
Communications in
Commun. Math. Phys. 90, 187-206 (1983) Mathematical

Physics
© Springer-Verlag 1983

Self-Similar Universal Homogeneous Statistical
Solutions of the Navier-Stokes Equations

C. Foias1 and R. Temam2

1 Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
2 Laboratoire d'Analyse Numerique, Batiment 425, Universite Paris-Sud, 91405 Orsay, France

Abstract. In this note we consider a family of statistical solutions of the Navier-
Stokes equations (i.e. time dependent solutions of the Hopf equation) which
seem to constitute the rigorous mathematical framework for the theory of
homogeneous turbulence [1], [13]. The main feature of these solutions is that
they are the transforms under suitable scalings of the stationary statistical
solutions of a new system of equations (the Eq. (2) below).

0. Introduction

The theory of fully developed turbulence is nearly universally believed to be
essentially that of the evolution of statistical distributions of flows governed by the
Navier-Stokes equations:

— - vAu + (u-V)u + Vp = 0, V w - 0. (1)
dt

Although significant progress has been made in the last 15 years in the rigorous
mathematical approach to this theory [2, 4, 6, 9, 12, 21,...], no concrete family of
homogeneous statistical solutions of the Navier-Stokes equations was found, nor is
there as yet a consistent way of connecting these solutions with the Kolmogorov
spectral estimates. In this paper we show that there exists a natural family of
homogeneous statistical solutions of the Navier-Stokes equations enjoying some
properties of self similarity and universality (Sect. 3). These solutions are obtained by
suitable scalings of the stationary homogeneous statistical solutions of the equations

~-±u-^(x V)u-Au + (u'V)u + Vq = 0, V M = 0, (2)
dt

(see Sect. 5 below). Note that the stationary form of Eqs. (2) differs only slightly from
the (still not well understood) equations

\u + %(x-V)u -Au + (u-V)u + Vq = 0, V w = 0, (3)
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introduced long ago by J. Leray [14] in connection with the problem of the
spontaneous development of singularities for the solutions to the time dependent
(deterministic) Navier-Stokes equations (see the comments in Sect. 3 below).
Although we have not as yet proved an existence theorem for the type of solutions
we need for (2), our results seem to be consistent with the conjecture that such
solutions exist (see Sects. 6 and 8). As a byproduct it turns out that the Leray
equations (3) do not have such solutions (i.e. stationary statistical solutions with
some regularity properties, see the Remark in Sect. 6). The connection with the
Kolmogorov spectrum is briefly discussed in Sect. 7 and Sect. 8.3, while in Sect. 8 we
comment on the physical meaning of our present approach.

It seems to us that our present note constitutes a basis for a rigorous approach to
the theory of fully developed turbulence as treated in the classical monographs G. K.
Batchelor [1] and L. D. Landau-E. M. Lifshitz [13] or in A. J. Chorin [4]. Since this
approach is essentially based on the Hopf equation [11], as considered in [9], it has
no significant connection to the turbulence modelling theories, as for instance those
presented in [4]. Further developments will appear elsewhere and in [7].

1. Preliminary

1.1. Let L2(U3) denote the space of (classes of) real functions which are square
integrable on [R3 with respect to the Lebesgue measure. For an integer m^ 1, let
ίΓ"([R3) denote the Sobolev space of functions which, together with their derivatives
of order ^ m, belong to L2((R3). Endowed with the scalar products,

(u,v) = J u(x)v(x)dx for u,veL2(R3}
κ3

(u,v\n= Σ (D«u,D«v) for u,ueHw(IR3) (m= l,2,.-.)
M^m

Here L2(1R3), and Hm([R3) respectively, are Hubert spaces. In the above

iy = DVD*2*D*3*9Dj = d/dxj (7 = 1,2,3),

α =(α1,α2,α3)ef^J3 and |α| =aί +α2 +α3.

