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Abstract. By the concurrent use of dimensional and analytic regularizations
with the complete Mellin (CM) representation, we find in a direct way the
ultraviolet and infrared poles in space-time dimension, for any Feynman
amplitude with an arbitrary subset of vanishing masses.

I. Introduction

A dimensionally regularized Feynman amplitude [1] is the analytic continuation,
in the space-time dimension D, of the function AG(D) defined by the Feynman
integral corresponding to a given graph G. When there is no vanishing internal
mass, it is well known that the integral exists for a sufficiently low value of Re D,
and defines a meromorphic function of D: the singularities of AG(D] are poles,
located at real rational values of D. We denote by Duv the first pole, that is the
lowest value of D for which the Feynman integral presents ultraviolet (UV)
divergences.

Now if there are vanishing masses, the Feynman integral may present infrared
(IR) divergences for Re D^DIR. When all masses vanish, it has been shown that
AG(D) remains meromorphic, with new "infrared" poles [2]. But in the literature
there seems to be no such result for the Feynman integrals with only a partial
subset of vanishing masses: here we prove the meromorphy of AG(D) in this more
general situation.

In Sect. II we look at the case DIR<DUV. Then AG(D) is defined by the
Feynman integral for DIR < Re D < Duv. And we use the CM representation [3] to
prove that the singularities for Re D ̂  DIR are still poles, located at real rational
values of D.

In the case DIR ̂  Duv, the formal Feynman integral exists nowhere. In Sect. Ill,
we use the analytic regularization [4] to define AG(D\ and we extend the results of
Sect. II to this case.
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We consider the present paper as a first step towards a better description of the
infrared divergences. Our following goal would be an explicit CM representation
of the dimensionally renormalized amplitudes, with an arbitrary number of
vanishing masses. Then we could try to isolate the whole set of infrared poles in
dimension, and to organize their residues, for the physically relevant models like
Q.E.D. or Q.C.D.

II. The Convergent Case

For the sake of simplicity, we restrict ourselves to the study of scalar amplitudes.
The extension to spinor amplitudes or derivative couplings is merely technical,
and has been sketched in [5].

If DIR<DUV, we define AG(D\ for DIR < Re D< Duv, by its CM representation
[3]. Let the index i label the internal lines of a given Feynman graph G, E the set of
the massive lines (m φOVzeE), F the set of the massless lines (w. = OVzeF). If the
index j labels the "one-trees" of the graph and the index k the "two-trees" (with the
cut-invariants sfc), we have :

AG(D)= J /• , U^n~yk) Π(^Γφ'Γ(φί) (1)
~

The integration variables are the imaginary parts of the variables xj9 yk linked by
the conditions :

(2)

(3)
j k )

where

Φί=Σ M iΛ + Σ « £ k 3 > f c + l > (4)
j k

and wί>;.(ttίfc) = 0 or 1 according to whether the line i belongs or does not belong to
the one-tree j (two-tree fe). The convergence condition DIR < Duv is equivalent to
A Φ 0, and we have :

(6)

In the same way that any asymptotic expansion can be determined [3], the
dimensional singularities are found by translating the integration path in (1). For
the ultraviolet poles, this method is explained in [5]. But the same procedure
applies as well to the infrared singularities. Let us denote by φv the linear forms
— Xj, —yk, φ.(zeE). From (2), (3), and (5) there exist positive real numbers cv such
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that

and we have

ΓΊ J_ — v
-

v' Φ v

If there exist again convex generations of D — DIR by some subsets {φv,, v'φ v}, the
procedure is iterated until we find:

where the subsets {φv, vεH} no longer generate D — DIR. The family of sets H, with
the corresponding powers qH and coefficients CH, is thus determined by the convex
geometry of the linear forms φv.

ΐ? p>r\1ίί ΓΊΠ CT Tίfn ^ in ί^\ KΛ/ 1 Ier\ . T^ίfn 4-1^ ΛX^F* nKtίiin

ometry of the linear forms φv.
Replacing Γ(φv) in (1) by l/<pv Γ(<pv + l), we obtain

-^-J ^(£)_/) lR)«ί

where θvH= 1 for veH, 0 for vφH,

Since the φv, veH, no longer generate D — DIR, we have

ί ' w ' ΠΠy,+ι-g.g). (9)

, (10)

and the integrals in (9) are analytic in a larger domain in D. The same technique
can be used to determine the following poles at D = D^, etc ____ Since the
coefficients of the linear forms φv are 0 or 1, the numbers cv, in each identity like
(7), are rational, and by construction we find the infrared poles at the rational
values

where the rcv's are positive integers.
Similarly we have for the lowest ultraviolet pole at D = Dυv a family of

identities like

, (12)

where the Jv's are positive rational numbers, and the ultraviolet poles are at the
rational values

(13)
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III. The Divergent Case

If AR = ̂ uv» tne domain A is empty and the formal Feynman integral diverges for
every value of D. In this case we introduce the analytic regularization of Speer [4].
This amounts to replacing each φ . by φ( = φ. + ti in the CM representation. Except
for the purely homogeneous integrals §dmkkp, which disappear after renormali-
zation, it is always possible to find a set of parameters ί . such that the new domain

J^ίx^lφ ̂ OViGF Rex^O Rey^O Reφ^OVίeE} (14)

is not empty, that is DlR(t) < Dυv(t).
Then the preceding method applies. With the same sets of positive coefficients

{cv}, {dv}, and for any ί.'s, we obtain the infrared and ultraviolet poles at:

v. (16)
V

Once these poles are explicitly factorized in AG(D, t), as in (9), we come back to
ί. = 0. In this way, even when DIR(0) = DIR ̂  Duv(0) = Dυv, the amplitude AG(D) is
defined and shown to be meromorphic.

Now of course some infrared poles may coincide with ultraviolet ones. At a
given value D1 of the dimension D, the dimensional renormalization will suppress
only the ultraviolet poles. The possible remaining infrared poles express the
infrared divergences, which we intend to organize, for some specific models, in
later papers.
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