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Supersymmetric Two-Dimensional Toda Lattice
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Abstract. The two-dimensional Toda lattice connected with contragradient Lie
superalgebras is studied. The systems of linear equations associated with the
models for which the inverse scattering method is applicable are written down.
The reduction group is calculated.

1. Introduction

Many papers in the last few years considerable discuss the hidden symmetries of
integrable systems. Bogoyavlensky discovered that the classical Toda lattice (TL)
is connected with the simple Lie algebras [1]. Then Leznov and Saveliev showed
[2] that the periodic TL corresponds to contragradient Lie algebras (Kac-Moody
algebras). This connection enables investigation of the systems by means of the
Inverse Scattering Method (ISM) (see also [3]). On the other hand the simplest
cases of the two-dimensional Toda lattice (TTL) - the Sinh-Gordon equation and
the Liouville equation have supersymmetric extensions, while the integration by
the ISM is applicable as before [4, 5]. In the present work we construct a
supersymmetric version of TTL and discover the connection of these systems with
the Contragradient Lie Superalgebras (CLS) classified by Kac [7]. This con-
nection allows us to write down the equations of the systems as "the zero-
curvature conditions" (Zakharov-Shabat equations) and, in principle, to apply the
ISM.

The systems under consideration are described by the action

S = $d2xdθ1dθ2[-i Σ ΦΉ^D^-UiΦ)), (1.1)

where x = (xo,xί), θv θ2 are scalar, and the Grassmann superspace parameters, D1

and Z)2, are supersymmetric covariant derivatives, and Φ = (Φ1, ...,Φ") is a
multiplet of the scalar bosonic superfields.
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The potential U(Φ) is connected with the root systems of the CLS. Let {αj be a
set of simple roots of CLS (se I = (0,1,..., n), and τ be a subset (τ C /) corresponding
to the odd ones. Then U{Φ) takes the form

^ ^ s ) . (1.2)

We classify and investigate all classes of Lagrangians with the positivly defined
kinetic energy of bosonic components, corresponding to CLS.

It turns out that excluding the algebras 22(0,1) and C ( 2 )(2) ι corresponding
to the Liouville and Sinh-Gordon equations, the subset of odd roots does not
cover the set of simple roots. Thus the second sum in (1.2) does not vanish. Because
of these terms in (1.1), the supersymmetry is broken in contrast with the other
supersymmetric models connected with Lie superalgebras [14]. However,
it is worth mentioning that a similar phenomenon takes place in some realistic
physical models2.

The contents of the paper are as follows. In Sect. 2 we derive the systems and
equations of motion. A complete classification of the systems contains five infinite
series and four special systems. In Sect. 3 we construct associate linear sets. All
classes of models are explicitly worked out. Section 4 is devoted to the definition
and the calculation of the group of reduction from complete CLS. In conclusion, in
Sect. 5 we discuss some unsolved problems. Some facts of CLS theory based on
[6-8] are presented in the appendix.

2. Description of Systems

( -y -y -y* 1 -y \

ξ= _J -9η= 1 ° and let θ1 and
z 2 j

θ2 be the elements of the Grassmann algebra. Supersymmetric covariant de-
rivatives are

Di = -δθ2 + i02dη, D^d^ + iθJs. (2.1)
Consider the multiplet of bosonic superfields Φ = (Φ1,..., Φn)

Φk = φ\t η) + iByt(ξ, η) + ψθF\ξ, η). (2.2)

(ψk\
In this formula φk and Fk are scalar fields, ψk = I is a two-component column

vPil

Majorana spinor, θ = θTy0, yo= , θ= [ Λ.
\ - l 0/ \U2J

The general expressions for the action and the potentials of supersymmetric
TTL are given in (1.1) and (1.2). From the action (1.1), one obtains the equations of
motion

, as) + 0,9,^ b{s exp2(Φ, α s), (2.3)

1 The notations of CLS are explained in the appendix
2 See for example [9], where the supersymmetry version of the grand unified theory was considered
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where bJ

as= -—s—, aJ

s is the j component of αs. Using (2.2) one can rewrite Eq. (2.3)

in components

d>ηφ> = 2Σbl,e«"-Xe«* <
seτ seτ

*Ψv «s) (ψ2. <O) + Σ KeΆψ' β>) >

We specify now the type of potentials, introducing the following notation:

i a o *-* ^ . . + nVk= 0 1 0 2 2^ exp2(Φ J — ΦJ ). (2.5)
2 j=1

The data of the type of potentials corresponding to the list of superalgebras from
Table 2 in appendix are summarized in Table 1.

