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Abstract. An exhaustive classification of all irreducible Harish-Chandra
s0(4,2)-modules, integrable to unitarizable projective representations of the
conformal group, is established by infinitesimal methods: the classification is
based

1) on the reduction upon the maximal compact subalgebra, associated
with a lattice of points in IR?, and

2) on a set of additional parameters upon which the eigenvalues of central
elements of the enveloping algebra depend polynomially.

0. Introduction

The conformal group of Minkowski space has recurrently been a quite important
tool in mathematical physics. Its unitary irreducible representations, true or
projective ones, have been a favorite subject of research of many scientists [1]; but,
in spite of the various methods used, there is no exhaustive list of them, at least to
the author’s knowledge [8].

The object of this paper is to give an exhaustive classification of the unitary
dual of the universal covering of the connected component of the conformal group,
G=50,(4,2); more precisely the problem studied is the (equivalent) Lie algebraic
transcription of that statement: determine, up to infinitesimal equivalence, all
Schur-irreducible representations 7 of g=s0(4, 2), on a pre-Hilbert space of f-finite
vectors (f=s0(4)@so(2)), such that in(X) is essentially self-adjoint for every X in g.

In this paper we shall only sketch the proof for the following reason: after
solving the above problem for s0(3,2) [2], we developed a formalism for solving
the so(p, 2) case, establishing necessary and sufficient conditions for unitarity [3].
Whereas this formalism would be too long to expose here in full detail, the final
explicit formulas can be given rather concisely in the physically interesting case
p=4.

The principle of the method used is the following: Let g=f@p be a Cartan
decomposition of a real semisimple Lie-algebra, and consider a g-module & having
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a pseudohermitian form for which (M¢|y)+(¢|My)=0 for every ¢,y in & and
every M in g. If moreover one imposes upon & to be an irreducible Harish-
Chandra module, ie. a space of f-finite vectors, positive-definiteness of the
pseudohermitian form is equivalent to unitarizability of the corresponding group
representation (integrability is granted).

Bargmann [4] and Naimark [5] have solved the problem by producing
explicitly the generalized matrix elements for g=s0(2,1) and g=s0(3,1), re-
spectively. This is the starting point of our method, together with the following
observation: If f is quite big, it is not easy to compute generalized matrix elements
for every f-module occurring in & and every element of f; but that is not necessary,
at least for the positive-definiteness problem, because if ¢ belongs to a given i-type,
then (¢|@) and (M@|M¢) have the same sign for every M in f.

This leaves us with generalized matrix elements of the form (¢|X ) with X in p.
This involves the reduction of the tensor product p®é&¥, p being considered as a
f-module, and &* being any particular f-isotypic component occurring in the f
reduction of &. By standard techniques one can obtain “basis-independent
squared generalized matrix elements,” generalizing the multiple-j-symbols obtain-
ed when f=90(3): we call them “squared shift operators.” Once some of their
properties are established, one can reduce the positive-definiteness research to the
determination of the sign of some completely factorized polynomials [such as
(m—j)(m+j+1),j fixed, m variable] at least in the case of g=s0(p, 2).

All this is exposed in Sects. 1 and 2, where we give the initial formulas and
sketch the procedure. The final formulas on which the positive-definiteness test is
realized are given in Sect. 3. Section 4 contains the classification and Sect. 5
concluding remarks.

All known unitary irreducible projective representations of SO(4, 2) appear in
Tables 1-3 (Sect. 4), in particular those for which the so(2) eigenvalue (the energy
operator for physicists) is bounded on one side, classified by Mack [6]. The keys of
the classification are the f-reduction of &, represented by a three dimensional
lattice of points, and the eigenvalues of the center of the enveloping algebra, given
by what we call the “characteristic polynomial” of g, introduced in Sect. 2, and
used to identify unitarizable irreducible g-modules as factors of some indecompos-
able Harish-Chandra g-module.

1. General Features
1.a. Notations

Throughout this paper, let the sets of indices a, f3,... run over {1,2}; i,j,... over
{3,4,5,6}; I, J,... over {1,2,3,4,5,6}. Define the metric tensor g,,, by g,,=0 if
I+J,g,=1if a=p, g;;=—1if i=j. For every set of indices used we shall adopt
the Feynman notation convention for repeated indices, that is, for every indexed
expression E;;, one defines E;;= ) ) Ep,g;,. In particular g,,=2, g,=4,
I=1r J=J

g;;=6, and E,;=E, +E,; We introduce also the completely skew-symmetric
tensors on 2, 4, and 6 indices, such that .4, =¢,,% 5, €1, =83456=1.



