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Abstract. A general class of the ILW type equations is constructed. We
introduce a Hamiltonian structure and construct an infinite number of
conservation laws.

0. Introduction

Recent studies [1-4] have shown that the following equation

ut + δ~1ux + 2uux+T[uxx]=Q, (1)

+ 00

where T[u](x) = | (l/2δ)coth(π(y — x)/(2δ))u(y)dy is of mathematical and physi-
CO

cal interest. This equation has many important mathematical features similar to
those of the Korteweg de Vries equation (KdV). Physically it represents internal
long waves (ILW) in a stratified fluid of finite depth characterized by the real
parameter δ [5-6]. The limiting cases of ILW are: the KdV (δ->0) and the
Benjamin-Ono (BO) (<5->oo) equations [3].

For a long time the outward similarity of the ILW (BO) equation with the KdV
equation, the existence of an infinite number of conservation laws, a Backlund
transformation and so on have suggested that there should be a general theory
where ILW (BO) would be the simplest example (like KdV for the general Lax
equations). As early as October 1978 at the Leningrad Soliton Conference L. D.
Faddeev emphasized the importance of studying the BO equation by making use
of group-theoretical methods, as with KdV.

In this paper we consider some aspects of the theory of the ILW type
equations. Let us state the main results of this paper.

The first result is the construction of a general class of the ILW type equations
by means of the formal Zakharov-Shabat "dressing" method [7] (Zakharov-
Shabat's technique for ILW was discovered in [4]). Let L0 be the symbol of a skew
Hermitian differential operator with constant coefficients, and let K be the symbol
of a Volterra operator with the coefficients holomorphic in the strip,
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— (5<ImZ<(5, satisfying some additional conditions (see Sect. 3 below). It is
required that K should satisfy the following condition: the symbol

Here K± denote the boundaryL = (1+K )L0(1 + K + ) * is purely differential.

-i " -i
values of the symbol K, i.e. if K = £ Kj(z)(iξy9 then K± = £ Kj(x± iδ)(ίξ)j.

j = - GO j = - CQ

The definitions of symbols, symbol multiplication and so on are given below.

Dress another skew Hermitian operator M0 with constant coefficients using the
symbol K and denote the differential part of (1 + K)M0(1 + K)'1 by M. Then the
equation

Lt = LM+-M~L (2)

is well defined, i.e. the number of unknown coefficients of the operator L is equal to
the number of nonlinear equations. (For the ILW equation L0 = — ξ + l/(2z<5),
M0 = iξ2, u= — i(KI 1 — K* i) [4].) Of course one can apply the "dressing" method
to arbitrary L0 and M0. This yields equations for complex valued unknown
functions. Choosing skew Hermitian symbols is one way to construct equations
with real valued solutions.

The second result of our paper is that the Eq. (2) are Hamiltonian in the so-
called second Hamiltonian structure [8-12]. The first non-trivial question in this
field is how to construct a suitable space of functionals, on which the Hamiltonian
structure should be defined. As far as we know, none of the previous works which
study the Hamiltonian formalism for ILW and BO bother about this matter. We
give a rigorous construction of a space of functionals with the usual Poisson
bracket in Sect. 5.

Our method of forming Hamiltonians is rather unusual: we reconstruct them
from known gradients. This saves us the trouble of computing the variational
derivatives of the Hamiltonians. Then we show that the generating function for
these Hamiltonians satisfies an analog of the Riccati equation. In the ILW case
this last result coincides with the results of [3].

Our third result is that the Hamiltonians are in involution.
We do not discuss the limits δ->Q and <5-»oo of (2) as was done in [3] because

of the brevity of our note.
Finally we would like to point out that our work has been inspired by our

thinking out the relation between Zakharov-Shabat's technique for ILW disco-
vered in [4] and the group-theoretical methods of the works [13, 14].

1. Symbol Algebras

Let έ% be some differential ring of complex valued functions from the Schwarz
space (smooth functions rapidly vanishing at ± oo with their derivatives). Such a
ring is equipped with a derivation dx:3$-+^. We denote by ^((ξ"1)) the ring of

formal Laurent series X= £ XβζΫ over ^ witn a finite number of positive
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terms. There are two derivations in 3$((ξ~'L)):dξ = d/dξ and dx:^Xj(iξ)j

j
^ Σ dχXj(iζ)s Using them one may define a new associative multiplication on

1}} which is called symbol multiplication:

where Xf = da^, Y^ = d«xY. Usually we will omit the sign °. The inverse oϊX (if it
exists) is defined with respect to the symbol multiplication.