We let also

\u\ = (u,uyt2,\v\m=(v,v)1J2 for ueL2(U3),veHm(U3),

and

3

((*>!,w2))= Σ (Dj\v1,Dj^2)9\\^\\=((w^))ll2foτw^l9w2EH1(U3).
j = ι

The scalar products and the norms in L2(R3)3 or Hm(U3)3 are defined by

3 3

(u9v)= Σ (up Vj)9 respectively (M, v)m = Σ (w, ,ι>/)m,
;=ι ;=ι

where u = (ui9...9uJ9v = (vί9...9vn)9 etc.... Endowed with these scalar products,
L2([R)3 and Hm(U3)3 will be denoted by L2([R3) and HW(R3) respectively.
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We denote by ^(tR3), respectively H£C([R3), the space of functions which locally
(i.e. on any bounded measurable subset of (R3) belong to Q_2([R3), respectively to
H m((R3). For any bounded measurable subset Q of [R3 such that \Q\ = measure of
Q > 0, we set

/2

/ m \ l / 2 / j \ l / 2

v\\Q = ( Σ\DJ'U\Q) = ^τίlVφ)l2rfx\ j = ι / \ ι y ι < 2 /

where V = (D1,D2,D3)and |Vw(x)| 2= £ |Vw/x)|2,xe(R3.
j=ι

Obviously, Ij^tR3) and H^tR3) are Frechet spaces with respect to the families of
semi-norms

and

respectively.
A basic role will be played by the subspaces

which are also Frechet spaces when endowed with the corresponding systems of
semi-norms.

1.2. For αelR3, we denote by τa the translation operator

on Hloc and Vloc. A homogeneous measure on Hloc is, by definition, a Borel measure
on Hloc such that

τa(μ) = μ for all αe(R3.

In the sequel all homogeneous measures on Hloc will be probability measures, i.e.
positive and of total mass 1. In this case the homogeneity of μ means that

for all ae (R3 and Φ belonging to the space B(Hloc) of the real bounded continuous
functions on Hloc.

For a homogeneous measures μ on Hloc, the integrals

%$\u\%dμ(u)and$\\u\\%dμ(u)

are independent of β, and they will be denoted by e(μ) and E(μ\ respectively.
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2. Homogeneous Statistical Solution

2.1. By a Homogeneous Statistical Solution of the Navier-Stokes equations we mean
a family (μt)0^t<ao °f homogeneous (probability) measures on Hloc9 such that

t^Φ(u)dμt(u) is measurable (for all Φeβ(#loc)), (2.1)

ί
e(μt) + v J E(μs)έfe ^ e(μ0) for all 0 < t < oo , (2.2)

o

and finally

j Φ(u)dμt(u) + } j [v((n, Φ'(κ))) + ((ii V)ιι, Φ'(w))]djφ>fc
o

= J*(n)d/io(ii) (2.3)

for all ΦεZΓ,?/' being the class of all functions on Hloc of the form

Φ(u) = φ((u9gι),...9(u9gk)) for nef/ l o c, (2.4)

where φ is a ^ function on IRk(fc = 1 , 2, . . .) bounded together with its first
derivatives, while

gjeVcίoτallj=\,2,...,k. (2.5)

Here Vc denotes the subset of elements of Vloc (respectively Hloc) with compact
support (in R"); and Φ' denotes the differential of Φ in Hloc, i.e. Φ'(u9v) =
(d/dot)Φ(u + αι?)α==0 for all ί;e//c.

Let us recall that in (2.3), the coefficient v > 0 is the (kinematic) viscosity of the
fluid. Also let us recall the following fundamental fact related to the previous
definition (see [9]; see also [22, 23]):

Theorem. For every homogeneous (probability) measure μ on H}oc such thate(μ) < oo,
there exists a homogeneous statistical solutions of the Navier-Stokes equations

(/*tW<oo such that μ0=μ.
Obviously this theorem shows that the initial value problem for the homo-

geneous statistical solutions of the Navier-Stokes equations is solvable.

2.2. Finally let us agree that a stationary homogeneous statistical solution of Eqs.
(2) is a homogeneous (probability) measure μ on Hloc such that

E(μ) < oo, (2.6)
and

ί [( - %μ - i(* V)u, Φ'(u)) + ((M, Φ'(κ))) + ((trV)u, Φ'(u))]d/φ) = 0 (2.7)

for all functions

1 By virtue of the homogeneity of μ, Eq. (2.7) is translation invariant (although the deterministic
equations (2) are not translation invariant). Since for any aeU3 and Φe^, we have

$(a'Vu9Φ'(u))dμ(u)= + $(a V(τau),Φ'(τaμ))dμ(u)

d
= $Φ(τasu)dμ(u)

ds
= 0
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2.3. Comments. J. Leray has introduced Eqs. (3) in [14] in relation with the problem
of the spontaneous development of singularities for the solutions to the time
dependent deterministic Navier-Stokes equations when the dimension of space is 3.
Indeed if ί/e FIoc n H^tR3) is a weak solution of the Leray equations (3) and ί0 > 0,
then

" tΓ1/2l/wto" tΓ1/a)fo^>Γ to (2 8)

is a weak solution (in Leray's sense, nowadays in a classical sense) of the Navier-
Stokes equations, such that

\\n('9t)\\2 = (t0-tΓll2\\U\\2toτQ<t<t0.

