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Abstract. If λk is the fcth eigenvalue for the Dirichlet boundary problem on a
bounded domain in IR", H. WeyPs asymptotic formula asserts that

/ If \2/n k n+2

λk~Cn\V(D\l ' henCC ^ λi -- 2k n VW2ln' We Prove that for

k l~1 nC ̂
domain and for all /c, Σ Λ ^ - n- k n V(D] 2/n. A simple proof for the upper

ί=ι n + L
bound of the number of eigenvalues less than or equal to — α for the operator
Δ — V(x) defined on R" (n^3) in terms of J (V + ot)nl2 dx is also provided.

0. Introduction

In this paper, we study the eigenvalue problem with or without potential. We
mainly concern ourself with bounded domains in IR" for the case of the Laplace
operator. If D is a bounded domain in IR" we consider the eigenvalue problem

Aφ= — λφ, on D
and (*)

φ\ίD = Q.

The discreteness of the spectrum of Δ allows one to order the eigenvalues
(0<)/11</12^ ... ^λk^ ..., monotonically.

In the case of the Schrodinger equation, we consider potentials whose negative
part are in L"/2(lRn). If V(x) is a potential function defined on 1R" for n^3 and
suppose J V_(x)dx is finite (see Sect. 2 for definition), it is then well known that

Rn

the operator A — V(x) has discrete spectrum on the negative real line, i.e., the
number of non-positive eigenvalues JV(0) for the problem

(Δ-V(x))φ(x)=-μφ(x), on ΪR" (**)

is finite.
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Before we state our results, we would like to remark on the history of both
problems (*) and (**). In 1912, H. Weyl proved that the spectrum of (*) has the
following asymptotic behavior as fc->oo,

where V— volume of D, and Cn = (2π)2Bn

 2/n, with Bn= volume of the unit it-ball.
One calls the constant Cn to be the Weyl constant or the "classical constant." Pόlya
in his paper [6] dedicated to Weyl (in 1960) proved that for any "plane-covering
domain" D in IR2 (those that tile IR2)

''k\2/n

, for all k.

He then conjectured that the inequality should hold for general domain D in
IR2. We should like to point out that his proof applied to Recovering domains
also.

In 1980, Lieb [4] proved that there exist constants Cn, such that

2/n

for any domain D£R". However Cn differs from Cn by a factor.
The first part of this paper is devoted to proving that

k~n + 2\V)

for all k^.1 and for any domain Z)CRn. In fact, we will show that

for all fe^l and for any D£RΛ Although we are unsuccessful in proving Pόlya's
fc

conjecture, the lower bound of £ λί however is sharp since
ί = l

k nC n+2 ~2

n yn

in view of H. WeyΓs asymptotic formula.

In our original proof, the constant we obtained was - instead of - -, which
e n + 2

also has the property that
2πn

lim - = 1 .
n-*coeCn

After reading the first version of our manuscript, Lars Hormander informed us of
Lemma 1. This enabled us to shorten our proof to the present form and also
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improved our constant to - -. The authors would like to take this opportunity to
n + 2

acknowledge our gratitude to Hδrmander.
As for the second problem (**), the quantity JV(α)= φ {eigenvalues rg — α, for

α^O} is referred to, by physicists, as the number of bound states when a = Q. In
1972, Rosenbljum announced his estimates of JV(α) by the Z/*/2-norm of (F+α)_
(when n^3) in a Russian journal [7]. Meanwhile in America, unaware of
Rosenbljum's result, Simon [8] derived a slightly weaker estimate and posed the
question regarding the validity of the inequality

for n ̂  3. In the same year, Cwikel and Lieb [3, 4, 9] independently proved the above
inequality. The sharpest constant Cn so far was due to Lieb. He then conjectured that
the best constant for such an inequality when n = 3 should be

n(n-2) n/2

The second part of this paper is to establish the estimate

ln(n-2)\">2

4e
ω,

This constant seems to be the sharpest among all existing estimates and we also
believe our method is the simplest. Moreover, it might be worth pointing out that
our estimate is valid on a manifold where the constant will depend on the Sobolev
constant. Finally, we remark that when n = 2, the inequality is false, and
counterexamples are known.

1. Lower Bounds for λk

In this section, we study the first problem (*) stated in Sect. 0. The technique being
employed is motivated by a paper of Cheng and the first author [2]. We will begin
by proving the following lemma which was pointed out to us by L. Hormander.

