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Abstract. We construct a new minimal dilation of a dynamical system
governed by a Bloch equation. In contrast to a dilation of the same dynamical
system recently obtained by Varilly [13] our dilation satisfies a Markov
property. This presents the first example of a Markov dilation for a non-
commutative dynamical system which is not equivalent to a quasifree evolu-
tion. Furthermore the dilation turns out to be a generalized K-system.

1. Introduction

In the operator algebraic framework of quantum statistical mechanics we define a
(continuous) dynamical system by a triple (M, p, 7), where P is a W*-algebra, pisa
faithful normal state on MM, and 7 is a (pointwise weak™ continuous) repre-
sentation of the semigroup N (respectively R, ) as completely positive identity
preserving operators on 9 leaving y invariant. In particular, if these operators are
*.automorphisms, (I, y, 7) will be called a conservative dynamical system.

Given a dynamical system (IR, y, 1), various reasons raise the problem of
constructing a conservative dynamical system (9,9, %) containing it in the
following sense. There is an injective *-representation i : M —IN and a projection E
of norm one of 9 onto (M) such that the diagram
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commutes for all neN,. Then (IR, P, 74, E) is said to be a dilation of (M, p, 7). The
dilation is called minimal if \/ 4O =M {here and henceforth for any family

keZ

(M )ex of WH-subalgebras of a W*-algebra Mt we denote by \/ 9, the

keK

W*-subalgebra of 9t generated by the (‘.Ttk)keK]. With each subset I of Z we

canonically associate the faithful normal conditional expectation E, of M onto

\/ #4(i(M)) respecting . For finite I={k,, ..., k,} we also write E, _, instead of
kel
E,. Note that E, =t*-E-%~* for keZ.

The dilation (M, P, 7;i, E) is said to have the Markov property (M) if for any
finitely many k>k, >...>k,in Z

E. . o x)=E, (fx) forall xei(In). M)

Then (9%, ,%;1, E) is also called a Markov dilation. We remark that the Markov
property (M) implies a non-commutative Feynman-Kac formula as in [4, p. 84].
In the commutative theory of dilations it is known (see e.g. [7]) that a Markov
property is indispensible if one wants to establish relations between the mixing
properties of a dissipative dynamical system and those of its minimal dilation.
In the following we will be concerned with a mixing property of a dilation
which is defined as a natural W*-algebraic analogue of the classical notion of a
K-system [10].
Let (M, p, 1) be a conservative dynamical system. If there is an expanding
subalgebra M” of M satisfying the following four conditions
(K1) M> So"(9M) for all nelN,
(K2) \/ 7" (0”) =M,
nelN
(K3) () "(M™)=C1,
nelN
(K4) there is a faithful normal conditional expectation of 9 onto 9~

respecting v,
then (M, y,7;IM”) is called a generalized K-system (cf. [2]). In addition, a
generalized K-system (M, y,7;MM”) is called weakly reversible [2], if
\/ %> ) =M. (Here and henceforth for any W*-subalgebra 9 of a W*-algebra

neN
M we denote by N* the relative commutant of R in M, i.e. R*: = {ae M : ab=ba for

all beI}.) All generalized K-systems known so far [2, 4] are weakly reversible.
The purpose of the present article is to discuss the concepts introduced above
for the class of those dynamical systems which arise as solutions of a standard
Bloch equation for a 3-spin [5].
To describe these dissipative dynamical systems let us denote by U the

.....

00
W*-algebra of all 2x2 matrices. Putting a:=<1 0) e the set {1,a,a* a*a}

forms a basis of 2. On A we consider a fixed faithful non-tracial state ¢ given by
@(a)=0, p(a*a)=n for a certain 0 <y <1. Emch and Varilly [5] have shown that
for a continuous dynamical system (2, ¢, e'") with 74 1 to admit a dilation it is
necessary that the generator L satisfies the following Bloch equations:

L(a)=—(A+iw)a, Lla*a—nl)=—ula*a—nl), (B)
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where w, A, i are any real numbers satisfying 0 <y <2/. Integrating (B) yields the
Bloch evolution

etL(a) — e—(l+iw)ta ,
ela*a—nl)=e "(a*a—nl), teR,.