Using the symbol multiplication one can make 3$((ξ~1)} into a complex Lie
algebra g with bracket a°b — b°a. Our algebra can be split into a direct

ί N •}
sum of two complex subspaces g = g + 4 - g _ , where Q+ = \Σ Xβ&i anc*

l / = o J
ί ~1 }

§- = \ Σ xβζy\ We cal1 9 + (9-) the Lie algebra of differential (Volterra)
I j = - oo J

operators. By Jf+ (X _) we will denote the projection o f X e g onto g + (g_); X +

(X_) will be referred to as the differential (integral) part of X.

Let res (ΣXj(i&} =x-ι Then' as usual, for any Xe @((ξ~1)) we set
\ j I

oo

trX= J τesXdx.
— oo

The main property of the trace is the equality tr [X, Y] = 0, so there is the
invariant, non-degenerate scalar product (X, 7> = tr(ΛΓ7) on the Lie algebra g (see
[13-15] for further details). Identify g+ with the dual space to g_ via the scalar
product.

There are two operations on g, transposition and complex conjugation: for
N N N

any X= £ X.(iξy we define 1X= £ (-ΐ)\iξ)jXj and X*= ^ (-l)j

)j. An element JΓeg is called skew Hermitian if ϊ*^— X. The skew
Hermitian symbols form a real Lie subalgebra ug in g. The restriction of
<,> to ug gives an invariant, real, non-degenerate scalar product on ug. The
subalgebra ug+ =ugng+ may be regarded as the dual space to ug_ via this scalar
product. (The reality of the restriction of < , > means that <X, Y">* = <X, 7> for any
χ, y.) N

Any Jίeug can be written in the form X = i ^ Xj(iζ)j From the relation
j=-ao

*X* = —X it is easy to show that ReXj can be chosen arbitrarily, and Im^ can be
expressed as a linear function of ReXfc with fc > j :

k,a

2. Analytical Properties of the Operator Γ

Denote by ̂ (^) the Schwarz space of smooth complex (real) valued functions on
the real axis which are rapidly vanishing at infinity with their derivatives. (This



546 D. R. Lebedev and A. O. Radul

space will be denoted by £S if the index C or R is not important.) The Fourier
transform converts T into the operator of multiplication by the function
— ιcoth(/c<5). This enables us to compute the asymptotic behaviour of Tu(x) as
|x|-»oo:

7Mx)~-(l/(2δ))sign(x) J u(y)dy.
— CO

So the operator T maps the space £f into the space of °̂° functions approaching
constants at ± oo. One can also show that the operator Td/dx maps £f into <?.

Proposition 1 [4], a) For any function u(x)e<$f there exists a unique function U(z)
with the following properties :

(i) U(z) is holomorphic, bounded and continuous up to the boundary in the strip
—δ<lmz<δ

(ii) (U--U+)(x) = iu(x);
(iii) Tu(x) = (U + U+)(x). Here U± denotes the boundary values U(x±iδ)

of U(z).
b) The function U(z) is given by

U(z-iδ) = ̂ (ί/(2δ))coύl(π(y-z)/(2δ))u(y)dy. (3)

c) // W(z) has the properties (i), (ii), then W(z) — U(z) = const.
d) // W(z) has the property (i) and (W~ ~ W+)(x)e&>, then

T(W~ - W+) = ί(W~ + W+) + const. (4)

Remark. The constant in (4) can be computed by comparing the asymptotic
behaviour of the right and left hand sides in Eq. (4). For example if V(z) is
constructed from u(x)e^ [as given by Eq. (3)] and V(z) from v(x)e^9 then
U(z)V(z) satisfies conditions d) of Proposition 1. So

) J udy J vdy.
— 00 — 00

From this one can obtain the formula :

GO 00

f udy f vdy.

In conclusion let us point out the following obvious properties of the operator T:
00 00

a)Td/dx-d/dxT = Qι b) J u±Tu2dy=- f (Tu^dy for any uvu2e^ c) (Γw)*
— oo — oo

- Γ(κ*).