Lemma 1. If f is a real-valued function defined on W1 with 0^/^M 1? and

then

ί f(z)t
R"

where Bn = volume of the unit n-ball in IR".
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Proof. Let g(z) = M1 when \z\<R and g(z) = 0 when |z| ̂  jR where R is chosen so that

$\z\2g(z)dz = M2.

Then (|z|2-£2)(/(z)-#(z))^0, hence

R2 j (/(z)- g(z))dz < I |z|2 (/(z)- 0(z))<fe-0.

Now we have

M2= ί \z\2g(Z)dz = M1$rn+ίa)n__ldr = M1(ωn_l/(n + 2))R" + 2

R" 0

where ω n _ x = volume of the unit (n— 1) sphere in IR", and § g(z)dz = M1BnR
n. Hence

using nBn = ωn_1i we conclude that

after solving for R.

Theorem 1. Let D be a bounded domain in R". Suppose λk denotes the /cth eigenvalue
of D for the Dirichlet boundary problem. If V is the volume of D, then

Proof. Let {0J*=1 be the set of orthonormal eigenfunctions for the eigenvalues
{/ljf= 1. We consider the function defined by

Φ(x,y)= ΣΦiWΦiW (1)
i= 1

for x, yεD. The Fourier transform of Φ in the x-variable is then given by

Φ(z,y) = (2πΓn/2 j Φ(x,y)eix'zdx. (2)
xelR.n

It has the standard property that

lΦ2(x,y)dx= l\Φ\2(z,y}dz. (3)
R« 1R«

Hence

J \\Φ\2(z,y)dzdy=\ \Φ2(x,y)dxdy
R" Rn D Rn

= ^Φ2(x,y)dxdy = k (4)
D D

by the orthonormality of {A.}*=1.
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On the other hand,

f \Φ\2(z,y)dy =

313

J Φ(x9y)eίx'zdx

'dy. (5)

By the definition of Φ(x, y), this is nothing more than a multiple by (2π) " of the
ZΛnorm of the projection of the function h(x) = eix'z onto the subspace <λf>*=1

spanned by the first /cth eigenfunctions. Hence

(6)

which is the ZΛnorm of h(x).
Meanwhile, we consider the equalities

Zjφ(z, y) = (2π) " "/2 j Φ

= (2πΓ "/2 j Φ(x, y) ( - 0 - eίx'z dx

= i(2π) ~ "/2 J -- Φ(x, y) eίχ * dx
D \^xj

which implies that

I \\z\2\Φ\2(z,y)dydz= J $\rΦ\2(z,y)dydx
R" D ]Rn D

= J JI^ΦI

(7)

= Σ Λ
i= 1

by definition of Φ.
Now, we can apply Lemma 1 to the function

f ( z ) = \ \ Φ ( z , y } \ 2 d y

(8)

with Ml =(2πΓnV and M2= £ λt by (6) and (7). We conclude that
i= 1

f
R" ϊ = l

(9)
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hence

k nC n + 2 ~

Corollary 1. Let D be a bounded domain in IR". Suppose λk denotes the feth

eigenvalues of D for the Dirichlet boundary problem. If V is the volume of D, then

Proof. Obvious.

2. Upper Bound for N(α)

We will derive the upper bound for 7V(α) for the second problem stated in Sect. 0.
We must point out that the reduction argument (Corollary 2) was first observed by
Birman and Sch winger and was employed in [4]. The reduction, though simple,
provides the key link to our argument which enables us to apply the next theorem
about eigenvalues of the operator

*(*)

with q(χ) > 0.

Theorem 2. Let D be a bounded domain in IRn for n^.3. Suppose q(x) is a positive
function defined on D. Let μk be the feth eigenvalue for the equation

Aψ(x)=-μq(x)ψ(x)

on D with Dirichlet boundary condition

VlaD = 0.

Then

( n(n —n\n

AH ί?

where ω π _ 1 = volume of the unit (n— l)-sphere.

Proof. We consider the "heat" kernel for the corresponding parabolic operator

±-! . 00)q dt

If {ιpi(x)}^=1 is a set of orthonormal eigenfunctions satisfying

Aψί=-μiqιpi

with eigenvalues {μf}5 then the kernel of (10) must take the form
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It has the property that