Representations of SO(4, 2) 43

1.b. The Lie Algebra Generators

Let M,;,= — M, be basis elements of the Lie algebra g, obeying the commutation
relations::

M, My d=9;0Mpp~g;5Mpyp—grpMpp+ g Myp (L)

The seven-dimensional maximal compact subalgebra f=so(4)@sn(2) is spanned
by elements M,,, M,;; its supplementary subspace p, in a Cartan decomposition

g=f®p is spanned by M,

1.c. Remarkable Polynomials in the Enveloping Algebra %(g) of g
Define
8F =tk MMy, (1.2)
26,=M;M,;; 36€,=M,F,,; 26,=F,F,,. (1.3)

The elements of the center of #(g) are polynomials in %,, ¥,, ¢,. We shall
introduce the following t-dependent element of the center, called the characteristic
polynomial of g:

CO) =t} (=) (P =4+ 2> =), +1*C, +[€5]*. (1.4)

The introduction of the characteristic polynomial is motivated by its close
relation to the weights of finite-dimensional representations of g: consider a
Cartan subalgebra by of g, which is also a Cartan subalgebra of f, and a basis of b,
the elements of which are mutually “disjoint” such as {M,, M;,, M 4}.

Let n be a finite-dimensional ir. of g, and denote again by = the ir. of the
complexified Lie algebra so(6, €). Take an extremal vector of n, and let ij, ij,, if,
be the eigenvalues of the basis elements. Suppose that j, =2j, =|j,| (reordering them
if needed), then one has

(€5 +2) =n(€(j, + 1) =n(%(j,))=0,

that is, the roots of €, for every simple finite-dimensional representation of g, are
fixed linear functions on the coordinates of its dominant weight. This is not specific
to so(4, 2): such characteristic polynomials can be defined in much more general
situations.

It turns out, as will be exposed later, that constraints on the range of the
f-reduction of a g-module are still related to the roots of € even in the infinite-
dimensional case.

One can prove that there are 6 x 6=36t-depending elements .7 ,(¢) in %(g),
such that the following identity holds:

9‘]‘}([) '((t‘— 2)QJK+MJK) :((t_ Z)QU + MIJ) 'Zx(t) :gn((g(t) . (1.5)

The J7s are polynomials of degree S in ¢, their coefficients are linear combinations
of gy My, Frpy MpuMy;, M Fp,, and F F., We shall call them transition
polynomials of g.
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Similar elements can be defined inside %(so(4)): the characteristic polynomial
of so(4) will be
C(t)=t*t*—1)+2C,+[C,]?, (1.6)

where C,=31M;M,, C,=F,,; there are again 4x4=16 elements T(t) in
%(s0(4)), linear in g;;, M, &;,M,;, MyM,;, and polynomial in ¢, such that:

7;(;)((5— Dgy+My)=((t—1)g;;+ M;) T, (t) =g, C(1). (1.7)

The interest of the characteristic and transition polynomials is the following:
one proves that if % is an arbitrary irreducible finite-dimensional g-module
[respectively so(4)-module] and if Z is the canonical six- (respectively four)
dimensional g [respectively so(4)]-module, with basis {x,} (respectively {x;}), then,
the reduction of the tensor product # . = (P F* involves elements of the form
X, ®7I,(t)- f [respectively x,®@T, (1) f1], feg"x, for values of ¢t such that €(t)=0
[respectively C(1)=0] on &.

1.d. g-Modules

We study g-modules € possessing the following properties:
1) & is an algebraic direct sum of f-isotypic components & = €D &%, where each

&% is a finite multiple #/*®F * of y, .#* being a finite-dimensiona}i vector space on
which f acts trivially.

2) & is pseudohermitian, that is, there is a sesquilinear form on & such that
(Mo|o)+(p|M@)=0 for every Meg and every p€é.

3) & is irreducible.

We want to classify, within infinitesimal equivalence, such g-modules for which
the sesquilinear form is positive definite. Our classification will be based on two
criteria.

The first criterion is the range of y; & will be assimilated to a set £ of points in
IR3, such that y will belong to & iff £*4 {0} belongs to the f-reduction of &.

The second criterion will be the representation of the commutant of f,
2(Y) CU(g), and more precisely of B(F) = %(f)/%(¥), on a suitably chosen subspace of
&, namely on points (v;h,[) for which & takes its minimal value.

We point out that the two criteria are not always independent: it may happen
that the determination of the range determines also the action of the commutant,
or vice-versa; but this is not necessary.

1.e. t-Modules

Finite-dimensional irreducible (f.d.i.) representations of ¥ will be labelled by a
triplet y=(v;h,1) of (a priori complex) numbers, such that, if f belongs to the
representation space %%, one has

(M5 —ive ) f=C(+h)- f=C(£])- f=0. (1.8)

Finite-dimensionality implies that both h+1[ are integers and that h?I[>.
Conventionally, we shall choose h*>12, so that 2heN+2. When h is fixed, the
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parameter [ can take all the 2h—1 values {—h+1, —h+2,...,h—1}. With this
convention, y and y' are equivalent iffy =y’; the parameter v will be taken real, so
that y is integrable to a unitary irreducible projective representation of
SO4)xSO(2), or, equivalently, to a wuir. of its wuniversal covering
SU@R)xSUR)x R

Remark 1. The correspondence between our parametrization and the “usual”
parametrization of u.ir.’s of SU(2) x SU(2) by D(j,,j,) is

h=j,+i,+1,  I=j,—],, (1.9)
and the dimension of Z®D is h> — 12 =(2j, +1)-(2j, + 1).

Remark 2. We shall often identify the representation y, the space #* and the
representative point of y in IR? in an abusive but convenient geometrical language :
for instance, speaking about the multiplicity of a given k-module which is an
isotypic multiple of %%, we shall say “the multiplicity of y.”