Table 1

Types of super-

bras

Bosonic
limit

U(Φ)

1. B(0,n)

3.

4.

(

5. /l(2)(0,3)

6. C(2)(/i + i;

7. C12)(2)

A1(n = \

# 2 2 )

c;2 )

) - -6> 1 # 2 exp(-4Φ 1

--θιθ2 exp(-4Φ) + exp2Φ

K(φ)~ ~

Vn{d>) + exp2Φ" + exp(- 2Φ1)

exp 2 ίί> + exp( —2Φ)

Λψ

All potentials except those corresponding to CLS 5(0,1) and C(2)(2) contain
the terms with a 0 ^ factor. As it follows from (2.2), the corresponding superfields
Φk have only bosonic components φk. Thus the systems have only one superfield
with a fermionic component. It corresponds to the unique odd root of CLS (see
Table 2). The system C{2)(n+1) has two odd roots and consequently two
superfields with a fermionic component.
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The types of CLS defining U{Φ) are presented in the first column of Table 1.
The second column contains the types of contragradient Lie algebras which are
obtained in the bosonic limit. We use here the notations of [7].

It is worthwhile to note that the list of potentials corresponds to CLS with the
positively defined bilinear form. Thus the kinetic term in (1.1) is positive.

Let us consider the systems with one and two superfields in terms of
component fields:

1) #(0,1) - supersymmetric Liouville equation:

2)

δξΨι = -2xp2e
2\

3) C^(2) - supersymmetric Sinh-Gordon equation:

2 ίVi = - 4 v

oηψ2=-4ψ1cosφ,

4) Λ<4>(0,2):

o\nψ = 2e2φ(e2φ +2ίψ, ψ2) - e -2φ,

diΨl = -2e2/2, dηψ2=-2e2«Ψl.

The bosonic limit coincides with the so-called Bullough-Dodd equation [10]
5) B«(0,2):

3 ^ 1 = ^ e 2 ( " ' - « > 2 ) - i e - 4 * > 1 ) , dξψi = -2ψ2e
2φ2, dηψ2= -2xPle

2"'2,

d2

ηφ
2 = 2e2φ\e2φ2 + 2iΨlψ2) - \e2^ ~ «2),

6) Λ<2>(0,3):

d2

ξηφ
2 = - e2^-«2\e2^ι-φ2

diψi = -2ιp2e
2{φ'-ψ2\

dlιW2=-2ψλe
2^-«2\

7) C<2)(3):

d2y = -2e-2φ'

d2

ηφ
2 = 2e2φ2(e2φ2

8)

δξΨl=-2ψ2e
2«2
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3. The Associated Linear Problem

According to the ISM it is necessary to represent the equations of motion (2.3) as
an integrability condition for the system of linear equations

(3.1)
D2χ=Vχ,

where U and V are operators of a finite-dimensional representation π of G(fe)

connected with the system. For the sake of simplicity we shall denote the element
of CLS and the operators of its representation by the same letters. Since D1 and D2

are odd, U and V must be also odd.
Because of the oddness of U, V the compatibility condition of (3.1) takes the

form

D2U + D1V-{U,V}=0. (3.2)

Proposition 1. The equations of motion (2.3) are equal to the linear problem (3.1),
where

(3.3)
V=λ~1V_ί.

(λ is the Lorentz spectral parameter)

U0=-2(Diρ%,

Ui = -θ2Σej + iΣej> (3.4)
jeτ jeτ

jeτ jeτ

Here the superfield ρk is related to Φk

ρkakj = (Φ,oc^ (3.5)

hp ej9 fj - are generators of CLS G(k) with the Cartan matrix {ajk}.

Proof The integrability condition (3.2) splits into two equations

D 1 K_ 1 -{C/ 0 ,7_ 1 }=0, (3.6)

D2U0-{U1,V_1}=0. (3.7)

It follows from commutation rules (A.3) that (3.6) is identically satisfied, while (3.7)
takes the form

akj} jeτ.

The equivalence (3.8) to (2.3) is provided by (3.5).
We shall now give the explicit forms of U and V using the representations of

the superalgebras sl(m, n), osp(l, In) and osp(2, In) given in appendix and the data
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from Table 2. Note that U and V belong to the superalgebras pointed in brackets.
These superalgebras are equal to those from the last column of Table 2.