Therefore if such an U =/= 0 exists, one has a weak solution which is not globally
regular (see [14]). The existence of such an U is still an open problem, i.e. it has not
yet been proved nor disproved. More generally the problem of the spontaneous
appearance of singularities for the solutions to the time dependent Navier-Stokes
equations in dimension 3 is still open; the reader is referred to the work of V. Scheffer
[17-20], L. Cafarelli-R. Kohn-L. Nirenberg [3], and C. Foias-R. Temam [8], for
the recent developments in this direction.

Similarly if VeVloc nH 1(RΛ) is a weak stationary solution of our Eqs. (2) and
ί0 > 0, then

O f o r O < ί ^ ί 0~

is again a weak solution of the Navier-Stokes equations. If F^O, (2.9) is a
nonregular weak solution which invalidates the uniqueness of the initial value
problem for the weak solutions of the Navier-Stokes equations. No such a V is
known, and more generally we recall that the problem of the uniqueness of the
Hopf-Leray weak solutions to the time dependent deterministic Navier-Stokes
equations in dimension 3 is still open.

3. Self-Similar Universal Statistical Solutions

3.1. First let us make some simple remarks concerning the changes of scale. For
ueHloc and £,/le]0, oo[ we set

(σξtλu)(x) = ξu(λx) (Vxe^3). (3.1)

Let moreover (μt)t^0 be a homogeneous statistical solution of the Navier-Stokes
equations, let Φe^~ and θ > 0. Then

= ξ2e(μt/θ\ (3.2)
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and

£KΛ(/W) = ί I I M \\Qdσξ,λ(μ,/e)(u)

= J I I σ^u^d^u) = ξ2l~ l\Vxlu(λxK\2dxdμt/θ(u)
\\i\Q

= ξ2λ2l~l\(Vu)(λx)\2dxdμ,/θ(u)
\(z\Q

= ξ2λ21II«\\!Qdμt/θ(u) = ξ2λ2E(μt/β). (3.3)

Moreover we also have for any Φ&SΓ 2

-\Φdσξ^(μtlβ} = -

+ (σξ,λ((u V)u),Φ'(σξtλu))\dμt/θ(u)

= ~έJu((w'φ/(w))^
Thus we can now conclude with the following

Lemma 1. If(n^Q<t<^ is a homogeneous statistical solution of the Navier-Stokes
equations (with the viscosity = v), then the formula

μt = σξ,λ(μtξλ)fort^0 (3.5)

defines a homogeneous statistical solution of the Navier-Stokes equations with
viscosity

v = vξ/λ, (3.6)

2 VΦ = Φ' represents the Frechet differential of a function Φ Va [ ] represents the Frechet differential
with respect to a of the function of a written between the brackets [ ] (a = some independent variable)
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such that

-">•
3.2. We can now state the main definitions of our discussion:

Definition I. By a universal homogeneous statistical solution of the Navier-Stokes

equations we mean a family {μv'ε} of homogeneous (probability) measures on Hloc

depending on two real parameters v, ε > 0, such that

e(μv ε)<TO, ε = v£(μn (3.8)

and for any μ = μv'ε° there exists a homogeneous statistical solution (μt)0<t<ao of the

Navier-Stokes equations, with viscosity v, satisfying μ0 = μv'ε° and

μ^jμ^ O < ε < 00} for all t ̂  0. (3.9)

We shall moreover assume that this solution satisfies a stronger form of '(2.2), namely

the energy equation

(3.10)

Definition 2. A universal homogeneous statistical solution of the Navier-Stokes

equations is called self-similar if σξλ takes (for all ξ,λ>0) all the homogeneous

statistical solutions considered in Definition 1 into solutions of the same kind.

A more precise content of this definition is given by the following

Proposition 1. Let (μv'%ε>0 be a self-similar universal statistical solution of the

Navier-Stokes equations. Then

σξtλ(μv *) = μv*λ ?λ° (3.11)

for all ξ, λ, v, ε > 0.