2. The Positive-Definiteness Problem

It is clear that the pseudohermitian form (p.h.f.) will be positive-definite on & iff it
is so on every isotypic component &% since &* and &% are orthogonal for y+y.
Here &% is conserved by f but not (with the exception of the trivial module) by p.

Vectors of the form X ¢, with Xep, and pe &%, span a f-module isomorphic to
P®E*, p being considered as a k-module under the adjoint representation. The
reduction of this tensor product into isotypic components is known; one has
PRE* C EP &* 4% where Ay can be one of the triplets (+ ;& 0) and (+ ;0,¢) with

Ay
¢?=1. There are in general eight points in the reduction, but some of them may

vanish if y+ Ay does not correspond to a representation: if h—1=¢l, then
E* =10} for Ady=(4; —1,0) or (£;0,e).

The irreducibility requirement implies the following consequence on the range
&L of x:

Proposition 1. The set % is a lattice in R?, such that if two points (v;h,1) and
vih, ) arein &, then v—v +h—W +1—-1'€2Z, h—WeZ and |- ' €Z, and that if
(v;h ) is in &, then 2he2+N and h—|l|eIN.

With the help of the transition polynomials 7, (t) one can define, for every X ep,
and given y, a shift operator X“%, such that X%*&* C £**4% and that X = @X“"
This splitting of X into components is y-depending ; we shall write X ""—0 when
x+ 4y does not correspond to a representation.

Define the X-depending squared shift operator (s.s.0.):

Ef= XAy,

The existence of the p.h.f. implies that, for pe &%, (X4*@|X**@)=(¢|E4 @) so that
the squared shift operators establish a relation between the p.h.f. of &* and that of
&* 742 1t is clear that

Theorem 0. The pseudohermitian form on & is positive definite iff (¢|E¢*®)=0 for
every Qe &%, every y, every X, every Ay.
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This is however too general (it is true for quite a lot of Lie algebras) and there
are too many “every”’s. We shall use the algebraic expression of the s.5.0.’s to
obtain explicit inequalities concerning % on one hand (using the fact that if
E¢¢ =0, then X**¢ must be zero for a positive-definite lattice), and eigenvalues
of s.s.0.’s on the other hand.

First one shows that there is no loss of generality if one sums over the § basis
elements of p, obtaining thus squared shift operators independent of the choice of
X in p; we shall denote them by Z4%; their algebraic expression involves elements
of the form M ;M. T(t)(g,, L ie,p), for y-depending values of t.

Next one shows that the eight (one for each choice of Ay) s.s.0.’s so obtained
span the commutant Z(f) of f, or more precisely the representation on every .#*
(recall that &*=.#*®F*) of the quotient B(t)=A(Y)/%({)nB(H).

Then, one establishes linear relations among the s.s.0.’s using the commutation
relations (the simplest one being M, My~ MM, = —4M,, = —4ive,,). It turns
out that (say, for v=0), 79 is a linear combination a,= J"" +b with a;, b =0, of
s.5.0.’s for which the parameter h does not increase.

This reduces the investigation to spaces of the form #*=&*NKerE(™: 70,

Further, one examines the positivity on 2%, using the roots of the characteris-
tic polynomial %(¢)=0. It turns out that the real roots of %(t) are related to the
coordinates of y for which a change of sign on &4* occurs. If this change of sign
takes place after the corresponding = vanishes, the full lattice ¥ may contain an
irreducible sublattice with positive-definiteness at every point; otherwise it is
rejected. This procedure determines as well the multiplicity of every point in the
lattice.

Finally, one is able to study #4(f) on a set of multiplicity-free f-modules, for
which the algebraic expression of each Z4% (identified by its unique eigenvalue) is
known explicitly in terms of the coordinates of y and of the roots of the
characteristic polynomial.

The above procedure leads to the exhaustive classification of u.i.r.’s. Indeed, it
is standard knowledge that we can restrict ourselves to the study of irreducible
Harish-Chandra modules, the difficulty of such an approach lying precisely in
determining which ones are unitarizable. This is solved by checking positivity of
s.5.0.’s eigenvalues on k-modules of multiplicity one which lie on the boundary of
the lattice: here we have outlined the proof that there is no need to check positivity
elsewhere.

In the next section we shall give the algebraic expression of these eigenvalues
on boundary k-modules.

3. Boundary Subspaces of a g-Module
3.a. The Ground Floor
Since the parameter k is a positive number by convention, we shall denote by H its

lowest value. The subspace & of the (irreducible pseudo-hermitian), g-module &
determined by &,= D& #), summing over all possible values of v, 1, will be

v,
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called the ground floor, or the ground-sublattice of &. Once the action of the
stabilizer Sy of &, on &y is known, the g-module & is completely determined by a
classical construction: see, e.g., Dixmier [7, Chap. 9.1, especially 9.1.5. and 9.1.6].
When H+1, S, is generated by shift operators X'*°>*) while when H =1 [trivial
so(4)-module] S, is generated by shift operators of the form X =1 OyE: 1.9 for
¢+ ¢ =0 these operators stabilize each &%, while for ¢ =¢’ they translate v by 2¢e. We
shall Write Q=M MMy M, (g,,+i8,,)(gs 5 1855), the corresponding squa-
red shift operator.

