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Cylindrically and Spherically Symmetric Monopoles
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Abstract. We apply to the Atiyah-Ward ansatze a systematic procedure
locating symmetric monopoles in SU(3) gauge theory broken to U(l) x U(l). In
particular we recover the known spherically symmetric monopole as a limit of
a cylindrically symmetric separated two monopole solution in SU(3). We also
discuss the spherically symmetric monopole in SU(w). This latter is the only
instance where we have properly shown the smoothness of the Higgs and
gauge fields.

Introduction

Over the past year there has been a great deal of progress in the understanding of
monopoles in gauge theories. It commenced with the discovery that the Atiyah-
Ward construction [1] of self dual solutions is better suited to monopoles than to
the instantons which motivated it. The doubly charged SU(2) monopole found by
Ward [2] and independently by Forgacs et al. [3] was generalised by Prasad and
Rossi and Forgacs et al. [4] to higher charges. As yet all these monopoles were
located at a single point and had cylindrical symmetry. Ward [5] then produced
the first true multimonopole, two charge one monopoles separated by a small
distance. Corrigan and Goddard [6] generalised this to a 4n— 1 parameter family
of SU(2) multimonopoles.

SU(3) is clearly the next place to look and, again, Ward [7] has found a one
parameter family of cylindrically symmetric monopoles which have as spherically
symmetric limit the solution for SU(3) broken to U(2) familiar from earlier work.

In this paper we shall look for such families when SU(3) is broken to

Monopoles are finite energy solutions of the Bogomolny equation

Di<l>=±$8ijkFjk Uj,k = U2,3, (1.1)

where φ is the Higgs field, in the adjoint representation of SU(n), D is the
covariant derivative (dt + L4;) and Fjk the space part of the field strength tensor,

Fμv = dμΛv - dvAμ + ilAβ, Av~]. Aμ = A l
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k
We impose as boundary conditions that φ-+(E as r-»oo for k and C constant

r
matrices in SU(n).

Although we have no potential in (1.1) we preserve the boundary conditions
that would be imposed by one of fourth order in φ. The matrix C then specifies the
asymptotic direction of symmetry breaking either to U(l) x U(l) or to U(2). From
(1.1) and the finite energy conditions we get

Bi=2εijkFjk-^k as r^co.

So the matrix k specifies the monopole charge. It can be chosen to lie in the
Cartan algebra of the gauge group seen as a vector space whose dimension is the
rank of the group. Then the charge is specified, more or less, by the components of
k in this vector space.

In this paper we shall use the Atiyah Ward method [1,2]. We shall impose
upon it the constraints of time independence and reality. We discuss the further
conditions of spherical and cylindrical symmetries applying these to recover the
known monopoles in SU(2) before going on to SU(3).

2. The Atiyah-Ward Construction [1, 8]

In the Atiyah-Ward construction static monopole solutions of an SU(n) gauge
theory correspond to certain holomorphic, n-dimensional vector bundles over
complex projective three space, P3((C). The transition matrix, g, must be a
holomorphic function of coordinates ζ, μ, and v, of P3(C) where μ=—it~z
+ C(x — iy), and, v = —it + z + ζ~1(x + iy). Here g is defined up to bundle equival-
ence: that is, up to multiplication on the left and right by SL(n,C) matrices
holomorphic at ζ = oo and at ζ = 0, respectively. (This equivalence is not simply
related to gauge equivalence, but does contain it.)

From such a transition matrix we can calculate the Higgs and gauge fields by
factorising it

into matrices g^ holomorphic at ζ = oo, and go1, holomorphic at ζ = 0. Then the
fields are given by,



Cylindrically and Spherically Symmetric SU(3) Monopoles 45

For static, hermitian fields we require that g be bundle equivalent to a g which
depends on ζ and y = μ— v, and that it be equivalent to a conjugate g defined by

1

For the case of SU(2) there is a canonical form for g:

Q for

and at least for the case of U(l) x U(l) it appears that a similar form may hold for
SU(3):

C'1 012 013

09 =

0 0 C'3

This is not necessarily true in general.
By a bundle equivalence argument we may order the powers of ζ in a

decreasing fashion down the diagonal.
Our design is to start from this form and whittle it away by the imposition of

the constraints of time-independence, reality and symmetry, until we are left with
those classes of monopoles we desire.