3. The Formal Version of the Zakharov-Shabat "Dressing" Method

Proposition 2. Let L0 be the symbol of a skew Hermitian differential operator with
n

constant coefficients: L0 = i £ ck(iξ)k, ckeΊR[_δ,δ~ί'], cn = l. Let lj(x)(j = Q,..., n— 1)
k = 0

be a set of n functions from the Schwarz space ^ such that the symbol
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n-l

Lί=i Σ Iβζy ίs 5^w Hermίtίan. ThenJ'=0

a) ί/zβre exists a unique symbol K = Σ Kj(z)(ΐζ)j satisfying the conditions;

(i) ί/ie coefficients Kj(z) are holomorphic, bounded and continuous up to the
boundary in the strip —δ<lmz<δ;

(ii) (l + K~)L0(l + K+)~ί=L is a differential skew Hermitian symbol;
(Hi) L-L0 = Lΐ;

(iv)
j= -co

b) 77ze symbol K satisfies the conditions

which we will call the reality conditions.
c) The coefficients Kf of the symbols K± lie in the ring generated by lj and the

operators T and d/dx (see Sect. 4 below).

Let W=(l + K)M0(l + KΓί, M=W+, M0 = i £ mβξy, m.eRt/S,^1], where
j=o

(1 + K) is the symbol constructed above. The coefficients of W~ and consequently
of M ± are expressed in terms of l . This allows us to write a system of equations for
the functions I.: Lt = LM+-M~L. Since (M±)*, (M*)τ, and ί(M±)-(ίM)τ, we
have LM+ — M~LEUQ+ and consequently the equations for Im^. are linear
differential combinations of the equations for Re/,.. Moreover, as

LW+ - w~L=(i +K-)(LOMO -MOLO)(I +κ+r 1 =o

our equation can be written in the form Lt= —LW^ + WI L. This shows that the
order with respect to ξ of the right hand side of (2) is n— 1, i.e. the number of
equations is equal to the number of unknown functions.

Thus the system of equations for Re/y is well defined. In the case L0= — ξ
+ l/(2ί<5), M0 = iξ2 we obtain the ILW equation.

4. Gelfand-Dikii Symplectic Structure

Here we will briefly review the results of [9] in the form we need. Let now £% be the

ring ^ + <L = {φ = ιp + c, t/ e^, ce(C}. Let L0 = i £
fc = 0

cr = ί . Consider the subspace N of ug+ defined by

For any Xeιιg_ we can construct a vector field Vx on N. It is given by the formula

VX(L) - - i(L(XL)+ - (LX)+L) .
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The field Vx is uniquely defined by the initial partX r 6ug_/ug r _ ofX, where ugl is
-(r+l)

the ideal in ug_ consisting of the elements 7= £ YβζY- The fields Vx for a Lie
7= -oo

algebra with the bracket

where

SY
-(X <-> Y)

and [X, Y]Leug_. There is 2-form ω(Vx, VY)(L) = (VX(L), Y> on the vector fields
Vx. It is skew symmetric and closed.

5. The Ring of Functional

Before we can define the Poisson brackets we need to define an appropriate space
of functionals. The usual KdV theory deals with the integrals of densities which are

differential polynomials in u for brevity we will write J/ instead of J f ( x ) d x \ :
\ - 00 I

H = JP[ι^,..,4fc),...]-

Let us see what happens in the ILW case. The ILW may be written in the form :

where H= — §(u3/?> + uTux/2 + u2/(4δ)). The second term contains the nonlocal
operator T, so the construction of densities is not obvious.

The characteristic difficulties of the nonlocal theory are as follows.
1. The operator T does not preserve the Schwarz space because

+ 00

Tu(x) - >-l/(2<5)sign(x) J u(y)dy.
|x|-*oo -oo

So
a) there are densities to which we cannot apply the operator T. For instance

T(Tw)is not defined;
b) some densities cannot be integrated. For instance

so the integral of (Tu)2 diverges.
2. An integrable density may have a variational derivative which depends on x

explicitly. For instance: let / = JT(w7w); then

-
δu δ
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Indeed JwTw — 0, so uTu = d/dxψ, where φe^. Obviously ψ is equal to

f (uTu)(y)dy. Then
— oo

$Td/dxψ= 71/r^ =

Integrating by parts we obtain

urφ)ίtyίk=-l/<sx uTudy
— oo \ — oo / —oo Jl — oo —oo

00

= l/δ j xuTudx.
— 00

Now it is easy to see that the variational derivative is given by the formula above.
3. The variational derivative may contain integrals, and even products of

integrals. For instance: let I = $d/dx(Tu)*, then

δu
Indeed

=(- 1/2.5)3 signWtfw)3!!^ = - l/(4<53)(ί«)3 .