It turns out that every point of the ground lattice has multiplicity one, and that
the algebraic expression of the s.s.0.’s is quite similar to analogous expressions in
9(s0(2,2)) concerning the s.s.0.’s with respect to an so(2)®sn(2) diagonal basis.
The knowledge of the s.s.0.’s on the ground floor determines completely the action
of S, [by means of the same construction as that passing from S, to %(g)]. One
has

Proposition 2. The action of the stabilizer Sy on the ground lattice is completely
determined by two parameters, labelled x* , x>, and by position of the ground lattice
in the strip I|SH—1 of the (v,1) plane; the extent of the ground lattice may be
limited by particular values of x2,x%. Both x% must be real for H%1; for H=1
they may be either real or complex conjugate numbers, and the permutation x> < x>
yields equivalent representations. The roots of the characteristic polynomial are
+(H-1), +i(x, +x_), £3(x, —x_).

The algebraic expressions of the squared shift operators on &0 are:

480D = (H— )™V (H—el— 1) (v+1+8)2— x2), (3.1)
450" =(H+e) ™ -(H+el—1)(v—1+e)*—x2), (32)
AEELO=(H? =) [2H((H +ev+1)? + H? = )~ (H+ )x% —(H~1)x21,(3.3)
for H>1, and
4560 = (y4 )2+ (v436)2 —x2 —x% =2(v+26)% +2—x2 —x%, (3.4)
Q¥ =((v+e)?—x2)((v+e)?—x2), (3:5)
for H—1=0=1.

3.b. Boundaries Involving |

The planes hF =1 are “natural” boundaries of the lattice & ; however "¢~ 1)
may vanish for special values of the parameters x? . If this is not the case, there are
nonvanishing %(f)-linear combinations of elements F;; [see (1.2)], defining shift
operators from §UHeh= 1) g it et 1=1) The mu1t1p11c1ty of such f-modules
is always 1 (if it is not 0), and the squared shift operators are equal to é(h) (for
h—h+1) or to (h— 1) (for h—h—1). This feature gives a geometrical significance
to the result 0=%(H — 1) appearing in Theorem 1.

The parameter [ may also be limited by “vertical” planes ¢/<e¢L. In that case
L+¢isaroot of €;it can be equal to + (H — 1) or to a combination of x,,x_. The
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algebraic expressions of the commutant are given by formulas (3.1) and (3.2)
modified by exchanging h? and %, (H—1)?> and (L+e¢)?* and subsequently
permuting roots of %(t). Many situations may occur: [ may be bounded by one or
two vertical walls, and even be constant; comparatively few of them occur in
positive-definite lattices, so we shall not list them separately, except for those for
which [=L is constant.

If L=0, then 4(0)=%(1)=0=%(a), the third couple of roots 4 a being arbitrary
if H=1, and equal to H—1 in other cases. One has on (v;h,0):

4560 Z L (k8 (¢ h+ v+ 1) — a?), (3.6)

and for h=H > 1, one must have v=0 when h=H.

The only other possibility for constant [, is +L=H—1. The characteristic
polynomial has the form %(t)=(t> — (H —2)*)(t>* — (H — 1)) (t>* — H?). The lattice is
one-dimensional: for every point one has I>=(H —1)?, v>=h?, and there are four
such lattices for every H (two if H=1) corresponding to choices of sign for [ and v.
The only nonzero s.s.0.’s on (+h, h, L) are:

E(is,s,O):(gh+H)(8h—H+2). (37)

These lattices correspond to the well-known “ladder representations” of g.

3.c. Obligue Walls

Whenever the lattice # contains a point y,=(v; kg, [,) on which both Z(7% -9
and %%~ are zero, then these two s.5.0.’s vanish as well all over the plane
ev+eh+el=evy+eh,+€"l,, so that all points of the lattice obey &(v—v,)
+¢'(h—hy)+¢"(I—1,)=0. There is a choice among that roots +a, +b, +¢ of the
characteristic polynomial such that, if (v;h,[) is on the wall:

ev+eh+e'l=a+b+c+2. (3.8)

All points on the wall are of multiplicity one, and the expressions of the s.s.0.’s
stabilizing the boundary are:

ECHE0=(gh—g') - Dh) ;
OO~ (B =) (1= 1) D 1),
ECEON =(gl—gh) D)) ;
EE0 = (P i) (¢ h 'l 1) DT 1),

with &(x)=(x—a)(x—b)(x—c).

Considering the intersection of the oblique wall with the ground floor, one
finds that there is always a second oblique wall, ev+vh—¢elZa+b—c+2,
meeting the first one at the edge ¢"l=c, ev+&¢'h=a+b+2.1f ¢ =1, this edge may be
unlimited towards increasing i’s, so that the parameter v is bounded on one side,
by a bound depending on h, but not absolutely-bounded; while, if &' =—1, v is
absolutely bounded on one side. Such representations are the so-called “weight
representations” of g.

