Ω|1/p ^ Jρ, and therefore if we define the function J, (for A" >0), and

) = vKdX"-\\w\\p,X, (29)

£ π = inf{J(X)|X^«|ί2Γ1 / p '}, (30)

we have that

£ „ > £ „ . (31)

The strict inequality in (31) is justified by the fact that ρφ cannot satisfy the Holder
inequality after (28), i.e. ρφ cannot be constant in Ω.

[It is left as an exercise, using the fact that HgH /̂Hgll! can be made arbitrarily
large, that En is indeed the infimum in (27).]

The minimum in (30) can be computed to be

(32)
= J(Y0), n^\Ω\llffX0,

where J'(X0) = 0, namely

(33)
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In particular, if n\Ω\ ~1/p' is greater than or equal to the value X^ > 0 such that

1) = ̂  then En>0. Therefore, N(w) defined by (21) satisfies

d/2. (34)

The symbol 9* denotes "the smallest integer ^ . "
If Kd<Kc

d, the constant in (34), namely Kd

dl2, can be improved as follows. Let
0<<5< 1 and split the kinetic energy term in two parts using (16) and (20). Thus,

with

Fί(ρ) = ( l - 5 ) v l C ^ | Ω | 1 - ί > + δviC d | |ρ | |J-ίwρ. (36)

As before,

£„>£„(<?) = ( l - ( S ) v K χ i ^ (37)

Previously, in (32), we discussed the inf in (37). Thus En(δ)^0 if n satisfies the
following two conditions:

^ [see (32),(33)], (38)

^\\w\\p,\ΩΓ1/p'. (39)

Condition (39) implies that En(δ)^0f provided (38) is satisfied. Choose δ so that
(38) and (39) are the same, namely

Inserting this in (37), we have as before

N(w)^9Ad\Ω\v-dl2{jdxw{x)1 + d/2/\Ω\}d/id+2\ (40)

(Ad)
2ld = l2Kd + dKc

d~\ [(d + 2)KdK$\-'. (41)

The inequality (40), (41) is our main result.
We now wish to relate (40), (41) to the turbulence problem, i.e. we want to find

an upper bound to n

N(μ) = smallest n such that £ μ. <0. (42)
ί = 1

By (1),

ΛΓ(μ) ̂ {smallest integer such that <£ n>>0}

^ ^{smallest integer such that < £ n > ^ 0 } ,

where, for each w,

For each fixed n and δ, En(δ\ and En are functions of t = \\w\\p

p,. Denote them by
En(δ, t) and En(t). Direct calculation using (32), shows that En(t) is a convex function
of t (not t1/p> = || w\\p,). Since En(δ, t) differs from En(t) in a trivial way, En(δ, t) is also a
convex function of t. Since En(t) is the supremum of convex functions, is too is
convex in t. By Jensen's inequality {En
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Thus, by expressing the right side of (40) in terms of \\w\\^ and then averaging
with respect to ρ(dύ) we obtain the bound sought in [1] :

N(μ)SydΛd\Ω\v-d/2{^ρ(dv)dxwv(x)1+d/2/\Ω\}m+2K (43)

Finally, let us record some available information about the constants in (41).
Using (19) we have

X c

1 =π 2/3 = 3.290,

Kc

2 = 2π = 6.283, (44)

Kc

3 = 3(βπ2)2/3/5 = 9Λ16.

To bound Kd a bound on L 1 ( j is needed.

d=l: The bound in [2, Eq. (2.11)] with m = l, n = l is

L l t x ^ ( 4 π Γ 1/2Γ(5/2)~ ^ ( l / ^ 2 (1/2)'* =4/3. (45)

d = 2,3: In this case we use the formula [6]

Σ kjy = y J leΓ'NJe, (46)
ej^O -oo

where Ne is the number of eigenvalues oίHi^e. In [6] it is shown (with v = 1) that

00

Ne^(4πyd/2\dx j dtt~γ~dl2eetf{tw(x)), (47)
o

with /(ί) = max{0,b(ί-α)} and

GO

l/b= l{l-a/y)e~ydy. (48)

Inserting (47) in (46), then doing the e integration, then the t integration [after a
change of variable to ίw(x)] and finally the x integration, one finds

γ} a1-d/2-γ. (49)

The optimum constant a satisfies

aea j e~ay dy/y = (d/2 + y- l)/(d/2 + γ). (50)
1

When y = l we take α = 0.61, b = 3.6807 for d = 2 and α=1.02, fe = 6.9358 for d = 3.
Inserting this in (49) yields

Lγ 2^0.24008,
(51)

Lu 3 ^0.040304.

Using (18)

= l/12

= 1.0413, (52)

= 2.7709,
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which, by (41), leads to

A2 =0.5597, (53)

yl3 =0.1329.

This value for Λ3 can be compared with the value in [1, Footnote 7], which is
obtained under the conjectured assumptions Lo 3 = 0.0780 and L 1 3 = Γ 1 3 ,
Π a m e l y ^ [ W i ^ o . a ) 2 ' 5 ] " " 3 ' 2 ^ ^ . ' (54)

If K3 = KC

3, which is conjectured to be true, (41) yields

Λ3 ={KC

3Γ
3/2 =0.03633. (55)

In addition to the improvement in (53) over (54), we also note the additional
factor (d- 1)1 d in (3) which yields a factor [_(d- ί)/d]d/4r when the right sides of (40),
(43) are expressed in terms of ε(x). This factor is 0.7378 for d = 3 and 0.7071 for
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