So<3/=-3/4<$3J(Jw)2<5«.
For this reason we choose our functionals to be of the form :

We should like to stress that our space of functionals has a natural ring structure
which would look artificial in the local theory.

4. As we saw earlier, the variational derivative may not lie in the space

This fact destroys the usual technique (cf. [13]) because generally jd/dxPφO, so

is not even a skew symmetric operation.
These difficulties indicate that the construction of the functionals in the

nonlocal theory is a rather delicate problem nevertheless, it can be solved.
We first construct a ring of functions ^(w0, . . . ,w A J _ 1 ), u^^. Here / denotes

the field of real or complex numbers. (We will omit the index I if it is not
important.) By definition, an element of the ring J^(w05 ...,un_1) is a linear
combination of monomials with coefficients in /.

The definition of monomials is given by induction. The main problem is to
determine whether we are able to apply the operator T to a monomial. To control
this we introduce the concept of method of construction (for brevity, simply path)
for a monomial. Each path has a degree, which is also defined inductively. The
definitions are as follows.
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1) If λe /, then λut is a monomial yλut = (λu^ is the path, and the degree of the
path is dQgγλut = 0;

2) if Q is a monomial and yQ is a path to Q and degyggrO, then TQ is a
monomial, yTQ = (TyQ) is a path to Tg and degyTQ = degyβ- 1

3) if Q is a monomial, then dxQ is the monomial, ydxQ = (dxyQ) is a path, and

4) if Q is a monomial and P is a monomial, then Q-P is a monomial yQ-P
= (yQ - γP) is a path and

[0 , in all other cases .

For any monomial G, we define

deg G = max deg γ G ,

as yG runs over all possible paths to G. The maximum is finite, since it is clearly
bounded by the number of ^-differentiations occurring in G. The simplest example
of two paths with different degrees leading to the same monomial G is as follows.

Let G = uux, yG = ((u)/(dx(u)))ι then degγG^O. There is another path y'G
= (dx(u/2(u)))9 for which deg/G=l. So degG=l.

We introduce the filtration

on the set 0t of monomials. The Schwarz space £f also has a filtration

Define

x

= J φ(y)dy + const,

It is easy to check that (for any ute^) ^C^, but ^-Φ^n^. For example
T(uTu)e^0, but T(uTu)€&_ι\®Q.

The degree of a linear combination of monomials is defined by

But the monomials are not linearly independent as functions from ^_r For
instance

d/dx(uux) — ux — uuxx = 0.

So different linear combinations of monomials may be equal to the same element
from the ring ^(w0, . . . ,M M _ I ) . We define the degree on J?(w0, . . . ,w w _ 1 ) by degF
= max deg φ, where φ runs over all possible representations of F as a linear
combination of monomials.

There is a filtration on J?(w0, ...,un_ί):
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Let L = L$ + Ll be a skew Hermitian symbol. Here LQ = i Σ ck(iζ)k>
k=Q

n-l

cn = 1 and Ll = i £ //i^X, /,-e 5 .̂ Then Re I. = v^ ̂  and lk = vk + iAs > k(vs), where
7 = 0

yls>/c(ί;s) is a certain linear combination of vs and their derivatives. We define the
ring of functionals J^(ι;0, •• ,t;n_1) to consist of all linear combinations with
real coefficients of elementary functionals. The elementary functionals are:

embedded in ^0,c(Ό' •••''«- 1) as tne subspace ^,,<c('o> " Λ-ι) °f functions
invariant under the operation of complex conjugation σ.

We say that a functional FE^(VO, ...,vn_ΐ) has a variational derivative if its

first variation δF has the form j £ A^. In this case the coefficients A{ are called

the partial variational derivatives, denoted by δF/δvt they are given by

where A\^^(v^ ...,^n_1) and A f

For example if I = (\v) ($vTvx\ then

and

Rewrite Fe ^(VQ, ...,vn_i) in terms of the variables l . Then δF = J ̂ ] B^^ and
7

where BJ>pe(lQ, ...Jn_,) and ̂ p e c (/ 0 , ...,/„_,).
Define FFeug_/ug"_ from the relation (5F = j res VFδL. We can take

-ί Σ ( i ξ Γ ( j + 1 ) δ F / M j as a representative of FT.

