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Abstract. The mathematical background for a graded extension of gauge
theories is investigated. After discussing the general properties of graded Lie
algebras and what may serve as a model for a graded Lie group, the graded
fiber bundle is constructed. Its basis manifold is supposed to be the so-called
superspace, ie. the product of the Minkowskian space-time with the
Grassmann algebra spanned by the anticommuting Lorentz spinors; the
vertical subspaces tangent to the fibers are isomorphic with the graded
extension of the SU(N) Lie algebra. The connection and curvature are defined
then on this bundle; the two different gradings are either independent of each
other, or may be unified in one common grading, which is equivalent to the
choice of the spin-statistics dependence. The Yang-Mills lagrangian is in-
vestigated in the simplified case. The conformal symmetry breaking is dis-
cussed, as well as some other physical consequences of the model.

1. Construction of a Graded Lie Algebra Associated with a Lie Group G

Let G be a Lie group of dimension N ; in what follows, it will be supposed compact
and semi-simple, unless explicitly stated otherwise. Let o7, denote its Lie algebra;
for X, Ye s/, their skew product is [X, Y] and satisfies

X, Y]=-[Y,X], (1.1)
and the Jacobi identity
[[X,Y],Z]+I[[Y, Z1.X]+[[Z,X], Y]=0. (1.2)
The adjoint representation of 7, is defined as the mapping
ad .ol — L(A;, ), (1.3)
such that
adX)Y=[X,Y]; (1.4)
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therefore
ad(X)ad(Y)— ad(Y)ad(X)=ad([X, Y]). (1.5)
In local coordinates ad(X) takes on the form of a (N x N)-matrix X“C?, C®_being
the structure constants of G.
The Cartan-Killing metric form in .7 is defined by
9X, Y)=9g4(Y,X)=Tr(ad(X)ad(Y)). (1.6)

For G compact and semi-simple, g, is known to be negative-definite, non-
degenerate, and satisfies the invariance condition

96([2.X], Y)+9,(X,[Z,Y])=0. (1.7)

Consider now a faithful representation of .&/; in a linear vector space E of
dimension s (the lower bound on s will be discussed later). This representation,
denoted by

1:9;—L(E,E) (1.8)
satisfies
©X) 1(Y)—1(Y) 1(X) =([X, Y]). (L.9)
Let us introduce now the following mapping ¢:
0:EXE—dl, (1.10)
satisfying
Voo, ver 0, 0) =0(v, u) 5 (1.11)
also
ad(X) o(u, v) =X, o(u, v)] = @(v(X) u, v) + o1, (X)), (1.12)

which can be interpreted as the formula for the derivation of g(u,v) through the
derivation of its arguments; and finally

Vu,v,wrsE
The four identities (1.2), (1.9), (1.12), and (1.13) can be considered as a Z,-graded

Jacobi identity in /@ E, which therefore acquires the properties of a Z,-graded
Lie algebra. It is enough to define the generalized product in &/;®E as follows:

T(o(u, v)) w+ (0(v, w)) u + t(e(w, u))v=0. (1.13)

X, Y}=[X,Y]led,, (1.14a)
X,u} = —{u,X}=1X)uckE, (1.14b)
{u, v} =o(u,v)e A, (1.14¢)

for any X, Ye.Z;, u,veE.

Any two elements from ., combine now to give an element of .2/, any two
elements of E combine to give an element of .7;, whereas two elements from o/
and E combine to give an element of E. We may call ./, and E, respectively, the
“even” and “odd” parts of o/, @E. If by 2, %,% we denote elements of o/, DE,
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then the generalized Jacobi identity of our Z,-graded Lie algebra can be written
down simply as

{2AR, SV} +{RASL, P} +{S {2, #}}=0. (1.15)

The notation generalizing the Lie derivation of (yet hypothetical) corresponding
vector fields may be sometimes useful, too; we shall write

£Y=—£X=[X,Y], (1.16a)
Lu=—£X=1X)u, (1.16b)
X u

£U= £U=Q(u, 1)), VX,Yeﬂg,u,veE’ (116C)

Let n(£) denote the Grassmann parity of 2, i.e. n(#)=0 if Pe.o/;, and n(#)=1
if e E.

In the next paragraph we shall construct generalized differential operators
which realize abstract relations (1.16) and satisfy

£ £ ._(_1)1r(9)n(93)£ £ -
? % 2

? (PR

(1.17)

After generalizing the Jacobi identity for &/;@E, we proceed to generalize the
definition (1.6) of the invariant Cartan-Killing metric. The mapping ¢ together
with g, enables us to define the following mapping ¢ from E x E onto IR : let

V., vek, Xewr o 80X )1, 0) =g (X, 0(u, ). (1.18)

Thus defined, ¢ will be non-degenerate because g, was non-degenerate and t©
faithful.

Lemma. If we define

£ (e(u, v) =e(t(X)u, v) + &(u, 1(X)v), (1.19)
X

then

£(£(u,v))=0 for any X,u,v implies ¢&(u,v)=—ev,u), (1.20)
X

and vice versa.
Proof. £8(u, v)=0 means &(t(X)u, v)=—&u, 7(X)v); but &(t(X)u,v)=gsX, o(u, v))
X

=g, o(v, u)) because g is symmetric; therefore &(t(X)u,v)=e(t(X)v,u), whence
e(t(X)v, u)= — &(u, 7(X)v) ; the antisymmetry of ¢ follows because X was arbitrary.
The inverse is obvious, too. The formula (1.19) generalizes the invariance property
of g, given by (1.7). Let us also notice that instead of defining ¢ first and the
antisymmetric form & by means of g5 o, and 7, we can start by defining an
invariant antisymmetric form ¢ and then define the mapping ¢ with the aforemen-
tioned properties by means of ¢, g, and .
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The next obvious step consists in generalizing the notion of the adjoint
representation. Just as ad mapped &/ into L(s/;, 7;), its graded extension, which
we denote by ad, will map

ad : A ;@ E—L(A;®F, o4 ®E). (1.21)