H(x9y,t)>0

in the interior of D x D, and

H(x,y,t)^0

on dD x dD for all ί.
Note that our L2-norm is given by the volume form q(x) dx instead of dx, and

the orthonormality of the φ.'s is with respect to this new volume form, i.e.,

$ψi(x)ιpj(x)q(x)dx = δij. (12)
D

Let us consider the function

h(t)= £ <Γ2"*
i= 1

= J $H2(x,y,t)q(x)q(y)dxdy. (13)
D D

Its ί-derivative is given by

— - 2 f f H(x, y, t) q(x) q(y) — (x, y, t) dx dy
Cΐ D D 01

= 2 Π H(x, y, t)AyH(x, y, t) q(x) dy dx
D D

= -2\q(x)\\VyH(x,y,t)\2dydx. (14)
D D

Here we have used the fact that H(x, y, t) satisfy

-ξ.}H(x,y,t) = Q.
\q(y) δt,

On the other hand,

h(f)=\q(x)\H2(X,y,t')q(y)dydx
D D

n-2 4

^ j q(x) [ff H^(x, y, t) dy}" + 2 f J H(x, y, t)q~(y) dy)" + 2} dx
D l\D I \D I \

n-2

J ]" + 2

ώc|v ' ̂ ' / ^ /
D \D

n + 2 \ 2

j g(x) (j H(x, >;, t)q 4 (y) ̂ ) dx]n + ' . (15)
D \D I J

The second term on the right hand side of (15) can be estimated as follows: We
observe that the function

n+2

Q(x,t}=\H(x,y,t)q * (y)dy
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satisfies the equation

f i - 2

with Q(x,t) = Q on dD for ί>0 and Q(x,Q) = q 4 (x).
Computing

— f β2(x, ί) g(x) rfx = 2 J Q(x, ί) -̂  (x, ί) 0(x) dx
C / Γ D D ut

= 2\Q(x,t)ΔxQ(x,t)dx
D

= -2j|Fxβ(x,t)|2dx
D

^0. (16)

Hence

(17)
D

and (15) takes the form

(18)
D D

The Sobolev inequality asserts that for functions / with compact support in IR"
(for ft^3) must satisfy

where ωn_ 1 is the volume of the unit (n— l)-sphere in IR". Hence together with (14)
and (18) yield

/-ft^(i). (20)

We must remark that the sharp constant in (19) was independently computed in
[1] and [5].

n+2

Dividing (20) by h n (t) and integrating with respect to ί, we have

h(t) ̂  (n - 2) - n/2ω~_\ /f qn/2(x) dx\ Γ n/2 .
\D

By (13),
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Setting t= - , we obtain

^ Σ

which is to be proved.
We will now utilize Theorem 2 to estimate the number of bound states for the

Schrodinger equation. Let V(x) be a function defined on Rn for π^3. We define

0 otherwise

for α ̂  0. Let JV(α) be the number of eigenvalues /I satisfying

(Δ-V(x))φ(x)=-λφ(x)

with /I rg — α.

/ftίrc — 2)\"/ 2

Corollary 2. N(a) -±- — - ωn _ 1 ̂  J ( F+ α)"_/2 dx .

/ The proof consists of a series of reduction procedures, most of which are
standard. The goal is to reduce the problem to where Theorem 2 can be applied.
Since these arguments are known, we will only outline their proofs.

(i) It suffices to show that

2 (21)

Indeed, to prove the inequality for arbitrary α^O, we let 7(x)=F(x) + α.
Applying (21) to the potential Fand observing that any number λ is an eigenvalue
for A — V iff λ + α is an eigenvalue for A — V, we establish the general form.

(ii) We may assume F(x)<0 for all xeIR". By monotonicity of N(0) with
respect to the potential F(x), we may assume F(x)^0 by replacing F(x) by — F_(x).
Approximating — F_(x) by a sequence of strictly negative functions in L"/2-norm,
obviously F(x) < 0 can be assumed.

(iii) Exhausting 1R" by compact subdomains, we only need to prove the
inequality

(22)

for the Schrodinger equation on D given by

(Δ-V)φ=-λφ and φ\dD = 0 (23)

for any given domain D£
(iv) The number of non-positive eigenvalues N(Q) for (23) is equal to the

number of eigenvalues less than 1 for the problem in Theorem 2 with q(x)= — F(x).
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To see this, we consider the quadratic form associated to (23),

S\rφ\2+$vφ2 _l\v\φ2\j\rφ\2

i (24)

Hence the dimension of the dimension of the subspace on which the left hand side
is non-positive is equal to the dimension of the subspace on which the quadratic
form

jΪF|φ2

is less than or equal to 1. However the latter is the quadratic form associated to the
operator in Theorem 2.

(v) To conclude the proof of the corollary, we set μk to be the greatest
eigenvalue less than or equal to 1. Then Theorem 2 gives

$\V\n/2dx^μn

k

/2$\V\n/2dx
D D

- " / 2

This concludes the proof of Corollary 2.
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