The Egs. (B) are easily seen to be so-called standard Bloch equations. Therefore
the Bloch evolution may be interpreted as describing the relaxation of a spin-3-
particle at finite temperature in a magnetic field. For details and the resulting
physical interpretation of the constants #, w, A, u we refer to [5].

In the following we restrict our consideration to the semigroup generated by
y:=ek Clearly, as far as ergodic theory is concerned, this does not make an
essential difference. Especially it is obvious that y"(x)—¢(x)-1 for all xeQ as
n— o0, Le. y is strongly mixing.

For constructing dilations for (21, ¢, y) it seems convenient to decompose y as a
product y=7y, -y, of completely positive identity preserving operators y,,y, on 2,
each leaving ¢ invariant, namely: y, is given by

yi@=e""a, y(a*a—nl)=e Ma*a—nl),
and y, by
y(@)=e”FTHEOgy (a*a)=a*a.

y, will be called the quasifiree part of y (cf. 2.1).

While a Markov dilation of the quasifree part was known for some time ([6]),
Varilly [13] has found a minimal dilation for the whole dynamical system (2, @, y).
It is remarkable that this dilation does not inherit any ergodicity from (21, @, y).
However, as it also violates the Markov property (M) (see Sect. 2), Varilly’s result
should not be regarded as a final answer to the question raised by Emch [3]
whether mixing properties of a dissipative dynamical system are always inherited
by a minimal dilation.

In Sect. 2 we review the well known quasifree dilation in a discrete form and
show that it leads to a generalized K-system which is not weakly reversible. For a
discrete version of Varilly’s dilation we demonstrate in Sect. 3 that the Markov
property (M) fails. A new minimal dilation of (2, ¢,y) which does satisfy the
Markov property (M) is constructed in Sect. 4. It presents the first example of a
Markov dilation for a non-commutative dynamical system which is not equivalent
to a quasifree evolution. Furthermore the dilation satisfies the axioms of a
generalized K-system.

2. The Quasifree Dilation and its Mixing Properties

If we regard U in the canonical way as the CAR algebra over the one-dimensional
Hilbert space €, then ¢ appears as the quasifree state corresponding to
ne]0,1[ CIR, and y, appears as the quasifree completely positive operator induced
via ¢ by the contraction

T:C>C,z>6-z with d:=e #? (see[6]).
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To construct a minimal Sz.-Nagy dilation of T, put #:= L*([0,2%]) with
Lebesgue measure on [0,27] and

1 1-62 172
= 0,2n].
£ (27t 1—25-cosx+52) > xe[0,2n]
Then f, is a positive bounded function in L*([0,2x]). If we define a unitary
operator U on the Hilbert space # by

(Ug)(x)=e"g(x) for geL*[0,2n]), xe[0,2n],

then U satisfies CU"f, | f,>=<U"1|f2>=T"1 for nelN, and we have obtained a
minimal Sz.-Nagy dilation of T ([12]).

Now the quasifree dilation scheme of [6] can be applied to (2, ¢,7,):

Let A() be the CAR algebra over # and denote by v, the gauge invariant
quasifree state on A(#’) determined by y, (a*(f) a(g)) =n<g| f) for f,ge #. Define
€ as the weak closure of A(#) in the GNS-representation with respect to y,. Then
€ is the hyperfinite factor of type ITI, , _, (respectively II,, ITT, _ . ) if 0<n<3
(respectively n =1, 2 <n<1). The state y, extends to a faithful normal state on €
denoted by y,, too. A quasifree automorphism «, on €, is determined uniquely by
o,;(alg)):= a(Ug) for ge # . For the required injection take i, : -, ar>a(f,) and
for the corresponding projection the uniquely determined normal conditional
expectation R from € onto i () respecting ;.

Then (€, y,,«, ;i;,R) is a minimal Markov dilation of (2, ¢,7,).

An analysis of the mixing properties of quasifree dilations over the CAR seems
not to be available in the literature. For quasifree dilations over the CCR an
ergodic theory can be found in [4]. There on p. 83 the authors remark that the
corresponding theory for Fermi systems can be obtained in an analogous way —
“with the proviso that one works with the observable-algebra rather than the field-
algebra.” In the proof of the following theorem we develop a method which applies
to quasifree dilations over the full CAR algebra, ie. the field algebra. For a
systematic account we refer to [11].