It is enough to define the action of ad(#) on any element Ze o ;@®E; more
explicitly, as # and £ may both denote either X, Ye o/, or u,veE, we ask the
following relations to be satisfied:

AdPYR={2, R}, (1.22)
and
ad(?) ad(B)— (— 1" qd(R) ad(P) = ad({P, %}). (1.23)
The formula (1.22) can be written in a more explicit form,
adX)Y=[X,Y]=—-ad(Y)X, (1.24a)
adX)u=—adw)X =t1X)u, (1.24b)
ad(uw)yv=adv)u=o(u,v). (1.24¢)

We see that ad(X) are even operators which map the even and odd components of
A, @E onto themselves:

adX): A,—A;, E-E, (1.25)
whereas ad(u) are odd operators, mapping 7, into E and E into «7;:
adu): L,—E, E—-;. (1.26)

We define now the “super-trace” for the (N x s) x (N x s) matrices ad(Z) as the
mapping Str of these matrices onto IR! which satisfies the following properties :

Str(ad(?)+ ad(R)) = Str(ad(2)) + Str(ad(R), (1.27a)
Str(ad(?) ad(R)) = (— 1™ D Str(ad(R) ad(P)). (1.27b)
The generalization of the definition of the invariant Cartan-Killing metric in 2/,

(1.6) extending it onto o/, @ E is now obvious. First, the even and odd subspaces of
A, @E should be orthogonal to each other: if #=Xe .o/, #=ueckE, then

Str(ad(?) ad(#)) = Str(ad(X) ad(u))=0. (1.28)

This is obvious because of the “even” and “odd” properties of the corresponding
matrices ad(X) and ad(u); as a matter of fact, the matrix ad(X) ad(u) is off-diagonal,
whence the result.
Next, we postulate
Str(adX) ad(Y))=Ag,(X,Y), (1.29a)
and
Str(ad(u) ad(v)) = ue(u, v). (1.29b)
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The normalizing constants A and g depend, of course, on the representation
chosen (i.e. the dimension s of E).

Let us fix our representation by asking that the following independent identity
is satisfied:

gG(Q(ua U)a Q(W5 Z)) = 8(ua W) S(U’ Z) + 8(“5 Z) 8(0’ W) . (130)
A simple calculus shows then that (up to a common multiplicative constant) we
must have
_ 2s(s+1)
==

A u=2s+1). (1.31)
This condition fixes the representation ¢ up to an equivalence (automorphisms of
E and «/;); it is known that such a representation has the dimension given by

N
s=2[5], (1.32)

N, . . N . . .
[7} being the integer part of > and is called the spinor representation.

Summarizing, we may observe that the symplectic structure ¢ on E, invariant
with respect to the action of the representation t of .7;, together with the
definition of T are enough to define canonically the Z,-graded extension ;@ E of
a compact, semi-simple Lie algebra ./, we started with.

2. Representation of .<Z;@E in Graded Differential Operators

The Lie algebra .o, could be identified with the set of left-invariant vector fields
defined globally on G, and generated by the right action of G on itself; the Lie
brackets of these N independent fields satisfied the commutation relations of <Z;.
These vectors fields were also interpreted as invariant differential operators acting
on the module of smooth real functions on G.

We would like to extend the analogy of the first paragraph and define some
graded manifold including G as its even component, and then define some analogs
of the invariant differential operators acting on functions over this graded
manifold in such a way that their generalized Lie brackets, formally defined in
(1.16), satisfy these commutation-anticommutation relations.

In order to do it, let us first introduce the exterior antisymmetric product in E,

Y uv=—ou. (2.1)

Now E acquires the properties of a Grassmann algebra; let us denote by AE the
exterior algebra of E, ie. the linear space spanned by all independent formal
powers of elements from E. If dimE =s, then dim AE=2%.

We can exponentiate the action of 2/, on E, thus obtaining a corresponding
representation of G in L(E, E), namely, for any X € o/, if exptX =g,€ G, then we put

Expt(tX)=4(g,)e L(E, E), 2.2)

u,veE>

where Exp1(tX) means the usual exponential of an s x s matrix 7(tX). Obviously,

4(g) A(h)= 4(gh), (2.3a)
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and
Alg™H)=[4(g)]*. (2.3b)

Consider now the semi-direct product of G and E, denoted by GLIE, with the
following composition law:

(hyuy) (hy,uy)=(h hyu, +A(h)u,),  Vhy,h,eGu,,u,eE. (2.4)

This law is obviously associative, the neutral element is (e,0), e being the unit
element of G, O E; the inverse of (h,u) is given by

(how t=Mh"1 —Ah™Yu; (2.5)

GUIE acquires the structure of a Lie group, E being its abelian subgroup,
dim(GUE)=N +s.

We face the following problem now: in order to define differential operators
(vector fields) we have to define first what we mean by module of functions upon
which these operators shall act; once we imagine functions on GLIE replacing
functions on G, we are led to the whole AE, i.e. all possible exterior products of
elements from E and finite polynomials of order <s. So we have to extend GLIE to
a structure containing G and AE. The group G acts on AE by extension of the
action on E defined by (2.2): for ge G, u,ve E, we put

A(g) (uv)=(4(g)u) (A(g)v), (2.6)
and then, by recurrence, for any two elements U, We AE, we define
A(g)(UW)=(4(g) U)(4(g) W). (2.7)

Consider now the semi-direct product GLIAE with the following composition law :
V9,,9,€G, U, U,e AE, (h;,U,)(h,, U,)=(hh,, U (4(h,)U,)). (2.8)

This composition law is obviously associative, but there exists neither inverse, nor
the group structure in GLIAE.

Consider the set of AE-valued functions on G it is obviously a module (we can
add them up together, and multiply them one by another). Our first set of vector
fields can be induced by the action of the group GIJE on the module of these
“functions.”