2.

3.

4.

U0=-2Dίάmg(Φ\...,Φ\0, -Φ\..., -Φ1)

\o o - i

[Aί 0 0
Bί 0 0
0 -Bί -Aj

/ABO

Uι=\O 0 B

\C 0 -A

±=(O, ...,0, l/2exp2Φ").

Pn,0, — Φ n , . . . , — Φ 1 )

! 0 0
o - 5 _ i y

^ see (3.9)]

(C)jk = 02δj_n+uk, (C 1 ) J k = 0 1 ( 5 J . J c _ n + 1 e x p ( - 4 Φ 1 ) .

.= 0 0
\θ2 0

,0,-Φ)

0

0
K-! = |

ί/0=-2Z)1diag(Φ1,...,Φ",Ό, -Φ", . . . , - Φ 1 )

B 0 \

0

0 0

0

= 0 0 -B

c o -A

(A, 0 CΛ

K_1== B t 0 0

0 B\ 0/

jk = δjj_n+2ΛΘ2 (-I)k

(3.9)

, B, ̂ i , B1 see (3.9)].
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5.

l/ 0 =-2D 1 diag(Φ 1 ,Φ 2 ,0 5 -Φ 2 , - Φ 1 )

2 ( Φ 1 + Φ 2 )

t/0--2D1diag(Φ1,...,Φ",0,0-Φn,

0

0

0

- Φ 1 )

(3.10)

A1 see (3.9)].
7. C(2>(2)(osp(2,2)):

C/0 = -2D 1diag(Φ,0,0, -Φ)

1° i i 0\

0 0 i 1

0 0 iΓ

-i i 0/

1°
i e 2 φ

\
\o

e-2Φ

0

0

-e2φ

-e~2φ

0

0

-e2Φ

0

— e~ 2

e-2Φ

0

The associated linear equations for the Sinh-Gordon equation presented here
differ from those in [5] where U and V are the 3 x 3 matrices.

8. Λ(4)(0,2n)(sl(l,2n + l)):
The matrices Uo, Uv V_1 are equal to (3.10)
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0

0

0

- 2 < r

e2φ

0

0

' 0

0

e2φ

0

0

0

0

θie~
2φ

0

l/0 = -2D 1 diag(Φ,0,-Φ,0),

'0 0 0 θi

0 0 0

- i 0 0

\0 0 θx 0

4. Reduction Group

1. The elements U and F of CLS defining the system have the very specific form
(3.4). Therefore Eq. (3.2), which is equal to (2.3), allows a reduction to a subclass. In
general we define reduction as the imposition of constraints on U and V which are
compatible with Eq. (3.2). The main point is that reductions are defined by the
group GR of automorphisms of the algebra (see [11]). It should be noted that the
information on the reduction group GR is interesting for a number of reasons.
First, the equations of motion can be derived directly from the whole superalgebra.
We shall demonstrate it in our particular case. Second, the explicit calculations of
conservation laws are simplified when one uses the reduction group [11]. Third,
the reduction group imposes the limitation on the scattering data in the ISM [11].

Our purpose is to find the reduction group for the supersymmetric TTL. For
the bosonic case it was calculated in [3].

Let h be a number defined by numerical marks y. on a Dynkin diagram of G(/c)

and Q be an automorphism of G{k) which on generators {hp ep /7}, j=ί,...,n, acts

as follows

(4.2)

Because of (A.8) and (A. 11) the relations (4.2) are valid for h0, e0, and f0. It is
obvious that Q generates the cyclic group 7Lh.

Let U and V be arbitrary elements of the real Grassman envelope of G(fc). We
derive the system (3.2) using the constraints.

QU(λ)=U(qλ),
(4.3)

QV(λ)=V(qλ).

It is worthwhile to notice that (4.3) is compatible with the linear equations (3.1).
The following proposition generalizes the results of [3] to superalgebras.

3 h is called the Coxeter number for G ( 1 )
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Proposition 2. Let U and V have the form (3.3). Then the relations (4.3) determine
Eq. (2.3) of supersymmetric TTL.