Proof. If (μr)ί>0 is any homogeneous statistical solution of the type considered in

Definition 1, then, by (2.8) and (3.9) we have

μt = μv,ε(t)> where βφ =

for all ί ̂  0. By Lemma 1 , (μt\ ^ 0 is a homogeneous statistical solution of the Navier-

Stokes equations with viscosity v = vξ/λ. By Definition 2, we have

μt = μ*~ε(t\ where ε(t) = vE(μt) (3. 1 3)

for all t ̂  0. By (3.12), (3.6), (3.7) and (3.13) we have

έ(ί) - — ξ2λ2E(μtξλ) = ξ2λε(tξλ) for all t ̂  0,
A

and in particular ε(0) = ξ3λε0.
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Remark. We conjecture that "most" homogeneous statistical solutions of the
Navier-Stokes equations eventually "approach" a superposition of solutions of the
type considered in Definition 1 . This is the reason for the terminology introduced in
this definition.

4. The Correlation and the Energy Decay

4.1. Let us recall that for a homogeneous (probability) measure satisfying e(μ) < oo,
the correlation matrix R(y) = [jRj7c(j;)]3

fc=1 is defined by

Rjk(y) = ίτ^ίίuj(χ + y)uk(x)dxdμ(u)9
\\l\ Q

where 7, fc= 1,2,3, yelR 3 and Q is any cube (α,έ>)3. Obviously

e(μ) = iTrR(O) = i(Kn(0) + £ 22(0) + #33(0)), (4.1)

and, if moreover E(μ) < oo, then Rjk(j, k = 1, 2, 3) is of class C2 and

£(μ)= -zITrROOUo- (4.2)

4.2. From now on until the end of this Sect. 4, (μv'ε)v,ε>o w^ ̂ e a fiχe<3 self-similar
universal homogeneous statistical solution of the Navier-Stokes equations. We
denote by R(y; v,ε) the correlation matrix of μv'ε (for all v, ε > 0).

Proposition 2. Setting

we have

Λ(3/;v,ε) = ε 2 / 3 P / 3

J RK;l, l ) (4.4)

/or α// v, ε> 0 and yeίR3. Consequently

e(μv'£) = γ(εv)ί/2, (4.5)

where Λ Λy = e(μ1'1). (4.6)

Proof. By Proposition 1, we have

= f -J Uj(x + y)uk(x)dxdσ

j,)ι=ι
(4.7)
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for all yeU3. Replacing y by y/λ and choosing

ξ = (ve)"1/4,A = v3 / 4fi-1 / 4.

we obtain (4.4). Taking y = 0 in (4.4), by (4.1), we obtain readily (4,5).

Corollary. Let (μv'ε(ί))r^o be any homogeneous statistical solution considered in
Definition 1. Then for all ί^O

l / 2 \ - 2

and consequently

i / 2 \ - ι
(4.9)

rv /
Proof. Obviously (4.8) is a direct corollary of (4.7) and (4.5). Also, because of (4.5),
(3.8) and (3.10), we have

d(vε(t)Ϋ/2y
v V ϊ + ε(t) = 0 (for t ̂  0) and e(0) - e0> (4 10)

αί

from where by an elementary computation we obtain (4.8).

Remark, (by O. P. Manley). Formula (4.9) implies

te(μv>ε(t))->vγ2 forί-»oo,

which represents a universal law of decay (i.e. a law independent of the initial date

5. Connection with Equations (2)

5. 1 In this paragraph we establish the connection between the self-similar universal
homogeneous statistical solution of the Navier-Stokes equations and the stationary
homogeneous statistical solutions of Eqs. (2). Namely we have the following

Theorem. (μv'ε)v,ε>o *5 a self-similar universal homogeneous statistical solution of the
Navier-Stokes equations if and only if it is of the form (see (4.3.))

all v,ε>0) (5.1)

for some stationary homogeneous statistical solution μ of Eqs. (2) satisfying

e(μ) = E(μ)( = y2). (5.2)

The next two Sects, 5.2 and 5.3, will be devoted to the proof of this Theorem.