In order to define the action of GLIE on GUAE it is enough to define it on
simple elements of GLIAE, i.e. on the elements of the form:

(g uguy ... u,), g€ G uy, uy, ..., u,€E. (2.9)
The group GLIE acts on these elements from the right as follows:

R, (g, uyuy . u)=(g,u u,...u,) (h,v)
=(gh, (u, + 4(g)v) (u, + A(g)v)... (u, + 4(g)v)). (2.10)
Obviously

(g, uyuy..uy) (hy,0,)) (hy, 0,) = (g uyty . y) (R hy, vy + ARy v,). (2.11)
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This action is naturally extended onto any elements of GLIAE ; the representation
of GLIE is obtained if we define

D(ha U) (gs W):R(h,u)“(g’ W)’ (212)

(h,v)e GLIE, (g, W)e GLJAE. Moreover, it has the covariance property with respect
to the associative multiplication in GLJAE:

R(h,v)((gp U1) (gz’ Uz)) = (R(h, v)(gp Ul)) (R(h,u)(gza Uz)) . (2.13)

Now, if f is a function on GLIE, it can be represented as a linear combination

1) 2 (29
S=1@+ 1@ u+f@U+..+fd9 U=fgU), (2.14)
where f, are real smooth functions on G, «=0,1,...,2° and U symbolizes the

1 (@) 29 (a)
element of AE given by u® U ®..® U ; are the elements of A*E. These

“functions,” defined as in (2.14), form a module we can add them up (by adding up
the corresponding terms in the expansion), and multiply them, obtaining an entity
of the same type. The group GLIE acts in a natural way on this module: via the
operator

((Q(h,u)f) (9, U)= f(R(h,u)— (g, U)). (2.15)

We have now everything that is needed in order to define generalized left-
invariant fields generated by GLIE acting on our module. It is enough to consider
N + s different independent one-parameter subgroups of GLJE, N “even” ones
belonging to G, and s “odd” ones generated by the elements of E. If we calculate

Op0f = NG V) [, _ dh,
(he, 0) t (X— o t=o)’ (2.16a)

@Q@wﬂg

and

(£f)(g, —'llm( (e, tu)f f)(g’ U) (216b)

we don’t get a representation of (1.14) like that postulated in (1.16), but

£L£-££= £

X Y X [X,Y]
;}[—;£-£;}E{:=(}{£) 2.17)
ELEL2E

It is no wonder that we cannot obtain in this way the correct result (1.16); we have
shown in the first paragraph that the graded structure was induced by the
invariant symplectic structure ¢ on E, whereas in all our construction of
“functions” and derivation no such structure has been used. On the other hand,
such a symplectic structure is implicitly involved in the definition of real scalar
functions on GLIAE.
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Let us implement E (and AE) with the invariant symplectic structure given by
¢:Ex E-RY, satisfying the same axioms as in the first paragraph, i.e.

8(“7 v) = 8(U9 u) s
¢ nondegenerate, (2.18)

e(t(X)u, v) + &(u, 1(X)v)=0,

for any u,v,X. Also ¢ defines the canonical isomorphism between E and its dual
E*, and by obvious extension, between AE and AE*; just as g, could be
interpreted as the canonical isomorphism between .7 and its dual 2/} ; g; ! and
¢~ ! denote the corresponding inverse mappings. Now the form ¢ can be written
symbolically as

0=gg 'otoe, (2.19)

which is equivalent with the definition by (1.18).
Let

(1)

(2) (2%)
u*eE*, U*eAE¥, ...,

U *e A*E*. (2.20)

We define a real function on GLIAE as the linear combination

s

e ) (29
f=hthu*+ LU+ .U, (2.21)
Jos f1s--+» f5s being smooth functions on G. Now, for any (g, U)e GLIAE, geG,
1 (2 (2%
U=u®U®...® U, the value of f at the point (g, U) is defined as

1, () @, @
flg. U)=folg)+ fil@u* Ju+ fr( U* JU+...
@9, @29

ot foslg) U AU (2.22)
These are the real functions on GUIAE ; unfortunately, if we multiply them taking
the product of their numerical values at the same point (g, U), the result is no
longer a function of this type; ie. the set of the functions is not a module. If we
multiply just the expressions (2.21), there is no essential difference between these
functions and the “functions” defined by (2.14); because of the duality between E
and E* they carry the same information. If we define the finite action of GLIE on
real functions of the type (2.22) as

O,y )(9: U)= (R, 1y-1(9, U)) s (2.23)

the infinitesimal limit does not have properties of derivation with respect to the
point-by-point multiplication (no analog of the Leibniz formula is possible). These
difficulties are typical and amount to the impossibility of a correct definition of
graded exponentiation. Let us therefore content ourselves with an explicit
definition of the infinitesimal generators (differentiations) without being able to
integrate them as in the classical case.

Let y* be the basis of E; 4,B=1,2, ...,s;

105+t =0. ‘ (2.24)
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Let L, be a basis in &/, a,b=1,2,...,N=dimG,
[L,L]=CiL,, (2.25)

C¢, being the structure constants of 7. The left-invariant vector fields on G are
given in local coordinates by the differential operators S, = S?3, such that:

Sb0,87— Sh0,8I =Ch, ST (2.26)
The representation t shall be in these coordinates t,*,, satisfying
50— 1 5T 0 =Cl T p> (2.27)

and the form g has the components ¢
Let us introduce the (graded) derivation with respect to the G-spinors y* as
follows: it is linear, and

0P =41, (2.28a)
04 xP) =051 — 05" (2.28b)
Define the following operators acting on the AE-valued functions over G:
2,=50,+1,%1"0y, (2.29a)
Dp=0p+5px "0y » (2.29b)
with
08 =9"2457"p> (2.30)

where g, ¢,, are components of g, and ¢ in our coordinates. It is easy to check
that the operators defined by (2.29) satisfy

[@a’@b]zcgb@d’
[@a,@B]=—raDB@l):CaDB@D:—CBDa@D, (2.31)
(D Dy} :2Qi39d= Ci2,=C3,49,.