3. Time Independence and Reality

If g is a function of C, μ = x22 + ζx2ί and v = xlί+xί2/ζ then it can only be time
independent if its μ, v dependence is entirely through y = μ — v since x11 = t—iz,
x22 = t + iz. However the normal form we have so far described may not be time
independent. If we are to be able to remove the time by multiplication we must
have

But g satisfies the equations

and hence • ρfj. = 0.
The above separation of variables in (3.1) then implies that the simplest form of

fij(μ + v) is exp{αίi7.(μ + v)} for αfj. constant.
We can remove this time dependence by bundle transformations to leave the

general form:

g= 0

0

Q23(y9ζ)

0

(3.2)

In the following sections we shall use this form and drop the tilda from ρir

The values of the αf determine the symmetry breaking and the scale of the
Higgs field. If two of the αf are equal we get breaking to U(2), otherwise to
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Upon this general form we impose the constraint of reality. It suffices for this to
use a single bundle transformation matrix A(ζ) and to write;

(3.3)

1
We note that under the combined conjugation and £-• — — operations, y is

invariant. ^
For SU(2) the condition reads:

p y a

ζ,

1 ^

- T e

— ~z\ e

(3.4)

Because A22 is analytic in ζ and A%2 in ζ " 1 , the equation%2

A22C
1 = AU-1YC (3.5)

implies that up to a real constant A22ζ~* is a product of t factors (y — y.) for
i = l , . . . , where y. = c. + αi/ζ — αf C with α and (real) cf constants has the same reality
properties as y.

The off diagonal equations are equivalent and tell us that

Ψ
, where ψ= γ[(y-y.) (3.6)

and F and / are arbitrary functions of ζ. We shall always use upper case letters for
functions analytic at ζ = 0 and lower case for those analytic at £ = o α Hence

F= -A1 = (-iYA2*ί[ - up to a constant factor.

The remaining reality condition reduces to Λ11A22 —A2ίAί2 = 1 which is
satisfied since AeSL(2,C).

A precisely analogous procedure for SU(3) produces two polynomials in y, ψv

ψ3 of degrees / 1 and - ^ 3 > 0 from conditions like (3.5) on the subdeterminant

^22^33 "^32^23 a n c i o n ^33 respectively.
For the ρtj we obtain:

Ql2 =
Ψl i= 1

Heyai heya3 Fqeya2

ρ 1 3 = + + — .
Ψi Ψi Ψ1Ψ3

Note that a term appears in ρ 1 3 which mixes terms from ρ 1 2 and ρ23.

(3.7)
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The only general demands we make on the ρ.. are that they be free of
singularities, for all X, in some open annulus about ζ = 0 and that the splitting
procedure should not introduce singularities into the field strength tensor.

We however will make further demands first.

4. Cylindrical and Spherical Symmetry

What do we mean by symmetry in a gauge theory? Normally by symmetry we
mean that under a group transformation r acting on x, the points of space time, a
symmetric object S(x) obeys the relation:

rS{x)r-1=S(r-1xr). (4.1)

The type of object S is defined according to the representation of the group which
acts thereon.

In a gauge theory the gauge independent objects will satisfy such a relation but
we ask of gauge dependent objects that they do so only up to a gauge
transformation. So for the gauge potential A we have:

\ (4.2)

where θ(x) has values in the gauge group.
To say the same thing in the Atiyah-Ward formalism:

(4.3)

that is, the rotated and original #'s give equivalent bundles. The relation between θ
and a and A is not very simple.

For cylindrical and spherical symmetry we consider the general rotation [6]
for which X^>X' = rXr~1, as quaternions, and

From Xπ = ω and X'π' = ω' we see that rπ = π\ rω = ω'. So with the definitions
of ζ\ yf as for ζ, y

(4 4)

For rotations of the order of a small parameter ε equation (4.3) looks like

Δq
-ξ-=gA-ag, (4.5)
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where we have replaced A and a by 1 + εA and 1 — εa where τrA = τra = 0 and Δg is
the 0{ε) change in g due to the rotation.

We shall need for cylindrical symmetry a small rotation about the z-axis: α = 1
+ iε, /? = 0 under which

(4.6')

and for spherical symmetry this and the other two rotations:

α = l , β = ε ζ^a
(4.7a')

and

α = l

Under each of these Eq. (4.5) becomes:

(4.7b')

(4.6)

(4.7a)

(4.7b)

Given the general form of g we shall solve these equations to find the
symmetric monopoles in SU(3). First we rehearse the procedure for SU(2) to
obtain already known results.