5.2. Let (μv'ε)V5ε > 0 be a self-similar universal homogeneous statistical solution of the
Navier-Stokes equations. We set

μ = μ^\ (53)

where y was introduced in (4.6). Then (5.1) is satisfied by virtue of Proposition 1,
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while (5.2) follows directly from (3.8) and (4.5). So it remains to prove that μ1 > y 2 is a
stationary homogeneous solution of Eqs. (2). To this aim, set

and observe that

μv'ε = cr(v/τ)ι/2,(vτ)-ι/2(μ), (5.5)

so that if (μv'ε(ί))r^o is the homogeneous statistical solution considered in Sect. 4, then
for τ(ί) = yv1/2ε(t)~1/2, we have

dτ(t) _ 1

A "

(see (4.10)). Therefore (giving to τ(ί) the role of ί !)

(^(v/t^/Mvt)-1/2^))^ (5.6)

will satisfy Eq. (2.3) for any Φe3~. But

— |Φί/σ (v/ ί )1/2>(vr)-1/2(μ)-—

— ~~^TJ (σ(v/t)^2,(^tΓl/2U +(-X'

-—

(5.7)
so that from (2.3) taking v = 1, t = 1 we obtain Eq. (2.7).

5J. Conversely, let us assume that μ is a stationary homogeneous statistical
solution of Eqs. (2) such that e(μ) = E(μ). We take y2 = e(μ) and define the family
(μv'ε)v ε>0 by (5.1). We shall show that this family is indeed a self-similar universal
homogeneous statistical solution of the Navier-Stokes equations.

To this end, first we note that, by (3.7), (3.8) is satisfied. Also, using (3.4) and (5.7)
we obtain (for v,ε > 0)

= ί[((",VM[Φ(σ(v/τ)1/2f(vτ).1/2u)]))

+ ((tt V)tt,VM[Φ(σ ( v / τ ), /2 f ( v τ )-ι/2tt

= iJ(M + (x V)M,V l l[Φ(σ(v/τ)ι/2,(vτ)-ι/2tt)]))έiμ(ιι)

= ~ τJ-t

For v, ε0 > 0 fixed, we define

t = τ — τ0, where τ0 =
1/2
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and τ ̂  τ0. Then if ε(ί) is given by formula (4.8), we have

τ = yv1 / 2ε(ί)~1 / 2, (5.9)

and therefore

μv'£(ί) = σ ( v / τ ) 1 /2 j ( v τ )-1 / 2(μ) for all τ ̂  τ0.

By (5.8) it follows that (μv'ε(ί))^0 satisfies (2.3) for any Φe^. Moreover since, by (3.7)
and (5.9)

e(μ^) = e(σ(v/τ)1/2,(vτ)-1/2(μ)) = V-e(μ) = y2v/τ = y(vε(ί))1/2,

it follows that μt = μv'ε(ί)(ί ̂  0) satisfies also (3.10). Since this family (μr)r^0 obviously
satisfies (2.1), we conclude that (μv'ε(ί))^0 *s ^e homogeneous statistical solution
which satisfies the conditions of Definition 1. So (μv'\ε>0 is a universal
homogeneous statistical solution of the Navier-Stokes equations. Since, by its very
definition, this solution satisfies (3.11), the proof is finished.

5.4. We supplement the preceding theorem with the following remark. Let
(μv'ε)v ε>0 be a self-similar universal homogeneous statistical solution of the Navier-
Stokes equations and let μ = μ1>y2 (where y = e(μ1Λ)) be the stationary homo-
geneous statistical solution of Eqs. (2) considered in the preceding theorem. Let
moreover R(y) be the correlation matrix of μ. Then

1/2Γ1) (5.10)

for all v,ε> 0 and yeίR 3; here / is given by (4.3), i.e. / = (ε/v3)~1/4. Also

μ v ' ε -σ y - 1 / 2 v / - ι , y - ι/ 2 ί - ι (μ)( fora l lv ,ε>0) . (5.11)

Indeed, (5.1 1) is obvious and (5.10) follows at once from (4.4) and its version for

6. Supplementary Properties

6.1. As shown in [10], the proof of the existence theorem of Sect. 1, given in [9],
implies also the basic property that

J udμt = J udμ0 for all ί ̂  0, (6.1)

i.e.

j — ί udxdμt(u) = ̂ -~ludxdμQ(ύ) for all t ̂  0, (6.2)
\a\Q \d\Q

where, as in Sect. 1, Q is any bounded measurable subset of [R3 such that \Q\ > 0.