It is easy to check that these operators span the Z,-graded Lie algebra defined by
(1.14) and (1.16); moreover, if we define the (N +s) X (N + s) matrices

crl 0 0 |C,
) ol e
a D A d

with the structure constants defined as in (2.31), then we obtain the adjoint
representation of our Z,-graded algebra:

C.C,—-CC,= CZdCd >
CACB~—CBCa=CaDBCD, (2.33)
C,Cp+ CBCA=CiBCD.

We shall also use the generalized indices , ¢ standing for a or for B; introducing
Grassmann parity n(¢) as n(a)=0, n(B)=1, we can rewrite (2.33) as the graded
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Jacobi identity
C;‘mcﬁA—(— 1)n<¢)n(w)cégcgdzcng6A, (2.34)

The fact that C,’s are even operators and Cy’s are odd is visualized in their matrix
form (2.32). Finally, the normalization relations in coordinates are

a b _
9u9809Er = €BEEpF T EBrEDE -

Summarizing we may say that we have come as close as we could to the notion
of a graded Lie group. The essential difference with the ordinary Lie group G is the
fact that whereas for G the “group” and the “group manifold” on which it acted as
a group of transformations were identical; in the case with grading, GLIE has the
structure of a graded Lie group, whereas the “manifold” GLIAE has not, and the
exponentiation is not well defined. Nevertheless, the graded vector fields (2.29), the
graded adjoint representation (2.32) and the module of AE-valued functions on G
are sufficient to define the graded analog of gauge theory.

3. Graded Fiber Bundles, Graded Connections

The impossibility of definition of the graded Lie group makes somewhat difficult a
definition of a principal fiber bundle ; for our purposes, however, it will be enough
to define a product space of GLIAE with some basis manifold ; the graded vector
fields defined by (2.31) act on AE-valued functions of G and of the basis manifold
(leaving the parameters of the basis manifold unchanged) and are the analogs of
the vertical vector fields in a principal fiber bundle. We shall assume that our
bundles are globally trivial ; now we draw our attention to the generalized graded
bundles in which the basis space is also a Z,-graded manifold. This basis space will
be assumed in its simplest well-known version, [1,2], ie. the product of the
Minkowskian space-time M, with the linear space of anticommuting Majorana
spinors

0°0° +0°6*=0, 0P +0%0" =0, 00’ +0°9*=0, (3.1)
a0, f=1,2; 4,f=1,2; we denote symbolically this superspace by M, x {0}. The
corresponding graded manifold is M, x A{0}, where A{0} denotes the Grassmann

algebra of {0}. We shall call “functions” on M, x {0} the A{0}-valued functions on
M, ; any such “function” is decomposed as

B(x,0) =P (x) + P,(x) 0" + P ,(X) I + b, ,(x)0°0° + ...
ot () O (3.2)

all coefficients ¢ being smooth functions of xe M.
Defining the (graded) derivation with respect to the spinor variables 6 as
follows:

0,0 =06,0,0°=0,0,0"=05!,0,0° =0, (3.32)
with the (anti)-Leibniz rule
0,(6P0°)=580°— 5°0* (3.3b)
so that 0,0,40,0,=0, etc.
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We can define the graded extension of the Poincaré algebra as follows:
P;=0,Jy=x,P,—xP,+0, ;0 30, + 0y, 0 04, (34)
D,=0,+0 ;0 P Dy=0;+07,,0°P;.
These generators satisfy the following commutation-anticommutation relations:
[p,P,1=0,
[J¥, P, 1=0kP'— 4 P*,
[JM, ] =g gt + g — gty — gingt,
L. 2)=0"F%,,

_ (3.5)
[Jmn, 9[}] — O.mnaB @a ,
[Pk’ ga]zoa [Plng?ﬂ]=0a
{@w@/}}+ =0> {‘9&’ 9/3}+ =0,
{Qa, .@I}}_,_ =20‘ja[; PJ
Here
0% == 07 (Y =
N (3.6)
O'Jlxaz(yj)aﬁa (yj)ali =0;
7% are the standard Dirac matrices, and
=50"' =77 3.7
The indices o, § are raised and lowered by means of the invariant spinorial
“metric” e, ¢,; and its inverse &%, ¢ ;¢ , = —e,, =1, ¢,,=—¢,, =1, so that
0,0,=¢,p 0,0;=¢, (3.8)

The exterior calculus is easily generalized on M x A{0} (cf. [3, 4]); we introduce
the exterior 1-forms d6* and d0” such that

d0*(0,) =65, d@""(aﬁ) =64, (3.9)
and dx’, together with the generalized exterior product
dx' Adx!= —dx) A dx'
dx' A dO*= —dO* A dx' (3.10)

do* A d6F = do* A do*,

or, if we introduce the generalized induces K, L designing both j or a, f, then
symbolically

Az8 A dzE + (= 1P gzl A dz% =0, (3.11)
(@) =n(p)=1, n(j)=0, zX standing for 6% & or x’.
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We shall often use the non-holonomic basis dual to the vector fields Z,, Z;, 9,

(D) =05, (D) =55,

, o (3.12a)
e(0)=04,,¢(2,)=0,e(0,)=0,etc.,
so that
e =do*, & =add*,
. S . (3.12b)
e/=dx/—al;0%d0F — o’ ; 0P dO*.
The integration rules are the following:
[d6*=0, [d0P =0, [ 0> d0° =&, [ 0% AP =&** (3.13)
and the “volume” of the #-space may be normalized to 1:
6102082 do' 4% af' d0*>=1. (3.14)

A connection in a classical principal fiber bundle P(M,, G) was given by a Lie-
algebra «/;-valued left-invariant 1-form w over P. This implied