(3.9)
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4. Classification of Positive-Definite g-Modules
4.a. Indecomposable Harish-Chandra Modules

Suppose now that & is a dense analytic subspace of -finite vectors of a Banach
space & on which a representation of G is defined, such that the center of %(g) as
well as the center & of G, isomorphic to Z, x Z, are represented by a priori
complex-valued scalars. If & contains a k-submodule &* of multiplicity one, its
invariant g-submodule %(g)&* is indecomposable, and all irreducible unitarizable
g-modules are factors of such a module. Identifying the Casimirs %, i%,,%, with
their eigenvalues, let (¢,,1% 5, %, ; 1, 7) denote such a module, the spanning element
of % being represented by:

exp(2nM ) =(—1)*"; expa(M,,+M,,+ M, ) =™, 4.1)

the range of y, u being {0,3} for y and C/2Z for p; they are related to the
coordinates of the representative point y=(v;h,[) of a f-isotypic component by

h=l=y(modZ); v+h+i=p+y+1(mod2Z). 4.2)

For finite covering representations y must be a rational number ; in particular,
representations of SU(2,2) must obey u integer, those of SO,(4,2) u integer and
y=0, and those of the centerless group AdSU(2,2) u=y=0.

Pseudohermitian structure for each irreducible factor of the module
& =(%,,i%,,%,;17y) restricts the range of the five parameters from the set
ME=C*x C/2Z x {0,1} to M®=IR* x R/2Z x {0,5} ; but we shall not restrict it for
the moment; a point in .# will denote the biggest possible indecomposable
g-module available (if any), with the convention that we identify g-modules which
contain the same irreducible factors and differ only by permutations among
invariant submodules and quotient modules.

The results of the preceding sections can be transposed to this frame (except for
specific considerations about pseudohermitian forms) with minor changes; in
particular the s.s.0.’s formulas of Sect. 3 still hold. It follows that not every point of
M € defines a g-module, but only those for which ¢(H —1)=0 with H—yeZ, H
being the ground floor of the lattice. The surface in €3 (Casimir’s space) defined by
%(t)=0 is a parabolic cylinder (or a double plane if t=0). When ¢ varies, €(t)=0
describes a cubic bundle of cylinders, any two of which intersect along a parabola
(or a straight line if i6,=0 is one of them); three distinct surfaces meet at two
points (¢,, £i%,, ¥,) or one if i¥,=0. For each value of y one must retain a
discrete subfamily of quadrics, i.e. a Zariski closed subset of .#°. Using all
information about walls, one has:

Proposition 3. A point m=(%,,i%5,€,:1.7) of AT defines a g-module iff there is
Hel+y+N such that €(H—1)=0; when this happens we shall design by my the
biggest fully reducible g-module such that every factor of my is a factor of m and
has ground floor h=H'z H. If my contains factors with ground floor H' > H, then
@ (H' —1)=0, and the lattice of the factor my/my. is bounded by the walls || <H' —1.
To every m correspond at most three ground floors.
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Fig. 1. Multiple splitting for H=5/2

We shall denote by m[H] the quotient of my_, by the biggest my, strictly
included in my, if any, so that m[ H] contains only factors with ground floor H.

4.b. Reduction of m[H]

To find the irreducible factors of m[ H] one may restrict the study to the ground
floor, using Egs. (3.1)(3.4). The plane h=H may be divided by at most two lines
parallel to the v+ ¢l =0 direction, for each (or for both) choice(s) of e = 41, yielding
thus 1 x2,2x2,1x3,2x3 or 3 x 3 regions, some of which may have no common
points with the strip || < H— 1. The situation depends on the number of roots of ¢
which are congruent to H modulo Z. One has:

Proposition 4. Let +a, +b be the remaining roots of €, besides +(H — 1), such that
i%,=(H—1)-ab. Then:

1) If neither H—a, H—b is in Z, then m[H] is irreducible, expect if there is a
choice of ¢, e {—1, +1} such that

¢(a+eb)y=pu—H+ey(mod2Z). 4.3)

When this happens ( for, say, ¢ =1), the ground sublattice of m[ H], containing
points which satisfy v+ el —(a+¢eb)—1€2Z and || < H — 1, splits into two sublattices
each one containing the points satisfying + (v +¢l—(a+¢b))e1+2IN, when a+eb¢Z
or a+¢eb=0; it splits into three sublattices when a+¢ebeZ— {0}, the extremal ones
satisfying +(v+el—|a+eb|)e 1 +2N, the middle one |a+eb|—1z=[v+el|; the g-
module m[ H] splits accordingly to the direct sum of two or three factors.

2) If H—beZ, H—a¢Z, then m[H] is irreducible except if there is a choice of
ge{+1, —1} such that ¢(a+b)=u— H+7y(mod2Z); when this happens ( for, say,
¢ =1) the ground sublattice splits into four subsets (o) for all choices of
a, o€ {+1, — 1}, such that all points of each satisfy both conditions a(v—a+I—b)e 1
+2N, and o&/(v—a—1+b)e 1+ 2N. There are as many irreducible factors of m[ H],
as many nonempty subsets (o, o), that is four if |b| < H—2, three if 0% |b| = H—1 (the
subset (|b|/b, — |bl/b is empty) or two if 0=b=H—1 (both (+, —) and (—, +) being
empty).