Theorem. With the expanding subalgebra € :=\/ a;"-i,(A) (€, ,a,;€) is a

nelN
generalized K-system.

Proof. While properties (K1), (K2), and (K4) are easily checked, for (K 3) we
employ some ideas of the theory of quasilocal algebras (cf. [1], in particular
Theorem 2.6.5). For keZ let #(— oo, k) be the closed linear hull of {U"f, :neZ,
n<k} in s, and #(k, +oc0) its orthogonal complement in #. Then
C(—o0,k):=0k(€>) is the WH*-subalgebra of € generated by {a(f):
feH(— 0,k)} CAH). Correspondingly let €(k, + co0) be the W*-subalgebra of
€ generated by {a(g): ge #(k, + )} CA(5) and put

C(m, n):=C(— o0, n)nE(m, + 0) for mneZ m=n.

Subalgebras corresponding this way to disjoint subsets of Z satisfy special
commutation relations arising from the CAR. These commutation relations may
be expressed by means of the automorphism ¢ of € defined by e(a(f))= — a(f) for
feH.
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For any ze € put z°: =1 (z+¢(z)) and z° : = 1 (z—&(2)), and for any subset B of €
define B°:={zeB:z=z°} and B°:={zeB:z=z°}. Now, if —co=m=n=k
<1<+ o0, we have

yz=zy forall ye@®(m,n), zeC(k, 1), (*)
yz=—zy forall ye®@m,n), zeC(k, )°. (%%)
Given a self-adjoint xe () €(— oo, —n), |x[|=1, we want to conclude from (x)

that x°=0.
Observe that for any neN, (J)@&(—k —n) is an ultrastrongly dense
k>n

*-subalgebra of &(— co, —n). Hence by Kaplansky’s density theorem we can
choose a sequence of self-adjoint x,€€, |x,| <1, which converges to x ultra-
strongly and in addition satisfies the following property: For each neN there is
a k,>n such that x,e€(—k,, —n). Then by the continuity of &: hin Xy =x° ultra-

strongly. Since multiplication is jointly ultrastrongly continuous on the unit ball
of €, we conclude (x°)* =limlimx’x?. Now for neN we have k,>n such that
n m

x°e®(—k,, —n)°, and so for any m>k, we get x/x.=—xox, by property (xx).
Therefore

(x°)? = lim( ~ 1imx;;x:;)

= —lim x°x;,
—_ (xo)z

which implies x°=0. This means () €(— o0, —m)= ) €(— o0, —n)".
meN meN

Now property (x) gives €(— o0, —n)*CCE(—n, + o0)® for all neN. Since
(V€(—n, + )" is the center of € and € is a factor, we have proved
() €(— oo, —n) CC1 which is property (K3). [

Generalized K-systems built over the CAR algebra like (€, p,, o, ;€”) seem to
be the first examples of generalized K-systems which are not weakly reversible.
Proposition. (€, y,, o, ;€”) is not weakly reversible.

Proof. Suppose to the contrary that | o ME>") is ultrastrongly dense in G.

Define p(x):=p,(x*x)"'? and [x,,x,]:= x,x,—x,x, for all x,x,,x,€€ and put
y:=a(f;)=i,(a). We want to estimate p([a;"(y),y]). As on bounded sets the
ultrastrong topology coincides with the topology generated by p, for # = p(a*a)>0
there is an ¢ >0 such that for any xe @€, || x|| =2, p(x) <& implies both p(x) <#/2 and
p(xy)<n/2. Now by Kaplansky’s density theorem choose meN and zea; ™€),
llz| =1, such that p(y—z)<e. This allows the estimate:

p(Loy "), yD = p(Loey "(v), 21) + p(Loty "(v), y—2])
oy "G p(y—2)+ pi(y—2)y)
for n>m because then [« "(y), z]=0.
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Since p(ej(y—z)=p(y—2)<e¢ and [y—z||=2 we obtain p([a;"(y),y])<n.
However, this contradicts

p(lo ")y =2n(1—e™"*")2 =2y for n—oo. 0O

3. Varilly’s Dilation and the Violation of the Markov Property

On the basis of the quasifree dilation Varilly [13] has proposed a minimal dilation
of the whole dynamical system (2, ¢, y). In a discrete version it takes the following
form:
Define 9:=e~"*"#? and f,e L*([0,2x]) by
1 1—-02