5. Symmetric Monopoles in SU(2)

Equation (4.6) in SU(2) reads:

2iζ
dρ/θζ
'~t-\ -yα
5 *--

atl aί2

a2ί - f l π

Of these four equations the simplest is

1 2

(5.1)

(5.2)

We are to preserve time independence. This and the analyticities of A21 and α 2 1

require that they be functions of yζ and ζ, and γζ'1 and (~\ respectively. Then
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they cannot cancel the exponentials in (5.2) and, unless α = 0, we must have
A21 ΞO, a21=0. But a sets the scale of the Higgs field and cannot be zero.

The diagonal entries in (5.1) give

By use of the same argument that we applied in (5.2) we may disconnect the eya

and e~γa parts of the remaining equation to give, from the general form (3.6) of ρ,

dζ\xp) 1 2 lC xp"

f\ f

dζ\ψ) ψ

which we rewrite as:

- < " " » • ( 5 - 4 )

Now F is a function of ζ and yζ. Therefore if xp divides it, being a polynomial of
order {in y, it will push out a factor ϊf from F. But if xp divides F it must also divide
/ to prevent ρ having singularities other than at 0 and 00. Since / is a function of
ρ " 1 and y/ζ this pushes out a factor ζ~e. Then ρ has the form

which is precisely that removable by a bundle equivalence. So we may assume
some part of ψ does not divide F. Since f/ψ must have the same x-dependent
poles, the same part does not divide /

However, Aί2 may only have poles at ( = ° 0 Therefore (5.3) implies Aί2 = 0.
Similarly aί2 = 0. Hence the arguments of the derivatives in (5.3), (5.4) are functions
of γ alone.

Fίc ~ fCc

ψ ψ

But now F(yζ, ζ) and f(y/ζ, 1/0 must both have factors of ζ to cancel the power
ζc which is only possible if c^O, and c^O. So c = 0. But further since F and / can
only be functions of y if they are also functions of ζ, independence of the latter
implies that of the former. So F and / are constants, F o and /0.

So the general form for cylindrical symmetry is:

where the c/s are constants, since the general C-dependence of the 7. is clearly
incompatible with (5.3) and (5.4). This agrees with Ward's [2] and Prasad and
Rossi's [4] results.
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To consider spherical symmetry, let us first add and subtract Eqs. (4.7a) and
(4.7b) to obtain the simpler equations,

^-=g<£-cg, (5.6b)

and impose these upon the general form (5.5), ρc.
Again the lower off-diagonal entry gives B2V b2V (C21, and c 2 1 all identically

zero.
The diagonal entries in (5.6a) give

Then as before the upper off-diagonal entry leaves us with two equations:

ζ dγ\ψ

ψψlΆ CX2+(^y«)2cV^
ζψ ζ dy\ψ) \ζ )ψ

Since / > 0 w e may extract the ζ " 1 dependence from the first of these which
gives

dy[ψ)

Therefore, up to a multiplicative constant, ψ = γ*. The part remaining is then:

Here B12 is allowed no such singularities and so Bl2 = 0 and c = 0.
The other equation now simplifies to

2*fo(y/ζ)=-b12{y/ζf9

which implies that / = 1 and b12 is constant.
Equation (5.6b) leads to the same result. Hence there is a unique spherically

symmetric monopole in SU(2) given by

where the choice / 0 = —Fo renders the correct singularities. Again this agrees with
Ward [2].

These results have been known for some time but we derive them to illustrate
the method we shall now apply to SU(3).
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6. Cylindrically Symmetric Monopoles in SU(3)

An important difference between SU(2) and SU(3) is that whereas in the former the
upper triangularity of gA — ag requires that of A and a this is only the case in the
latter when α1 ? α2, and α3 are all unequal (3.2). This is because we get, for instance,

(6.1)

and only for α 3 φ α 1 can we argue that A3V a31 vanish identically. In that case the
other two lower off-diagonal entries are of the same form as (6.1) for the other
pairwise choices of the α . In this paper we shall only consider this case but should
bear in mind that the others are equally important and ought not necessarily to be
limits of the following results as pairs of αf coincide.

Looking first at small rotations about the z-axis the diagonal terms in (4.6) are:

(No sum),

from which we write:

djj = — i(βj — Cj), for Cj constant,

and where

Σ cj=o.
7 = 1

Disconnecting the terms in the eWι in the upper off-diagonal entries gives us,
from the general forms (3.7) of the ρip three sets of equations:

2iζ-

'dζ\ψ- ζ-""=-a23ζ<\

2iC^7

G

a

d ίaFCni3\
r Γ~" 1 3 -

(6.2)

(6.3)

(6.4)
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where

By a bundle equivalence argument similar to the SU(2) case we can remove any
of the arbitrary functions which divide by ψί or ψ3. So either because we can
replace G and g by zero or by the argument from poles in G/ψ1 and g/xp1 we have
V4 1 2 ΞO, a12=0 in (6.2). Similarly α 1 3 = 0 , Λ23=0 in (6.3). Therefore α 1 3 = 0 ,
A13 =0 in (6.4). So all the arguments of the derivatives in (6.2)-(6.4) are either zero
or C-independent. Therefore either Qtj = 0 or ρij = ζ~nijρij{y), and the yu and y3i in
ψ1 and φ 3 are real constants cu and c3i.