Proposition 3. The homogeneous statistical solution of the Navier-Stokes equations
occurring in Definition I enjoys the property (6.1) if and only if

Juί/μ v ' ε-0 for all v,ε>0. (6.3)



198 C. Foias and R. Temam

If μ is the stationary homogeneous statistical solution of Eqs. (2) considered in the
theorem of Sect. 5, then (6.3) is equivalent to

0. (6.4)

Proof. If (6.3) holds, so does (6.4) since μ = μ1^2. Also, by (5.1) and the homogeneity
of μ,

(6.5)

for any Q as in (6,2), where

Thus, conversely, (6.4) implies (6.3). Finally if for some v,ε0>0, (μv'ε(t))o^ί<00

is the homogeneous statistical solution of the Navier-Stokes equations considered
in Definition 1, then by (6.5), (6.6),

jwdμv'ε(ί) - y-1/2ε(t)1/4v1/4$udμ(u) for all t ̂  0.

By virtue of (4.8) this quantity is independent of t if and only if (6.4) holds.
6.2. Concerning the relation (5.2) we have the following

Proposition 4. Let μ be a stationary homogeneous statistical solution of Eqs. (2)
satisfying the following regularity property

S\Δu\*dμ(u)«x) (6.7)

for some cube Q (thus also for any bounded measurable subset QofUn,\Q\> 0), and the
following growth condition

. (6.8)
\\l\Q

Then μ satisfies Eqs. (5.2) and (6.4).
Proof. We consider first a Φe^" of the form

Φ(u) =

where glίg2, - ,9kEVc

 an^ ^ is a real (^1 function on [R bounded together with its
derivative, for which (2.7) becomes

S<P'( Σ (u^j
\j=l

(6.10)

We can easily choose a sequence {<?/} JL i of functions φ as in (6.9) such that

j(ρ) < co,φj(p)^> 1 for all peIR,
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Then by virtue of (2.6), (6.7) and (6.8), we obtain from (6.10) (written for φ = ψj) the
following relation

J Σ ( - 2" -i(*'V)u + (u V)u - Δu,g$(u,gμμ(u) = 0. (6.11)
j = ι

Moreover we can choose a sequence {#/}JL i <= Vc (with sup gj a g, V/) which should
be an orthonormal basis in L2(Q). Then again by virtue of (2.6), (6.7) and (6.8), we
obtain from (6.10) (by letting /c-» oo)

f f ( - 2" - i(* V)M - Δu)-udxdμ(u) = 0. (6.12)
Q

In (6.12) we used that fact that

J J [ ( M V)w] ιφ(tt)ώc =
3

fj w ,

because of the homogeneity of//. Thus dividing by \Q\ we obtain (see Sect. 4.1)

E(μ) - e(μ)=±$—ί(x V)u udxdμ(u)

Also if we consider a Φe^ of the form

/ k

Σ (u>
\ j = ι

where ^,^1?...,^eFc and φ is as in (6.9), (2.7) becomes

S<P{ Σ (»>βj)(ffj>9)} Σ (-iκ-i(χ v)*-Λn
\ j = l / j = l

+ (u V)u9gj)(gj9g)dμ(u) = 0. (6.13)

Proceeding with (6.13) as with (6.10) we obtain, instead of (6.12), the relation

ί ί ( ~ 2U ~ i(* V)M -Δu + (u V)u) gdx dμ(u) = 0,
Q

from which we infer

Q Q

— J A \ udμ(u) - gdx + J J (M V)w
Q Q

= $ $ ( u V)u gdxdμ(u)9 (6.14)
<2

since §udμ(u) is independent of x. But

3



200 C. Foias and R. Temam

3 3

= Σ ttDj(ujuk) gkdxdμ(u) = £ l(Dj(Rjk(Q)))gkdx = Q,
j,k=l <2 J,k=lQ

so that (6.14) yields

$udμ $gdx = Q (6.15)
Q

for all geVc. Taking g = curl h, where /zeC^([R3)3 is arbitrary, we easily verify that

so that (6.15) implies (6.1).

Remark. The preceding proof shows that if instead of our Eqs. (2) one considers the
time dependent form of the Leray equations (3), then one obtains E(μ) + e(μ) = 0,
instead oίE(μ) — e(μ) = 0. Obviously the first relation implies that μ is carried by the
null flow, i.e. μ is a trivial solution. Thus we can conclude that the Leray equations (3)
have no nontrivial stationary homogeneous statistical solutions satisfying the
regularity property (6.7) and the growth condition (6.8).