£fo=—adX)w (3.15)
X

for any left-invariant vertical vector field X generated by the right action of G on
P(M, G). Let o be the canonical isomorphism from .«/; onto the tangent spaces to
the fibers in P(M,, G). If X is a left-invariant vector field, then

goX)=X. (3.16)

A field X called horizontal if w(X)=0. Any field can be decomposed into its
horizontal and vertical parts:

X =horX +verX=[X—ocowX)]+o-0X). (3.17)
The curvature of w is its covariant differential, i.e. a two-form defined by
QX,Y)=DwX, Y)=dw(horX,horY). (3.18)
The covariance property (3.15) enables us to write
DX, Y)=doX,Y)+ 3 [oX), o(Y)],. . (3.19)

Finally, if g,, is a metric in M, g, a metric in G (which, when not explicitly stated
otherwise, is supposed to be the Killing-Cartan metric), then a connection w
enables us to define a canonical metric on P(M,, G):

9pX, Y) =g, (dn(X), dn(Y)) + gg(0(X), o(Y)), (3.20)

where dn is the differential of the canonical projection n: P(M,, G)—M,. In local
coordinates @ can be decomposed as

w=0"L,=wiL,dx'+ojL e, (3.21)

where [L,, L,]=C%L, is a basis in .2/, ¢’ are the invariant 1-forms on G, x’ are
some coordinates in M,. We have also for the components of the curvature 2-form
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Q:
Q5= 0,05 — 0,04+ Ca ,0fw] =0,
Q4= 0,05 — 0,0+ Ci ] =0, (3.22)
Q= 0,00 — 0,03+ Ca ;o] #0.
The gauge invariant quantity
=3 Tr(g"g"Q,2,) = — § 9,99 2.2, (3.23)
is called the lagrangian of the gauge field Qf, (g,, are the components of g, g* the
components of g,, ).
In order to generalize this formalism to the graded fiber bundles, we shall
carefully proceed by steps. First let us replace the base space M, by the
“superspace” M, x {6}, leaving the same structural group G. The rules for the

exterior differentiation are maintained, only the symmetry properties of the
p-forms are modified, i.e.

eX A el +(— 1) Bk A X =), (3.24)
therefore if A is a 1-form A4,dz%, then its differential is
O=dA=0,A,dz" ndZ¥, (3.25)
which gives the following expressions for the components:
0,,=04,—0,4,=—0;
O,y =0,A;—0,4;,= — O, (3.26)
0,,=0,A5+054,=0 .

If we want the covariant differential to have the same symmetry properties, it
implies that the second term in the definition (3.19) has them too, ie. in local
coordinates

Cot A= — Ci, A4
CoArAG = — C AR AL, (3.27)
Ce, AL A% =Co,ABAL.
This in turn is possible only if
b gd _ qd »4b
Ay = Ay, (3.28)
APAS=A%4" and ADAL=—ALAD,
which symbolically can be written as
Ay =n(K), (3.29)
and

AV AL = (— 1y =D gd gb (3.30)
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The connection coefficients are A{6}-valued functions on M, ; the condition (3.29)
limits their form to quite a limited development, i.e. A contain only even powers of
0s, whereas A¢ contain only odd powers of 0s. If the negative-energy states are
to be avoided, the connection has to be hermitian, i.e.

(AT =44, (3.31)

This fixes the development of A% in the anaholonomic basis ¢/, d6”, df? defined by
(3.12a) and (3.12b), as follows:

Ab=B5(x)+ %aiaﬁf)“f)“d)b(x)

b b b b\t by (3.32)

A;=¢°(x)0, 5 Aj=(4p)" =¢"0;.
The higher order terms in &’s could be introduced, too, but it is quite easy to verify
that they will not contribute to the fourth-power term in the final Lagrangian.
A parameter | with the dimension of length has to be introduced because

dim|6*|=cm'?, dim¢®=cm™*, and dimB?=cm™'. The term containing this
parameter in the development (3.32) manifestly breaks the conformal symmetry;
scale invariance is recovered when [—oo. The lagrangian of the theory is, by
analogy, the same as given by (3.23)

L=—351/19l 9.|9"¢"Fi;Fp,

2 . o
+7 (Ve Fi % + ge* Fi,FYy)

1 iy y
+ (6P FayFos+ 266 F;Fs 4+ 657/ F  Fh5) | (3.33a)

The fourth-power term in 6 is then equat to

3 . 1 o 4
LW =— 8—12_ (Vlfﬁb) (Vld)b) - W G?jG:zJ - 1_4 ¢b¢b 4 (3.33b)
with

G‘i‘j = aiBj —0 jB? + ngB’?B‘?

i7j

Ve =0, + Ci,Blg".

4. Double Grading and the Spin-Statistics Dependence

Now we proceed to the definition of the real goal of our construction, i.e. the
bundle in which both the base space and the typical fiber are graded manifolds.
Unless stated explicitly otherwise, we shall use local non-holonomic systems in the
basis graded manifold M, x {6}, and in the fiber graded manifold G[J{y} [(3.12b),
(2.29a), (2.29b)]. The connection 1-form A in this bundle is decomposed as follows:
(we take into-account only non-trivial components)

A=AgeX=A%e59,
=(Ale! + Abe* + A5eh) D, +(APel + ADe* + ADE) D, (4.1)
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the coefficients A% being functions on M, x {6} and on G[I{y}. The dependence
on GO{y} is fully determined by the condition of left-invariance (or horizontality
of the curvature F, ie. vanishing of the components F?,, F.). The only non-
vanishing components are the horizontal ones, Fg;.

However, if we want to generalize the definition of the curvature 2-form, i.e. to
put:

FY =D Aje ne+Co A% AYe  n ", (4.2)

the problem of Grassmann parity counting is more complicated than in the
previous example [formulae (3.26)—(3.30)], because now the commutation or
anticommutation properties of A% depend not only on the parity of the power of
0’s they contain, but also on the powers of G-spinors y; the result will be different
depending on the hypothesis we make about the commutation or anticom-
mutation between 6’s and y’s.