Proof. Because of (3.3) the action of Q (4.3) takes the form

In view of (4.2) ί/0, Uv and V_γ can be decomposed as follows:

Uo= Σ

j=o

v-i=
J = 0

Substituting these expressions in (3.6) and (3.7) one gets In equations for 3n
unknown functions.4 The indeterminacy of the system is connected with the gauge
freedom, preserving the form of the equations [11]. Fixing the gauge we put

Bj= I , Aj{ξ, η)= -2DγQ\ξ, η\ and then arrive immediately at Eq. (3.8)

which are equal to (2.3).
2. We shall discuss now the connection between the spectral parameter λ and

the indeterminate x in the representation of CLS G(k) (A. 7). Let v be an
automorphism of G{k) which acts as (4.2) and q is equal to λ. By means of v one can
define the transformation

g(x) = ΣxJLr~g(λ) = ΣλJUj,

.

Let {eg} be root spaces (A. 10). Then in view of (4.2), the elements Uj in (4.4) are
determined by the condition

Uj={es\oί= Σ kjϊ,ΣK=λ ( 4 5)

The decomposition (4.4) is connected with the Z-grading of G(/c) which is equal to
the so-called (1, . . . , l)-grading in [7]. Thus the reduction group GR determines
homogeneous elements of G(k) in the sense of this grading.

5. Concluding Remarks

1. It follows from the definition of U(Φ) (1.2) that in all systems except 5(0, n) the
potential energy of the bosonic part takes a minimal value. Let us consider the

4 It is necessary to take into account the linear dependence of the basis {hp j = 0,..., n}. Thus in spite
of the 3?i+3 functions A0,Aί... Cn there are only 3n linear independent ones
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problem of calculation the mass spectrum of the vacuum excitations, i.e. the states
near the minimum. In the bosonic (nonsupersymmetric) case for algebras with the
trivial automorphism v (fc=l) [see (A.6)], this problem has been solved in [3].
Because of the interaction between the bosonic and the fermionic components of
superfields (2.4), formulae for the vacuum states of the bosonic components are
more complicated in comparison with the bosonic case. Nevertheless the mass
spectrum {πή} of bosonic components is described by the same formulae as in the
bosonic case [3]. Namely mj are equal to the eigenvalues of the matrix

Ω = 2NΩ, (5.1)

where N = f ] (ys)
 h and

sel

Ω^ΣJM- (5.2)
sel

These formulae are valid for all CLS.
It is remarkable that Ω is defined by the Dynkin diagram of the corresponding

CLS. Comparing the Dynkin diagrams considered in [3] and those in Table 2, one
gets the bosonic mass spectrum for the Λi2)(0,2n— 1) system

j=ί, ...,n-1 μn = 2.

It is natural to suppose that the eigenvalues of Ω have simple dependence on the
exponents of CLS G{k) 5, the order k and h.

As it follows from (2.4) the vacuum states of fermionic components are equal to
zero, while their masses are determined by the vacuum states φ of the bosonic
components. For example, the mass of the fermionic component for the systems
£(1)(0,1) and,4(4)(0,2) is equal to 2exp(2φ).

2. The recurrent procedure for the conservation laws calculation of the bosonic
TTL was proposed in [3]. It can be directly generalized to the supersymmetric
TTL. The conserved supercurrents have been calculated for the supersymmetric
Sinh-Gordon equation [17]. It is worthwhile to notice that there are gaps in the
sequence of conservation laws. The invariant meaning of the gaps for the
generalized K-dV equations connected with contragradient Lie algebras had been
explained in [12]. For the systems considered here we propose the following
conjecture. The gaps are periodic with the period /c /z, where k is the order of the
automorphism v. The orders of the nontrivial conserved supercurrents are equal to
exponents of G{k) + k h n {neΈ).

3. Assuming in (2.4) ξ = — η, one gets ordinary differential equations. The
system is described by the action which can be obtained from S (1.1) after the
integration over the Grassmann variables θvθ2

S = \dt\i £ φjφj+ X (Ψiψ
L jel jeτ

where the dot stands for the time derivative. It is a particular case of systems
considered in [13]. The system is the one-dimensional TL connected with CLS. In

5 The definition of exponents is given in [7]
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contrast with the bosonic case, the particles corresponding to the odd roots
acquire the spin degrees of freedom (ψ{,ψj

2).
Nevertheless it is natural to conjecture that a number of well-known features of

bosonic TL can be extended to supersymmetric TL. It implies the existence of
additional integrals of motion both in the classical and quantum cases, the
interpretation of phase superspaces as "superorbits", the explicit form of solutions
for the nonperiodic system B(0, n) and its connection with geodesic flows on a
supermanifold.