7. Remarks on the Energy Spectrum

7.7. Let μ be a homogeneous (probability) measure on Hloc such that its correlation
matrix R(y) exists and TrR(y) is the Fourier transform

ΊτR(y) = J eik'yQ(k)dk (for all yeU3) (7.1)
K-3

of a function QeL^IR3). Since ΎrR(y) is the Fourier transform of a positive measure
(see 1 3 1), Q ̂  0. The energy spectrum of μ is the function defined for all K > 0, by

S(κ)= ί Q(k)dΣ(k), (7.2)
| f c | = κ

where dΣ(k) denotes the area element of the sphere (in (R3) of radius K. Obviously

e(μ) = \]s(κ)dκ. (7.3)
o

If moreover E(μ) < oo, then (using (4.2)) it is easy to check that

00

E(μ) = J κ2S(κ)dκ. (7.4)

72. Proposition. Let μ be a stationary homogeneous statistical solution of Eqs. (2)
satisfying (5.2.) and let (μv'ε)v,ε>0 be the self similar universal homogeneous statistical
solutions of the Navier-Stokes equations corresponding to μ according to the theorem
in Sect. 5.1. If μ has an energy spectrum S(κ), then for all v,ε > 0, μv'ε has an energy
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spectrum £(/<;; v,ε) given by

S(κ v, ε) - y - 1/2ε2/V 5/3S(yί/2κ/κd), (7.5)

where

1/4

Proof. By virtue of the remark made in Sect. 5.4, we have

= y1/2ε2/3κ-11/3 J e^^Q^k/K^dk

hence, by (7.2)

S(κ;v,e) = j γll2ε2i3κϊlll3Q(γll2k/κΛ)dΣ(k)

= γ-ί/2ε2'3κ^/3 J β(W*).
y 1 / 2 K

κd

i.e. (7.5).

7J. Remark. If we define

F(κ) = y~1/2κ5/3S(//2κ;)(for K > 0), (7.7)

then (7.5) takes the form

S(κ v, ε) - ε2/3/c " 5/3F(κ/κd) (for /c > 0). (7.8)

Comparing (7.8) with [15] Sect. 3.1, we see that this is the usual form of the energy
spectrum of turbulence. However our formula (7.7) gives a new mathematical
interpretation of the function F(κ). In particular, since

OO 00

\ J S(κ)dκ = e(μ) = y2= E(μ) = j κ2S(κ)dκ,
o

the function F(κ) satisfies the following two conditions

\ J F(κ)κ-5l*dκ=y, j F(κ)κ1/3dκ=l. (7.9)
0 0

8. Connection to Conventional Turbulence Theory

We give now some comments of physical nature, some of those in Sect. 8.3 being
purely speculative ones.

8.1. Let (μv'ε)v,ε>o be a fixed self-similar universal homogeneous statistical solution
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of the Navier-Stokes equations satisfying (6.1). Here μv'ε concerns an incom-
pressible fluid in which:

kinematic viscosity = v cm2/s, (8.1)

and (by virtue of (4.5)),

mean energy per g = y(vε)1/2cm2/s2, (8.2)

(where gr denotes the unit of mass = gram) and

mean energy dissipation per g = ε cm2/s3. (8.3)

Obviously the mean energy dissipation time should be

mean energy per gr

mean energy dissipation per g

so that by (8.2), (8.3), we obtain

mean energy dissipation time = y(v/ε)1/2s. (8.4)

Taking into account (4.9) we deduce that the mean energy dissipation time is equal to
the half life time of the mean energy per g.

8.2. Since (μv'ε)v ε>0 satisfies (6.1), Proposition 3 and (5.1) imply

$udμv>ε = 0 (for all v, ε > 0). (8.5)

Therefore we have that the mean velocity is

(2 mean energy per g)1/2,

that is (by (8.2))

mean velocity = (2y)1/2(vε)1/4cm/s. (8.6)

For the natural mean length, given by mean velocity, mean energy dissipation time,
we have (see (8.8) and (8.4))

mean length - (2y)1/2(vε)1/4y(v/ε)1/2cm

= 21/2y3/2(v3/e)1/4cm. (8.7)

It is obvious that by introducing Kolmogorov's

dissipation length: (v3/ε)1/4cm, (8.8)

we can write

mean length = 21 / 2y3 / 2.dissipation length. (8.9)

On the other hand the Reynolds number of the flow is given by

mean velocity-mean length
R =

v

f7lΛl/2(v£)1/42l/2y3,2(v3/ε)1/4^^ ^^
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Thus the Reynolds number is time invariant, and (8.9) becomes

mean length = 2l/4^3/4 (8 ! 1}

dissipation length

It follows that Landau's number of degrees of freedom, which is the cube of the left
hand side of (8.11), is 23/4£9/4. For a reader familiar with[l, 15,13,Sects.31 and 32],
all the relations are in agreement with the corresponding ones in the conventional
turbulence theory. However our approach is more rigorous than the usual empirical
one, based on purely dimensional arguments, i.e. the approach in the conventional
turbulence theory.