Two assumptions are possible: either

648 = 120", (4.3a)
or
0745 = — 507 (4.3b)

Let us treat the two cases separately.

a) In the case of commuting &’s and y’s the two different Grassmann parities
do not influence each other and add up separately ; therefore the parity rule for the
coefficients A9 is

AzAz — (_ 1)n(¢)n(w)+n(K)n(L)A$A§ , (4'4)

yielding the following Table 1:

Table 1
A AL A? A2
A 0 0 0 0
A 0 1 0 1 3
AP 0 0 1 1
AP 0 1 1 0

in which 0 means commutation, and 1 means anticommutation between the
respective entities. [t can be easily checked that these properties combined with the
symmetry C%,+(—1F*™Cg =0 assure the required symmetry of F%,, namely

P, =(~ [P0, @6)

In order to have the commutation —anticommutation properties (3.37), the
development of A% in powers of x> and 6* must be of a particular form, namely, if
n(¢) =0, the corresponding 4% contains only even powers of y°, and if n(¢) =1, the
corresponding A% contains only odd powers of z?; the same is true for the powers
of 6%s and the Grassmann parity 7(K). Therefore, if we keep only zeroth and first
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powers of y, and do not introduce any dimension parameters, the unique
development becomes:

Ab=Bi(x),
AL =¢b(x)0,, Ap=¢*(x)0,,
A7 =2"W(x),
A2 =5"0,D(x), A =1"0,D(x).

4.7

We see that due to the separate adding up of the space-time and group spinor
parities the fermionic sector is completely eliminated, leaving only massless fields
D(x), W{x), ¢*(x), and Bj(x). The conformal symmetry can be broken and masses
introduced as in the example given by (3.32), ie. if we introduce the universal
length scale | and enlarge the supergauge conditions to:

1 .
A? = B?(X) + 7 Pb(x) o'jaBQ“GB R
Ab=pb(x)0,,
1 (4.8)
AP =yPW(x)+ T 2%0,,,0°0°D(x),

T
AB=y®0 D(x)+ 7 1Pl 5070°0, W(x).

Of course, even then such a theory has no interest because of the absence of
fermions; therefore, we proceed directly to the alternative parity counting,
corresponding to (4.3b):

b) Now the two different Grassmann parities add up together, and the parity
rule for the coefficients 4% becomes

n(A%) =n($)+n(K), (4.9)
ie.
A}ﬁA%=(— 1)[7:(4»+n(K)][n(w)+n(L)]AtLpA}4; , (4'10)
yielding the following rule
Table 2
Ab AL A? A2
A 0 0 0 0
Al 0 1 1 0 (4-11)
AP 0 1 1 0
AP 0 0 0 0

Now the symmetry properties of F$, are destroyed, e.g. the expressions like

Ch ALAP + Cp AP AL = Cf(A2AP — AP AY), (4.12a)
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or
WL (4.12b)

have no determined symmetry, i.e. they are neither symmetric nor antisymmetric.
In such a case neither a stationary Lagrangian nor the Hamiltonian can be
positive definite. In order to restore the positive definiteness of the Hamiltonian
and to eliminate the ghost fields, we have imposed more strict (super) gauge
conditions, which however will not affect the usual gauge symmetry.

The parity counting defined by (3.43) can be found more attractive also for the
following reasons. When we want to take into account the fact that the Lorentz
fermions are anti-commuting quantities, whereas the bosons are commuting
quantities, we imply that y,(x) or w,(x) have their values in some anti-
commutative ring. Supposing that this ring is of finite dimension, it is natural to
decompose, e.g. y, =y, where y, is the basis of the anti-commuting generators
of the corresponding Grassmannian.

In the usual supersymmetric theories the anti-commuting quantities y, were
identified with the duals of the anti-commuting Lorentz spinors 0, so that y, was
supposed to be proportional to some anti-commuting ¢,. However, there is no a
priori reason to do so; the anti-commuting basis y, may be chosen quite
independently of the Lorentz spinors 6.

On the other hand, and in the spirit of the grand unification, one is led to
believe that both the Lorentz spinors  and the G-spinors y* have common origin
and are the split and reduced parts of the higher-dimensional spinors which we
denote by £, and which correspond to the Riemannian metric constructed on the
unified space containing also the internal degrees of freedom, which manifest
themselves in the gauge group G. This is visualized on the following scheme:

Manifolds M MxG P(M. G)
Lorentz manifold unified manifold
Corresponding spinors Lorentz spinors Cartesian product 0 x y Unified spinors ¢

In such a case it is natural to assume that even after the dimensional reduction
and the corresponding splitting up of spinors has occured, the reduced parts of the
unified spinors £ still anti-commute between themselves.

Therefore we propose to realize the Grassmann parity counting by including
the dependence on y’s, and in order to keep the required symmetry properties of
F%, given by (3.39) we impose the following supergauge conditions (cf. [7])

A?=0, AL=0, A§=0, (4.13)

which means that only commuting fields A2, A% do not vanish.

As we have already stated, only the term proportlonal to 01620102 will be
considered as the relevant part of the final Lagrangian. If the y’s are present
explicitly, one has to ask what powers of y’s are to be considered as relevant, too.
The power of the “volume element” in the Grassmannian A{y} depends on the
dimension of G and is not a good candidate; the only other universal invariant is
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the bilinear combination ¢,zy*x® which has the same form independent of the
ch01ce of G. Therefore we propose to develop A% only in zeroth and first powers of
%%, and consider only the coefficient of ¢,z x391020192 as the relevant part of the
final Lagrangian.