3) If both a and beZ+y, then m[H] is irreducible except if a+b+H=p
+9(mod2Z). When this happens, the lines v+l=a+b, v—l=a—b, v+I=—a—b,
v—1=—a+Db separate the plane h=H into four (if a=b=0), six (if a>=b*+0) or
nine (if a*#b?) regions which divide the ground sublattice into as many subsets;
there are as many irreducible factors in m[H] as many nonempty subsets, that is:
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(with a?=a'2=1)
if a=b=0=H-—1:two:{v=21} and {v=<-—1},
if a=b=0=<H-2:four:{a(v+1)>0,0'(v—10)>0},
if sup(0,H—2)<a=¢b:four:{a(v+el)>2a} and {av+el)<2a,a(v—el)>0},
if O0<a=eb=<H-2:six:{a(v+el)>2a,d(v—el)>0},{|v+el<2a,a(v—el)>0},
if H—1=0=b<a:three:{av>a} and {pv|<a},
if sup(0, H—2)<eb<a five : {a(v+el)>a+eb},
{a—eb<a(v—el),au(v+el)<a+eb},
{lv—cell<a—eb},
if |bl<H—2<a:seven:{a(v+l)>a+b,a(v—1)>a—b},
{a(v+d')>a+do'b,|v—0a'l|<a—ao'b},
{Ivt+l<a+b,[v—1<a—b},
if |bl<a<H-2:nine :{oa(v+I)>a+b,a'(v—I1)>a—>b},
{a(v+a')>a+o'b,|v—ol|<a—a'b},
{v+l<a+b,lv=-I<a—>b}.

In Fig. 1, we give a seven-region splitting, for H—1=a=3/2, b=—1.

One easily sees that the maximal number of factors of m[ H] occurs in Case 3
and it is nine. If one sums up for the three distinct determinations of the ground
floor, one finds a maximal number of 5+ 7+9=21 factors for a point in .#%. One
also sees that roots of ¥ may have many other lattice geometrical properties
besides characterizing the ground floor. A geometrical property, which we have
not encountered because it is not linked to the ground floor but to oblique walls, is
the following:

Propesition 5. If an irreducible Harish-Chandra module has a lower limit for eRe(v),
reached when v=v,, then ev,—2 is a root of the characteristic polynomial.

4.c. Positive Definite Irreducible Factors

We shall now give the classification of all unitarizable factors among those
classified in Propositions 3 and 4. We shall group them into three big families
using lattice geometrical criteria. Indeed, when the lattice & is known, the
corresponding point m in .4 has two degrees of liberty ; if # has more boundaries
than the ground floor and the |I| £h— 1 walls, m is reducible, and one or two of the
remaining parameters are determined by the additional boundaries. So we may
speak of an n-nongeometrical-parameters-depending g-module with n=0, 1,2. Of
course all unitarizable lattices will correspond to points in .#*.

Lattices of the first family correspond to irreducible my, ; we shall label them by
(u;a,b,; H) such that +a, +b are roots of ; any permutation of the roots which
does not alter the quantities a®+b?% a*b* and (H—1)-ab yields of course
equivalent lattices. Positive-definiteness depends only on the parameters’ range.
All positive-definite such lattices are listed in Table 1.
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Table 1. Positive-definite g-modules depending on 2 nongeometrical parameters.

Ground floor h=H; u=v+1+h+1+yQ2Z); 4(+a)=%(£b)=0, i€, =(H—1)ab

1) a?2<b?£0

2) a*<0=H-1<b?<1
3) e2=1, a%a=¢b; |atal<1; u— H+ey¢[ —la+al,|a+al] (mod2Z)
4) 0=a?,b%;y=0;lal+[b|<1; u— H¢[ —|al— |bl, lal +[b[] (mod 27Z)

5) 0sb*<a’<1/4;y=1/2;a=lal;p— H—%€Ja—b,1—a—b[(mod2Z)
6) H—1=0<b?<a?<1;pe]l—la|+[b], 1 +|a| — [bl[(mod2Z)

Table 2. Positive-definite g-modules depending on | nongeometrical parameter.