In particular, let us notice that according to (4.8) and (8.10), ε = ε(/'ε(ί)) satisfies the
differential equation

^_^_forί>0.
dt

Therefore for an approximative equilibrium (i.e. ε ~ const ~ 1 cm2/s3 as long as t
~ Is.), we must have R > 1, since for most interesting fluids v < 1 cm2/s.

8.3. We shall now discuss briefly the consistence of our formula (7.5-9) and (8.7-11)
with Kolmogorov's energy spectrum theory. The basic conclusions of this theory
can be summarized as follows (see [12] Sects. 3.1-3, Sect. 2.9 or [4], Chap. II, Sect.
4): Set KL ~ R~ 3/4/cίί, where κd = (ε/v3)1/4 is the reciprocal of the dissipation length
(8.8) and the Reynolds number R is assumed to be > 1. Then

00 00

(8.12)

$κ2S(κ;v,ε)dκ<ζ J κ2S(κi v9ε)dκ9 (8.13)
0 0

and, for K in the initial range (i.e. κL<κ<κd\ the energy spectrum S(κ;v,ε) is
approximately equal to

-5i*(κ/κLrh (8.14)

where the term (κ/κL}~h accounts for the intermittency phenomena, and Λ, C > 0 are
dimensionless constants. Experiments suggest that h <ζ 1 and C~\.

We start by proving that in our case, the relations (8.12-13) are satisfied for
R^l. Indeed by virtue of (7.5), (7.7-8), (7.3), (4.5) and (8.10) we have

S(κ;v,ε.)dκ =ε= 2 / 3

Kd

j κ'5/3F(κ)dκ^ε2/3κ~2/3 \ κ1/3F(κ)dκ

2 \Mi
p 2/3^-2/3 = _

\R
1 °°

ί S(κ'9v,ε)dκ9W2 ί
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i.e.
00 1 00

j S(κ;v,ε)dκ. (8.15)
κd \^^) 0

Concerning relation (8.13) we first notice that by virtue of (8.11) an acceptable

value for KL is

1
L mean length

and that, by virtue of (7.5), (7.7-8), (8.10), (7.4) and (3.12), we have

J κ2S(κ; v, ε)dκ = ε2/3 ] κ1/3F(κ/κd)dκ

(8.16)

' *
o

R\ίl2

 = 2/3 4/3^ = ε^~£ Kd lί~vR

= — j κ2S(κ',v,ε}dκ,
R o

i.e.

]L κ2S(κ v, ε)dκ ^ - J κ2S(κ v, ε)d/c. (8.17)
o ^o

Clearly, (8.14) and (8.17) show that (8.12-13) hold if R > 1.
In a speculative mode we can assume that for R > 1 we have the following

stronger version of (8.12-13)

Kd 00

JS(κ;v,ε)Λc~ JS(κ;v,ε)ώc ( = (2vε#)1/2), (8.18)

j κ2S(κ;v,ε)dκ~ J κ2S(κ;v,ε)dκ I =- 1, (8.19)
KL n V V ,0

and that, indeed 5(κ:;v,ε) has the form (8.14) for κL<κ<κd with a constant C
depending only on the Reynolds number R. Experimental data as well as theoretical
deduction suggest that h - 4/30.3 Then (8:18) yields

1

hence
C(Λ)-.8x2 1 / 3 -l . (8.20)

3 See C. Foias, O. P. Manley and R. Temam [7]
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On the other hand, (8.19) yields
1 fκL

1.2

-1 C(K)ε2/3 '" N*

21I3R

Kd 6
= J κ2S(κ;v,ε)dκ~-,

so that

C(X)-1.2x(21 / 3R) 1. (8.21)

Obviously (8.21) shows that C(R) seemingly depends on R but that this dependence
is so mild that (8.20) and (8.21) are actually compatible for 10 " 4 ̂  R g 104. So (8.15)
might be an acceptable approximation to the energy spectra occurring in our
approach.
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