= f 0,2x].
£ 27 1—2¢-cos(x +w)+? or xe[0,27]

2n

Then y,(g):= | g(x) f,(x)dx for ge L*([0,2n]) defines a faithful normal state y,

0
on L*([0,2n]). Now put %t:=CRQL*([0,2n]), P:=1y,®y,, define an automor-
phism § of 9t by H(a(/)®g):=a(Uf)@Ug for fe #, ge L*([0, 2n]), an embedding
J:U—>R by j(a):= a(f,;)®1, and finally a faithful normal conditional expectation P
of 9t onto j(A) by P(x®g):=p,(g9) R(x)®1 for xe €, ge L*([0, 27]).
Theorem (Varilly [13]). (R, ¥, :j, P) is a minimal dilation of (2, @, 7).

However, as pointed out by Varilly [13], this dilation does not show any
mixing properties in spite of the strong mixing of (U, ¢, 7). In fact, the center
1®L([0,2x]) of M is pointwise fixed under the automorphism 9.

As already remarked in Sect. 1 we can hope for a relation between the mixing
properties of (2, @, y) and those of its minimal dilation only, if a Markov property
holds.

Lemma. The Varilly dilation (W, 9,9 ;j, P) does not possess the Markov property
(M)

Proof. We show that P (5%(j(a)))* P, ,(7%(j(a))) for a= ((1) g) By the dilation
property we obtain
P, (5*((@) = (i(y(a)) = e~ 4+ 5(j()
=e U L)RU.

On the other hand, by the anti-commutation relations,

H@*5(i(a) +F((a)j@*=e 21QU,
and therefore
1®L™([0,2n])S P, ,(R).

Furthermore (a(U f,)®U)-(1QU*)=a Uf1)®lleP0 L(MN). Hence PO (I =C, ,
®L™([0,2n]), where €, , is the subalgebra of € generated by a(f}) and a(U fl)
Since P, (€®1)=€, ,®1, we obtain
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P, ((#(j(@) =P, ,(a(U? f)®U?)
=P, ,(aU? f,)®1)- 10 U?
=Ry, (a(U*f)))®1-1® U?
=R, (a(U* f))®1L-10U*

_k
=e 2a(Uf,)®@U?,

where the last but one equation follows from the Markov property of
(Gawlaal;ipR)~ D

4. A New Dilation of the Bloch Evolution

In this paragraph we first elaborate the general scheme of [8] for constructing a
Markov dilation of the dynamical system (2, ¢, y,). In the next step we combine it
in an appropriate manner with the dilation of (2, ¢, y,) described in Sect. 2. This
gives us a new minimal conservative dilation for the dynamical system (21, ¢, )
which satisfies both the Markov property (M) and the axioms of a generalized
K-system.

Let (Y,9) be the measure space with Y:={0,1}, 3({0})=3({1})=1/2,
(X,v):=(Y,9)*" with Z* : = Z\{0}. An element {€X may be identified with a {0, 1}-
valued function &(n) on Z*. Put B:= L*(X, v) and denote by ¢, the faithful normal
state on B given by ¢,(f):= [ f(&)dv. We define e, and e, €B as the functions

X

L E1)=0
80@"{0 it &n=1

Then e, and e, are projections with e, +e, =1, ¢,(e))=¢,(e;)=1/2.