The most general development of A% under these conditions and without the
conformal symmetry breaking is:

=Bi(x) + 17 (w20 ﬁ(-) +0,0%7" By
+ x4 (B 0% + P07 ;
AZ=pi(x)+yhol 070° + D(x) 16, (4.14)
+ Wi(x)07,,0° 1" + °(x) 7,75 17,
+12,1"Bio’ (G AP = (4B
The theory introduces in a natural way the following bosons: scalar D(x), vector
Wi(x), Higgs soalar multiplet ¢* and the gauge field Bf(x); and the fermions: spin
1/2 multiplet 2, and spin 3/2 multiplet 2, both transformmg under the spinorial
representation t,%; of G. All these fields are massless. As in the cases discussed
above, one may generalize the 0-dependence of the potentials keeping still the

required Grassmann parity, but introducing the elementary length [ and breaking
the conformal symmetry. This is achieved by replacing:

a a f oL

Bf by Bi+ 7(;5 7,500,

B j’ B BN Bnip2n 1 2
pE by P+ l(w79y+w M0, + l"w 0:050'0

w5 by i+ (wneuzpf?m) lzwﬁeloléiéi, (4.15)
D b 0.0+ 0.5+ 2 pore2gia?
y D+7D(y +1, )+l—2D s

W, by Wik S W0,00+0,8) + 5 W0'020102.
Here too, like in example (3.32), the highest order terms most probably will not
contribute to the final Lagrangian, but we have not the formal proof for that.

It is worthwhile to note that the introduction of the dimensional parameter /
into the development corresponds exactly to what is usually done in the
supersymmetric theories, namely the introduction of the fields having anomalous
dimensions. We do exactly the same, but the anomalous dimensions are taken care
of through the introduction of the dimensional multiplier /, in order to visualise
them better. Here f, 4, v, p, g, §, w, u are some dimensionless constants which later
may be absorbed in the renormalized fields.

The generalized lagrangian is defined by

1
L=—I7g¢QgK g"NFe F2y, (4.16)
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which is written more explicitly as
1
L=- v (9usFicrFin +eanFiaFin] g tg™™, (4.17)
where

’ 2, 1
G g Py Fon =" " FiFS, + 5 g e FLFly + e e FoFy,, (4.18a)

ia” jp
and similarly,

g g Fe Fiy=g"g""F 3 Fh + %g“a"‘”F{iFﬁ? + llzs“”s“’nyFgé (4.18b)
(where for simplicity we did not distinguish between the dotted and un-dotted
fermion indices a, § and &, f; in real calculations the full development must be
taken into account). o
In the final expression, only the terms containing ¢ ,zx*¥?0'020'0? are taken
under consideration as the physical Lagrangian. Unless the conformal symmetry is
broken in the definition of connection coefficients [with the substitution (3.51)],
the “elementary length” [ appears in a homogeneous manner in this highest power

term, as and therefore may be disregarded in the variational principle,

1_27

analogously to example (3.33).

5. Discussion. Prospects and Conclusions

It is easy to see that the full calculus of the Lagrangian (3.52) is a very tedious one,
and it is no wonder that we are still unable to determine it at the present stage,
especially with the conformal symmetry breaking as in (3.51), although the
problem remains purely technical. However, some important observations can be
made without the thorough computation of all the coefficients in the development.
The main features of the model are visible already at this stage.

a) First of all, let us comment on the purely algebraic properties of the graded
gauge theory. The principle of summing up the G-spinor and fermionic
Grassmann parities, together with the graded symmetry requirements imposed
upon the curvature 2-form F serve as the super-selection rules, which assign well
determined group representations to the bosonic and fermionic sectors. This can
be summarized up in Table 3:

Table 3

Space-time spin

0 12 1 32 2
G-spin
0 D(x) — Wi(x) — : hy(x)
172 — w(x) — Wix) : —
1 (%) — Bj(x) — : 150
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Here we have laid down all the multiplets appearing in the model and put the bar
in place of the forbidden multiplets. We have included in our table the spin-2
multiplets, which are in principle allowed by the model.

It is interesting to note that together with the classical spin-2 field (represented
by the traceless symmetric tensor , (x), appearing in the last column) there should
appear an G-adjoint multiplet of such tensors, f(x). The interpretation of this field
seems yet physically unclear; it should appear in the development of the gauge
potential Aﬂ? in the following combination:

Ab=BYx)+ fio' 000 + ... (5.1)

At least in principle, this table could be continued in both directions, including
the G-spin 3/2, and so forth.

Another important point concerns the G-spinorial representation for the
fermions, which is obviously reducible except for the case G=SU(2). In order to be
able to identify our fields with any “elementary” particles, the decomposition of
this representation into a sum of irreducible representations describing the quarks
will not appear automatically in such a decomposition.

In the case of G=SU(2)dimG=2, and s=2; the G-spin representation is
irreducible and lowest-dimensional. However, if we go to G=SU(3), then
dimG =8 and s=16. This G-spin representation decomposes as 16=8®8 into two
adjoint representations, and there is no place for quarks in the model.

The fundamental representation begins to appear in the case when G=SU(4).
Then dimG =15, s=27=128. This representation decomposes as follows:

128=15@Q15@...®15@4@4, e

« eight times —

we have eight adjoint representations and two fundamental ones. As a by-product,
our model gives the explanation why there are four quarks and four anti-quarks,
and not three quarks as in the first quark models which finally had to be extended
to a four-quark model.

b) Although the full Lagrangian is difficult to calculate, it is quite easy to
obtain just the dynamical terms without interactions for each of the fields
separately. When there is no conformal symmetry breaking, ie. with the ansatz
(3.50), these turn out to be; (up to a normalizing multiplicative constant, different
for each field):

9"9,Dd,D for the scalar field, (5.2a)
94" (0,W,— 8, W) (0,W,,—8,,W,) for the vector field, (5.2b)
990, (0,0") for the Higgs multiplet, (5.2¢)
999" GG, for the Yang-Mills field, (5.2d)

where Gf,=0,B;— 0,B!+ C;,B?B;.