Ground floor h=H; 6(+u)=%(+b)=0, i y=(H —1)ab

Type Additional Geometrical a b Nongeometrical
lattice boundaries parameters’ range parameters’ range
l lal—e(H—1)|Sh+oav—x—2 x]—1,0[ (x+y)/2 y%e]—o0, InfRH -2 —2m—x)*[
w?=1,2(H-1)=H—1 ¢&x—y)2 meZ, m=*0
2 v+el|<h—H =1 (y+1)/2 y%E]— oo, InfQH —3—2m)*[
[v—el|<h+H-2 g —y+1)2 neN
3 =0 h+v=H + N(mod2Z) a, 1 a%]—oo, N[
H=1,|N|=1
Table 3. Positive-definite g-modules determined by their lattice.
Ground floor h=H; 4(+a)=%(+b)=0; i 3=(H —1)ab
Type Additional boundaries Range of parameters a, b
1 [h—H |+|oal—eH +¢|Sav—N HeH+1+N,H <N-—1 ¢H, N-2
|ISH -1 w?=1,e*(H—-1)=H~—1
2 h—oel—1Zav—N H<N,0?’=1,*(H-1)=H—1 ¢eH,N—-2
|=sH-1
3 ol —L|£h—H+av—N ILI<N<H+1,4*=1 L N—1
H—|LE2+N
4 lol— LI+ h+1Zay H—|LE2+N, 0’ =1 L. H
5 ol —H+ 1| +|av—N|Sh—-L-1 H—-1I1e2+N L—1,N
LZal IN|<L,a*=1
6 lev—l|<h—H H—-1Ie2+N L—1,¢eL
L<oal<h—ogv+H -2 O0<L, a?=¢*=1
7 jov—=N|<h—oal—1 INl<H#1,4*=1 H-2,N
H—-1=Zal
8 [v=N|=h—1;1=0 INj<H=1 I,N
9 v <h—H;l=0 He2+IN 1,0
10 h=ov;[=¢H—1) o?=1eH-1)=H—1 H-2,eH
11 h—1=l=v (trivial) 1,2
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Lattices of the second family depend on a unique nongeometrical parameter;
in Table 2 we list all such lattices, as well as their relation to the roots a, b of the
characteristic polynomial. The lattice boundaries contain extremal lattice points.

In Table 3 finally, figure all lattices which determine the point m of .#™® of
which they are factors. The relation between the geometrical parameters of the
lattice and the roots of ¢ is indicated.

4.d. Relations Among the Different Types of §-Modules

The g-modules of Table 1 appear like analytic continuations of the first family
which corresponds to the principal series of representations; the width of the
analytic continuation depends in general continuously on the parameter u. One
should notice that for H=1 [trivial so(4)-module] there are two kinds of
continuation which do not appear for H¢l. These are the types 1.2 and 1.6. The
limiting case of 1.2 appears in Table 2 as 2.3 and contains g-modules with two-
dimensional lattice (/=0). In Fig. 2 we illustrate types 1.4, 1.5, 1.6 (i.e. when both a
and b are real) in an (x, y)-plane with x=|a+b|, y=|a—b|. (In case H=1, we can
suppose x = y because of additional symmetry.)

The abscissa 4 of the boundary corresponds to Inf|v+1—1| for H integer and to
Inf |v+1—1| for H half integer, when v,[ vary on the ground sublattice, u being
fixed. The board, x= A1 corresponds to two factors of family 2.1 for which (v+1)
is bounded above or below by 1+x and 1—x; when x=21=1 one gets three
factors, v+1=0 (type 2.2) and &(v+1) =2 (type 2.1) on the ground floor. The point
A corresponds, for noninteger 4 to the splitting of Proposition 4, Case 2: all four
components (three if H=3/2) are unitarizable, the components of the extremal
vertices of each component being +(v;l)=(4,1), (A+1,0), (A—1,0), (4, —1) in
the integer nontrivial case and (4—1/2,3/2), (1+1/2,1/2), (1—3/2,1/2),
A—1/2, —1/2) in the half integer case. For sufficiently big H they are classified as
3.3 and 3.5; for H=15/2, the |l|=3/2 component shifts from 3.5 to 3.7; for H=2
both components with |I|=1 do so; for H=3/2 the singleton +(4—%, —3)isin 3.7,
the two other ones in 2.1. The point B explodes into seven factors: three with
ground floor h=1, and ground floor restrictions ev< —1—1, ev=3— 1 (type 3.2)
and ev=1— 41 (type 3.8); six with ground floor h=2, among which two ground
floor singletons {/=+1,ev=1-—A1}—(type 3.7) and two of the type 3.3 with
extremal ground floor vertex {I=0,ev=—A1} and {I=0,ev=2—A}. When A
becomes 0, four more ground floor singletons appear, among which H=2, v=[=0

v A v A ,
//
14+ (He2+([ND L (€324 ND (H=1)
Z AN B
A A \\\ \\
\\ \\\
. i N . No
T L T -
0 PN x 0 A 1 x 0 I 2 x

Fig. 2. Real-valued families of Table 1 (shaded)
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Fig. 3. Ground floor contours of IIIn

(type 3.9), the whole pattern being symmetric with respect to the v——v
involution: there are eleven components altogether.

Figure 3 gives an illustration of the ground floor boundaries of types occuring
in Table 3. The position of the sublattice with respect to the main diagonals plays a
great role for the positive-definiteness : 3.3 and 3.4 differ only in the positioning, 3.4
being maximally distant from the origin positive-definite lattice with this form: the
abscissa of the summit is + v=H +1 and it is also the lowest bound of +v for the
whole lattice. The same is true for type 3.5: there are triangles with their summit in
the unbounded regions [ <¢v, but they are not positive-definite. When the triangle
reduces to one point we have type 3.7 (+/=H —1): this singleton may go farther
than the diagonal I= 4 v, up to +v=H. At that point it decomposes into a lattice
of type 3.6 and ground floor H+1 and a singleton 3.10, which is a so-called
“ladder representation.” Notice that types 3.1, 3.2, 3.4, 3.10, and 3.11 (the trivial
one) are the so-called “weight representations,” for which +v has a lower bound
[61.