1if &)=t

"1(5)::{0 it E1)=0"

i
Forg:=e (A 2), we define the unitaries

1 0 1 0
o (0 e“lo—i VI—QZ))’ T (0 elo+i I/l—Q2)>
in . Then V:=0v,®e,+v,®e, is a unitary element in A®B. Furthermore we
note that for xe U 5 (vExv, +v¥xv,)=7,(x). The right shift

(m—1) if n=+1

s: X-X,(sé)(n):= {5(_1) if n=1

Is a measure preserving transformation on (X, v) which induces a *-automorphism
g on B. Now we get the *-automorphisms o:=1d®& on AR B and
%, ARB>A®B,  x—>V*-a(x)- V.
Finally we put
i U-ARB, x—>x®1
Q:UARB-ARL,  x@y—,(y) x®1L.
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Proposition. (ARB, pR¢,, o, ; i,,Q) is a minimal dilation of the dynamical system
(U, v,, ) and satisfies the Markov property (M).

Before beginning with the proof we fix some more notation: If I SZ*,
B, ={feB:f)=f(n) if &(i)=n@) forall iel}

is a subalgebra of B which is canonically isomorphic to L*((Y, 9)"). Denote by 0,
the conditiongl ex_pectation from ARV onto ARB, respecting ¢®¢,, and
observe that Q (ARB)20,,0,(ARB), where Q. is defined as in Sect. 1.

Proof. For xe W: p(x) = @(v§ - x -v,) = @(v¥-x-v,), hence «, leaves p @@, invariant.
Next we get for xe ¥ and for all I={—k,...,—1}C —IN:

0(e(i(x))) = 0 (e, (x @)
=0,(V* - 0(x®1)- V)
=0,(V*-x®1-7)
=0, x v,Qe,+ V¥ xv,e,)
=0} x0,@% - 14+vF-x0,®51  (ey,€,€B,)
=2k -x-vy+vF-x-0v,)®1
=7,(x)®1
=i2(’)’2(x))
=Q(0,(i,(x)),

which implies the Markov property (M) for our dilation.
By noting that 0=Q-Q,...0, , ,_,(neN) and Q, (¢"(V*)-y-a"(V))
=a"‘(V*)~Q1,_“’k(y)-a’"(V) (k—1=2m=0, ye A®B), we obtain

Qu5(i,(x)=Q[V*-a[V*-a[V*...o[V*-o(x®1)-V]...V]- V]- V]
=Q[V*-a(V*)-a*(V*)...a" *(V*-(x®1)- V) ... a*(V)-a(V)- V]
=Q[V*-0,[a(V*)-Q, ,[0*(V*) ... @, ,—,[a" ' (V*-(x®1)-V)]...

.a*(V)]-a(V)]-V]
=0[V*-0,[6(V*)-0, L[d*(V¥) ... " (1,(x)®1)...a*(V)]-a(V)]- V]

—0[V*-(4y (@) V]
=y5(x)®1
—L0400) (xR,

which proves the dilation property with the aid of the Markov property (M)
proved above.

It remains to show minimality: One easily checks that i,()v a,(i,(2A))
=ARB,. Furthermore
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(i, (W)) v 031, (W) = 01, [1, (W) v o, (i, (W))]

=(x2(‘21®%1)
2a,(1®3,)
=1®9%,,
and by
QIC;)%I v]1®232:QI®(231 v%z)zi’I@SBl’z,
we see that

i5(A) Vo, (i, (W) v o5 (i,(A) = QI®Q§1’ -
Continuing this procedure yields

\/ o1, () =AURDB

neZ
which proves minimality. []

Now we are in a position to define the announced conservative dilation for the
dissipative dynamical system (2, ¢, 7). For ge 5# denote by 2(g) the subalgebra of
€ generated by al(g) and if |jg||=1, denote by =, the uniquely determined

. . . 00
s-isomorphism of 2 into € such that = ()=A(g) and ng(a):ng(1 0) =a(g).

Note that a(r,(x)=mry,(x) for xeA. On A:=CRB we now define a
x-automorphism & by

G:=0,@Id- (67 @Id s+ 07 ®ld s g,,6) 1dDT,

where (0!),.p denotes the modular automorphism group on € corresponding
to ., and t,, t; satisfy

itg

<1{—n> =e“(o—i)/1—-0%),
ity

(—1”—’1) =e“(g+i]/1—-0%).