As in the simplified version of the theory without the explicit dependence of
potentials on the G-spinors, the fermionic sector does not appear in the highest
order O-term in the Lagrangian unless we introduce the elementary length [ into
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the development, replacing everywhere

vy by w4+ %(wfew Pp30")0,+ etc.,
(5.3
Wi, by Wi+ %(w?ﬁw@j?ﬁwﬁ
etc. The Lagrangian then contains wlf} via the following dynamical terms:
g (Pp) and  [phyVyp—0Vphyl. (5.4)

The d’ Alembertian-type term g“(Vy") (V;y) appears also for the vector-spinor field
ng. Both may be removed leaving only the Dirac type lagrangian if we choose the
renormalizing constant 4 in an appropriate way. We lack the physical motivation
which would fix A in that manner. Most probably only introducing the non-linear
terms of higher order would bring in some additional symmetry breaking and the
corresponding Higgs’ mechanism would fix some more constants by making some
solutions stable as compared to all other ones.

¢) The conformal symmetry breaking that has been introduced here comes
from the anomalous dimensions of the fields in the expressions containing the
elementary length . We don’t think that it is unnatural, because sooner or later it
must be introduced if we carry the spirit of supersymmetry to its logical end. As a
matter of fact, from the beginning we want to form the linear superpositions of the
fields of different spin ; on the other hand, their dimensions are not the same, so we
have to introduce the coefficients which take care of these dimensional differences.
For example, if we choose the Pauli matrices ¢’ dimensionless, and if we want to
add up x’/ (with the dimension of cm) and the expressions 8g76, this can be done
only if the dimension of the spinor 6 is equal to cm!/2. The scale is not given a
priori; that is why we visualize it by introducing the length factor . However, in
the final expressions it would come out homogeneously, giving some overall factor
for the lagrangian density. The situation becomes less simple if we push the
unification further, including the group dimensions and the G-spinors. Unifying
the group dimensions with the space-time dimensions (including all in a principal
fiber bundle) means also introducing a length scale in order to give the proper
dimension to the group manifold variables; let us call this constant e (usually we
see it in front of the structure constants). Finally, the G-spinors must also have the
dimension cm?/?; therefore the third constant g of the dimension of length is
needed. Even if the final lagrangian is still homogeneous in dimension, it contains
different products of these dimensional constants; the relevant information left in
the theory will be contained in the three independent dimensionless ratios /g, eg,
and el. It seems therefore quite attractive that the graded gauge theory provides us
naturally with three different scales of interactions. Even if we suppose that all
these ratios are equal to 1, it provides us with quite big factors s(s+ 1)/N in front of
several terms in the lagrangian. As s=2"2 these factors grow very rapidly with
the dimension of the gauge group, e.g. s(s+ 1)/N is equal to 34 for SU(3), and to
6.99 x 10° for SU(5), etc.

d) Another feature of the model is worth noting, namely the fact that the
Yukawa, Fermi and current-current couplings are related to the masses obtained
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via the conformal symmetry breaking. As both these quantities are measurable,
this makes possible the confrontation with experiment ; however, we must add that
the particles described by the unified supersymmetric fields should correspond to
quarks rather than to the less elementary observed particles.

Acknowledgements. The author is greatly indebted to Y. M. Cho, V. Kac, R. W. Tucker, A. Jadczyk,
and E. M. da Silva Maia for very useful discussions and enlightening remarks.

References

Sect. I: Similar attempts to construct graded Lie groups and algebras can be found in:
1. Kostant, B.: In: Differential geometrical methods in theoretical physics. Math. Ser. Vol. 570.
Bleuler, K., Reetz, A. (eds.). Berlin, Heidelberg, New York: Springer 1975
2. Rogers, A.: Super Lie groups: Global topology and local structure. J. Math. Phys. 22, 939 (1981)
3. Balantekin, A. Baha, Bars, I.: Dimension and character formulas for Lie supergroups. J. Math.
Phys. 22, 1149 (1981)
Sect. II: Some elements of the construction can be found in:
4. Kerner, R., da Silva Maia, E.M. : Graded gauge theories over supersymmetric space. J. Math. Phys.
24, 361 (1983)
5. Kerner, R.: Nuovo Cimento A 73, 309 (1983)
Sect. III: Graded gauge theories of different kinds were proposed in:
6. Freedman, D.Z., Nieuwenhuizen, P., Van, Ferrara, S.: Progress toward a theory of supergravity.
Phys. Rev. D 13, 3214 (1976)
7. Yates, R.G.: Fibre bundles and supersymmetries. Commun. Math. Phys. 76, 255 (1980)
8. Bonora, L., Pasti, P., Tonon, M.: Ann. Phys. 144, 15 (1982)
9. D’Auria, R., Fré, P., Regge, T.: Graded-Lie-algebra cohomology and supergravity. Riv. Nuovo
Cimento 3, 12 (1980)
See also: Gawedzki, K.: Supersymmetries-mathematics of supergeometry. Ann. Inst. Henri
Poincaré 27, 335 (1977)
Sect. IV: The discussion on Grassmann parity, spin and statistics can be found in:
10. Haag, R., Lopuszanski, J., Sohnius, M. : All possible generators of supersymmetries of the S-matrix.
Nucl. Phys. B 88, 257 (1975)
11. Corwin, L., Ne’eman, Y., Sternberg, S.: Graded Lie algebras in mathematics and physics (Bose-
Fermi symmetry). Rev. Mod. Phys. 47, 573 (1975)
Sect. V:
12. Witten, E.: Dynamical breaking of supersymmetry. Nucl. Phys. B 188, 513 (1981); Search for a
realistic Klein-Kaluza theory. 186, 412 (1981)
13. Kerner, R.: Geometrical background for the unified field theories : the Einstein-Cartan theory over
a principal fibre bundle. Ann. Inst. Poincaré 34, 437 (1981)
14. Domokos, G., Kovesi-Domokos, S.: Internal symmetries and ghost symmetries. Phys. Rev. D16,
3060 (1977)

Communicated by R. Haag

Received January 7, 1983; in revised form May 2, 1983