Appendix. Contragradient Lie Superalgebras

1. A superalgebra Lie G is a 7L2 graded linear space G = GQ + G-V The elements of
Gδ are called even, those of Gτ are called odd. The commutator in G satisfies the
following axioms:

La9 [b,c]] = [[α,ft],c] + ( - l ) d e g α d e g b [b[α,c]] ,

where degα = 0 if αeG δ and degα = l if aeG-v

Two important examples are of interest.
a) The superalgebra l(m, n) of the linear transformation of a linear Z 2 graded

space V= F5 + Fj (dim F5 = m, dim Fj = n). The elements of l(m, n) are

(m + n) x (m + n) matrices which can be written in the form , where
\c d]

G 5 = are even elements and GΣ = -jί H are odd ones. The super-

algebra sl(m,7i) is the subset of l(m,ή) satisfying the condition tra = trd.
b) The orthogonal-symplectic superalgebra osp(m,2n) is a subalgebra of

/(m, 2n), which can be identified with the superalgebra of the canonical transfor-
mation of superspace V. The even part Gδ which is equal to so(ra)©sp(2?z) defines
the canonical transformation in the even and the odd subspaces of F separately.
The odd part Gj mixes the even and the odd variables of V. We need in what
follows the explicit forms of osp(l, In) and osp(2,2n). Let J be the (n x n) matrix of

the form .•' and λ = JAτJ. There is a basis in Fin which the superalgebras

have the form

osp(l,2π)

B=B C=C

> / o\

\0 -g
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and osp(2,2n)

A X X1 B

Yλ a OX,

Y 0 - α X

C -Y -Ϋ1 -A

0 0 -A

X=(χ\

(A.2)

2. A contragradient Lie superalgebra (CLS) G(A,τ) is defined by means of
generators (hj9 e^f^je I = (0,1,..., n). Let τ be a subset of I. The even generators are
(hjje I) (βpfpje τ) and the odd ones are (epfjje τ). The defining relations in G(A, τ)
are described by means of the Cartan matrix A = (aij) (ijel)

O , , / J = V J , , Lhphk-]=o,

IK ei\ = aifj, IKfj] = - ai}fj,
1 -«>ej = lele,... [e(, e$ = 0 (ad β1 ~a^fi = 0 .

(A.3)

The Cartan matrix has the following properties

α,7^0 (iΦj), ^ = 0^0^ = 0. (A.4)

The simple roots α of the superalgebra G{A, τ) are linear forms on the linear span H
of the vectors ht (ze/) defined by the relations

α^ H^ (A.5)

The set of simple roots Π is the union of the subset of the even roots ΠQ = {αf, ie τ}
and the odd roots Πι = {ΰ.i,ieτ}.

The CLS can be described by its Dynkin diagram consisting of n + 1 nodes
corresponding to the simple roots {oίj}. T h e / h node is white if a7- is even and black
if ocj is odd. The ith a n d / h nodes are connected by max(|αfj.|, |a j f|) segments. If \atj

>\ajί\, the segment has an arrow pointing toward the ith node.
If τ = 0 we have the affine Lie algebras [8] connected with the usual TTL. In

Table 2 the Dynkin diagrams of CLS (τ φ 0) are represented. This list of
superalgebras contains only those which have a non-negative invariant bilinear
form (see [7, Proposition 1.5, IV]).

The numerical marks y. near nodes are coefficients of linear dependence
between the corresponding columns of the Cartan matrix A. Note that the set

is the center of G(A,τ). The CLS £(0,n) = osp(l,2n) is finite-
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dimensional with a trivial center, while the others are infinite-dimensional. The
factors G{k) = G(A, τ)/C can be derived as follows.

Table 2

Notation

1 2

Dynkin diagrams

3 4

L

5

1.

2.

3.

4.

5.

6.

7.

8.

9.

5(0,«)

β(1)(0,rc)

β-(0,l)

A(2)(0,2n-l)

(n>2)

Λ(2)(0, 3)

(π^V^
C ( 2 )(2)

A ( 4 )(0, 2n)

Λ ( 4 )(0, 2)

o--o—.
1 2

o=>o—.
1 2

o=>

1

\ 2

o—.