For xeQ, he B this definition yields
(r,(x)@h) = (7, ®1d) (x @ )
=(my, ®1d)(a,(x@h)).
Furthermore we define a faithful normal state ¢:= ¢, ®vy, on 91, an injection

i A9, x>, (x)®1L, and a conditional expectation P: Ui, x@h
F@,(h)- R(x)@1=0 -(R®Id) (x®h).

Theorem. (ﬁ, @, 051, P) is a minimal dilation of the dynamical system (2, @, 7).

For ICZ we denote by ﬁ, (respectively €,) the W*-subalgebra PI(§I) of A
[respectively R, (€) of €].
—(i-E
Proof. First we show minimality. For r:=¢+i|/1—g?, g=e (2 2), and 7 the
complex conjugate of r, we define W:=re,+7e,€B,. The unitary " (W)
generates B, (n=1). An easy computation shows that
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a"(i(a)) =e " "a(U" )® :ll:_[: G(W).
For its anti-commutator with i(a)* one obtains
[i(@*, #7i@)] , = e~ "[a(f,)*, a(U"f,)]. @Tfﬂwn
e g [] Fomedt, .. mz1).

For n=1 it follows that ﬂ@%lgﬂlo .- If we assume that 1®%B,
C‘l[ then

=1

(mn#m%mn%m) ®F (M,

implies

.....

Hence 4(i(a)) (]1@ H (W) ) =e~ *q(U*f,)®1 with 0<k=n is an element of
A, . too. We conclude that A, =€, ,®B, . (n=1). Combined with
0. _,,—(ZO @B, (n_ 1), Whlch can be obtamed analogously, mini-
mahty is proved
It remains to exhibit the dilation property: We identify A®@B with fl(QI)(;@QS,
and get for any xe U, nelN:

P(8"(i(x))) = P[&"(n ;, (x)®1)]
= P[of ®1d)(o5(n, (x)@T))]
=R®Id[(«] ®Id(Q(er5(m,, (x)@1)))]
=R®Id[o] ®Id(n,,(y5(x)@1)]
=RId[e}n, (¥3(x)®1]
=n, (175(x)®1
=i(y"(x)). O
Theorem. a) The minimal dilation (51, O, 41, P) satisfies the Markov property (M).
b) With the expanding subalgebra A= \/ a = "-i() (@[, ?,4; ?1>) is a gener-

neN
alized K-system, which is not weakly reversible.

The restriction to the center, (1®B, & 1B, & 1R V), is isomorphic to the
(3, 3)-Bernoulli system.

Proof. a) This follows in the same way as the dilation property of this system using
the facts that the dilations (€, y,,«, ;i;, R) and (U®B, ¢ ®¢,, a, ; i,, Q) both have
the Markov property and that furthermore

- —_

QIO,I,‘..,n=(SO, 1,...,n®$1,2 ..... nt
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b) We want to show () & "(2”)=C1. Since for n=1 we have
nelN

n

87 "(a(f,)®1) =e"a(U™"f,)® 1‘[ (W),

it follows that

4" A>)Ca "(E”)RB

(=00, —1]>
and furthermore

N "A)CIRB ),

nelN

because (€, y,,a,;€) is a generalized K-system.

The restriction of & to the center 1®B induces the automorphism Id®a.
Obviously (B, v, ) is isomorphic to the (3, 3)-Bernoulli system.

From the theory of Bernoulli shifts [10] it is known that B __ _,, is an
expanding subalgebra for the system (8B, v, ). So we finally obtain

Na " @)e )4 "1®B_ . _,)=C1.

nelN nelN

To show that (§I, o, a; 91>) is not weakly reversible we argue in the same way as for
(€, p,,0,;€7). Put g(x):=d(x*x)"/* for all xeW and define y:=a(f,)®1=i(a).
Then one computes for n=1, q([&™"(y),y])=2n(1—e *"¥2 while weak re-
versibility would imply g([&™"(y), y])—0 for n—co. [

The investigation of dilations of the Bloch evolution will be carried on in a
subsequent paper [9].
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Note added in proof. In the mean time a Markov dilation has been obtained also for the continuous
form of the Bloch evolution. An account will appear in the proceedings of the “Workshop on Quantum
Probability and Applications”, Lecture Notes in Mathematics, Springer-Verlag.