It would be too long to expose in what way types 3 can be obtained as factors
of type 2 for special values of y. Types 3, 5, 6 of Fig. 3 have been positioned to
suggest the splitting of a g-module of type 2.1 for y=1. We shall just point out an
irregularity in the supremum of y for type 2.1: while in general this supremum
is a number between 0 and 1, determined by x modulo 2Z, when x is
sufficiently near 2(H — 1) the supremum is between 1 and 2, and it reaches y=2
when x=2(H — 1). This can be roughly explained as follows: when x is an integer
and y reaches 0 or 1, then the three roots H— 1, 3(x — ), 3(x +y) or % are congruent
modulo Z, so that the considered g-module reaches the intersection of two or three
quadrics in .#®, and the indecomposable module splits into factors corresponding
to distinct ground floors. But there is no such splitting when x=2(H—1), y=0,
H—1 being a triple root in that case.

5. Complements

5.a. Finite-Dimensional g-Modules

The method sketched in Sects. 2 and 3 gives also the finite-dimensional g-modules.
They appear as factors in the decomposition of me .#® when peZ(mod2Z) and
when the roots of € are all Z-congruent to 0 or 3, provided there are no double
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roots. One gets then the 5+ 7+9=21 component reduction of Proposition 4, and
one of them is finite-dimensional.

For the trivial representation the roots of & are (0, 1, 2), for SU(2,2), they are
(5/2,3/2, £ 1/2), for SO(4,2) (0,1,3) and for the adjoint representation they are
(0,2,3); if a is the biggest root, then a=1+sup(h)=2+sup(v) and this is to
compare to the ground floor property for any g-module, which says that 1 —Inf(h)
is also a root of %.

5.b. Relation with s0(2,2)-Modules

When the squared linear combinations of the roots x? are known, as well as 1 and
H, there is a unique g-module m[ H], irreducible or reducible to at most 9 factors.
On the other hand, y and u— H=v+I[(mod2Z) determine a two-dimensional
lattice ¥ on a (v,]) plane; if x% are fixed numbers, the quantities
B, . =(ev+¢l+1)*>~x7, define a structure of so(2,2)-module on the space

¢= @ € %" being one-dimensional, spanned by the basis vector ™",
v, )e&

such( th)at if X, . is a nilpotent generator of a Cartan-Weyl basis of s0(2,2) one has

X, . 0""=1B, @"">'"%) One has thus a correspondence from the set of

indecomposable g-modules with ground floor H to that of so(2,2)-modules

obeying | —y=0(modZ). This correspondence is one-to-one for H = 1, and one-to-

two for H=1, because x2 and x? are interchangeable when H=1.

The reduction of m[ H] into irreducible factors given in Proposition 4 reflects
this correspondence, and the constraint |[| < H — 1 masks it, because some factors
are killed. Notice that positive-definiteness of so(2, 2)-modules is neither necessary
(singletons 3.10, and 3.7 for H— 1 Z|N| < H) nor sufficient (types 3.3, 3.4 are limited
to [N|< H + 1) for positive-definiteness of the associated g-module, though there is
coincidence over most cases. The characterization of this correspondence [which
can be defined also when g=s0(2k, 2), 2k >4] in, say, group-theoretical terms, is, to
our knowledge, an open question.

5.c. Multiplicities

The multiplicity of the k-type y=(v;h,l) is always bounded by h— H+1 for an
indecomposable module my, and this upper bound is reached for all points such
that || < H—1; the multiplicity is equal to h—|I| when H—1=|l|<h—1. When my,
contains a factor my, H<H' (Proposition 3) the multiplicity stops increasing in
m{H]=mg/my., its upper bound being H'— H. When there is an oblique wall,
h+ev+élza+b+(H—-1)+2, and no H'>H, the upper bound
m,=Inf(h— H+1,h—[l]) is reached for points satisfying ev+¢'lza+b+1+h—H;
the multiplicity decreases for points satisfying h+ev—¢'l=za+b+2—(H—1) and
a+b+1+H—h=ev+él<a+b+1+h—H, its value being then mlenf(%(h—i-ev
+é&l—a—b—H-1)+1,h—]l).

These three results, combined in all possible ways, give the multiplicity for all
types of irreducible g-modules. The only positive-definite types which have
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unbounded multiplicity are types 1, types 2.1, and 3.3. Among the other ones, types
2.2, 2.3, 3.2, 34, and 3.6-3.11 have multiplicity equal to one for every y. The
starting point majoration leading to these results is a by-product of the positive
definiteness research sketched in Sect. 2.

5.d. Concluding Remarks

We have determined here all unitarizable g-modules, but we have not constructed
them. An effective realization may be done in two ways: either construct the
Harish-Chandra modules as induced representations, expressing the infinitesimal
generators by means of differential operators, and construct the positive Harish-
Chandra kernels for each unitarizable factor; or proceed algebraically and study
the representation of the commutant of %(k) on each subspace &% The last
approach is not too complicated for multiplicity-free representations, but there are
a lot of calculations for the other cases. Our approach started in fact from that
point of view : consider all generalized matrix elements (squared so as to remain in
the commutant), then discard most of them by majorations. It results quite
naturally that the g-modules are not presented in terms of functional spaces, and
that strictly speaking harmonic analysis is only used to transcribe results into a
group theoretical language and establish comparisons (with the exception of
considerations about the center of G).
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