2

1 1

<=o—.
1 1

o=
1 1

o^o—.

1 1

o=

...—o=>
2 2

..O=>

..ό=>
1

1 1

..o=>

1 1

..o=>

osp(l,2n)

osp (1,2)

osp (1, 2n)

osp (1,2)

osp(l,2«)

osp (1,2)

osp (1, 2ή)

osp (1,2)

osp(l,2«)

osp(l,2»)

osp (1,2)

sl(l,2n)

si (1,4)

osp (2, 2ή)

osp (2,2)

sl(l,2w +

si (1,3)

Let L be a superalgebra in the last column in Table 1. It has the automorphism
v induced by an isometry of order k of its Dynkin diagram. Then we have the direct
decomposition

L = kζ&Lj9 (A.6)
J = O

where Lj is the eigenspace of v. Note that Lo is the subalgebra of L. The Dynkin
diagram of Lo coincides with the one of G(A, τ) in Table 1 without the left node.
The factor algebra G(fc) = G(A, τ)/C can be represented as the superalgebra of
Laurent polynomials in the even indeterminate x with coefficients in L:

G^ = {ΣxjLβmoάk)}. (A.7)

Let Π' = {apj=ί,...,«} be a set of simple roots of Lo. We put

J = 1

The set of pairs

{(-θ,l),(α1,0),...,(«w0)} (A.9)
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is equivalent to the set of simple roots; Π has been defined earlier (A.5). An
arbitrary root of G{k) is a pair ά = (α,m), where meTL. This definition is compatible
with the one of the root subspace esCG{k\ Let Ho be a Cartan subalgebra of Lo.
Then

9 heH0}.

In particular the images in G(k) of the generators f0 and e0 have the form

As was mentioned above, there is a bilinear, invariant, non-negative form on
G{A,τ) which is nondegenerate on G{k\ [Its kernel coincides with the center
C C G(Λ, τ).] By means of this form, the Cartan matrix can be represented as
follows:

Acknowledgements. I am extremely grateful to Dr. P. P. Kulish, Dr. A. V. Mikhailov, and Dr. A. M.
Perelomov for useful discussions.

References

1. Bogoyavlensky, O.I.: On perturbations of the periodic toda lattice. Commun. Math. Phys. 51,
201-209 (1976)

2. Leznov, A.N., Saveliev, M.A.: Representation of zero curvature for the system of nonlinear partial
differential equations x α z - = exp(foc)α and its integrability. Lett. Math. Phys. 3, 489-494 (1979)

3. Mikhailov, A.V., Olshanetsky, M.A., Perelomov, A.M.: Two-dimensional generalized toda lattice.
Commun. Math. Phys. 79, 473-488 (1981)

4. Girardello, L., Sciuto, S.: Inverse scattering-like problem for supersymmetric models. Phys. Lett.
77B, 267-269 (1978)

5. Chaichian, M., Kulish, P.: On the method of inverse scattering problem and Backlund transfor-
mations for supersymmetric equations. Phys. Lett. 78B, 413-416 (1978)

6. Kac, V.G.: Adv. Math. 26, 8-96 (1977)
7. Kac, V.G.: Adv. Math. 30, 85-136 (1978)
8. Kac, V.G.: Math. USSR Izv. 2, 1271-1311 (1968)
9. Dimopoulos, S., Georgi, H.: Softly broken supersymmetry and SU(5). Nucl. Phys. 193B, 150-162

(1981)
10. Dodd, R.K., Bullough, R.K.: Polynomial conserved densities for sine-Gordon equations. Proc. R.

Soc. London A352, 481-490 (1977)
11. Mikhailov, A.V.: The reduction problem and the inverse scattering method. Report at the Soviet-

American Symposium on Soliton Theory (Kiev, September, 1979). Physica 3D, 73-117 (1981)
12. Drinfeld, V.G., Sokolov, V.V.: DAN 281, 11-16 (1981)
13. Casalbuoni, R.: The classical mechanics for Bose-Fermi systems. Nuovo Cimento 33A, 389-431

(1976)
14. D'Auria, R., Sciuto, S.: Group theoretical construction of two-dimensional supersymmetry

models. Nucl. Phys. 171B, 189-210 (1980)
15. Ferrara, S., Girardello, L., Sciuto, S.: Preprint TH2474-CERN 1978

Communicated by Ya. G. Sinai

Received May 15, 1982