Proposition 3. a) Any Fe^^has a variational derivative;
b) J^ is closed under the operation { , } defined by

Remark. The ring of symbols &R(v0, ».,vn_1)((ξ~1)) has an unusual property: the
formula tr[σ1?σ2] =0 is false. The true formula is

For example tr[Tt;0ξ,(7l;0)^~ x] = -(l/(453))(Jί;0)
3 Φθ. So the operation { , } is not

even skew symmetric on ^R(ι;0, ...,^_1).
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Consider the subspace ̂  C ̂ (1*0, ->9vn_1) consisting of functional satisfying
the additional condition

k j

where X^.E^, ...Ĵ ),̂

Proposition 4. a) The subspace 3F^ is dosed under the operation { , }.
b) The operation { , } defines a Lie algebra structure on ̂ .

6. The ILW-Type Equations are Hamiltonian

Rewrite (2) in the form :

Lt=-i(L(XL)+-(LX)+L). (5)

If M0 = i Σ mr(iξT, L0 = iΣ ck(iξ)k, cn = ί;mr, c.elR, then
r=0 k=0

where X0 = i ^ λj(iξ)j and /l^eR are defined from the expansion: M0/L0

= Σ W
j= - oo

Now, it is natural to expect that [(1 + K + )i(iξ)a(l + K~)~ x] - is the gradient of
some functional HaEέFR, i.e.

1δL. (6)

Let us formulate some statements necessary for the proof of this fact.

Proposition 5. a) // σ1,σ2e^(/0, ...Jn_l)((ξ~1)\ then

§d/dx res(σ1 °σ2) = §d/dx resσ1σ2 .

In the other words, the symbols are multiplied as series under the sign jd/dxres.
b) Let σ^σ2eSt(l^...,ln_^((ξ-1)); then

(σ1 ξσ2).

Set V=-i(K~ -K+\
c) Let K satisfy the condition of Proposition 2. Then

where

0, if r = 2k+l,
r"1δ r), if r = 2k.
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d)

A direct computation yields our main results.

Theorem 1. a) fία = res[(z

b) {Hβ>H/?} = 0.

(The proof can be found in [16].)
The formula for Ha is worth commenting on. The reality conditions for the

symbol K show that Hαe J^(t;0, ...,vn_ί). Since

we have Hαe ̂  and in fact

#α = ίpcK> ~>vn-ι)> where -

The various terms in the formula for HΛ play different roles. The term with JV
contains the densities Pα> and the terms with (JF)2/C+1, /c^l cancel with the
additional part of j V arising from the use of the formula (4).

So the ILW-type equations (5) are Hamiltonian with respect to the Gelfand-
Dikii symplectic structure with Hamiltonia

m — n

H= Σ W,
j=-n

and have an infinite number of conservation laws in involution.
In the simplest case of the original ILW equation,

)9 L = LQ-(KI1-K+_1)=-ξ+l/(2ίδ)-iu,

and

The first few Hamiltonians are :

H_ 1 = J M , H0 = jM

2

H2 = |(M

4/4 + 3/4 M2 TMX + 3/8 (Tux)
2 + (ux)

2/8 + u

+ uTuJ(2δ) +

The Hamiltinian H for ILW is

) = - j(t/3/3 + MTM;c/2 + u2/(2δ)) .

For the ILW equation, (5) has the form

d δH
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The involution statement means that

(**L±™JL=Q.

δu dx δu

For BO and ILW equations this result is well known [17, 18].
The Hamiltonians Ha can be rewritten in a more convenient form.

Theorem 2.

Here (1 +K±) is a series in a commutative parameter ξ, that is, in the above formula
the terms are multiplied simply as formal series (not as symbols).

Define

Given the symbol L, we construct the differential operator L = Σ Vα (̂̂ )̂ ί

(Here, too, ξ is a commutative parameter.)
N

Finally, for any differential operator A= Σ ai^ define the expression A { f }

by

N

where Ps is the differential polynomial defined by

Now we can state our last observation.

Theorem 3. a)
b) L{(Tχx—i

Corollary. For L — — ξ+ί/(2iδ) — ίu (the ILW case), we have

L=~δx-ξ+ί/(2ίδ)-iu,

and the "Riccati" equation Theorem 3b) above takes the form:

- Tχx/2 + iχx/2- ξ + l/(2iδ)-iu = (-ξ + H(2iδ})e^.

Remark 1. Expanding χ as a series in ξ"1

00

ι= Σ m£>~j*
7=1

we can obtain recurrence formulas for χ from which we can calculate χ. in terms of
the coefficients of L.

Remark 2. Theorems 2 and 3 show that in the ILW case our formulas for the
Hamiltonians agree with the results of [3].
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