Suppose ρ 1 2 + 0 . Then

and

AΓ/» = C-»^m12)> ( 6 . 6 )

Ψi Φi(y)

where φ^iy) is of order p1 ^ /: and gives the (common) poles which do not divide G
and g. Here G(y, M 1 2 ) and ^(7, m1 2) are polynomials in y alone of degrees M 1 2 and
m 1 2, respectively. Then the ζ-dependence of G implies

G(γζ,ζ) _ ^G'jyCQ _ G(y,M12)

ψi Φi(y) Φi(y)

Therefore 0 ^ M 1 2 ^ —n12+p1 — Sί.
Also

Therefore 0Sm12Snί2 + pί+^2
Similarly if ρ 2 3 ΦO, we obtain

where φ 3 has degree — p3^ — £3 and,

^ ^ 2 3 + ̂ 3 - p 3 , (6.11)

^ - ^ 2 2 3 - / 2 - p 3 . (6.12)

Equations (6.7) and (6.8) place the following constraints on n12 and pλ \£3 ^n12 ^
and f^Vl^\{βγ-i2\ Similarly from (6.11) and (6.12): O g n ^ ^ and / 3 ^ p

= 2
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We identify the following cases:

Case (i). xp1 divides G, \p3 divides /
Then ρ 1 2 = 0, ρ 2 3 = and ρ 1 3 loses its eW2 term.

Heyaί heW3

rβi3 r
Ψl Ψ3

The analyticities of H(γζ, ζ) and h(y/ζ91/0 then require 0rgn 1 3 5^0, since we can
only extract positive powers from the former and negative ones from the latter.
This in turn requires H and h to be constants since any y-dependence must be
accompanied by ζ-dependence. But now ψί and ψ3 must have the same (constant)
poles in y or ρ 1 3 will not be analytic away from 0 and oo. Therefore ίx + / 3 = 0, i 2

= 0 and ρ 1 3 looks exactly like the ρc of SU(2), (5.5) but with α and — α replaced by

α2 and α 3 :

_
g ~

V' 0

o β y α 2

0 0 C V α 3

For non-singularity the ct must all be different and of the form:

3

As in the SU(2) case we expect the non-singularity of the splitting procedure, at
each x, to constrain the Cj to / particular values.

Case (iί). xp3 divides /

From (6.5) and (6.6)

Qi2 = Γni2 ' — 1 Λ —

where (6.7) and (6.8) hold. Thus ρ 1 3 will vanish or not accordingly as ψί divides H,
and ψ3 divides h or not, since F vanishes by ψ3 dividing / If it does not then it will
have the same form as in case (i), and for the same reasons. Then £2 is zero. Here

t

φx(y) is a selection of τργ factors from ψ1= ["J (y —cf). Satisfying the singularity
i= 1

constraints on ρ 1 2 will leave free parameters in φ-^y) only in the case where ρ 1 3 ΞO.

Case (Hi). ψγ divides G.

The same holds with respect to ρ 1 3 and ρ 2 3 here as did for ρ 1 3 and ρ 1 2 in case
(ii).

Case (ίυ). \p1 does not divide G, ιp3 does not divide F.

Then ρ 1 3 has the general form: since n13 = ̂ 2-\-n12 + n23,

Heyai ^ hey«3

 | g(y,nι12)F(y,M23)

Ψl Ψ3 ΦlΦ3
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(a) If ψ1 divides H and φ 3 divides h, then φ1 divides F and φ3 divides g.
Therefore

These imply n12^n23. But n12tί0 and n 2 3 ^ 0 so they must both vanish.
Inequalities (6.7) and (6.11) then give tx=pv ^ 3 = P 3 and so,

_
Ql2 ~~

(b) tp1 does not divide H, ψ3 does not divide h.
Then as in case (i), n 1 3 = 0 and //, /ι are constants. All we can say in general,

since the eW2 term in ρ 1 3 is determined from those in ρ 1 2 and ρ 2 3, is that enough
cancellation must occur between φ1 and F, and 0 3 and ^ to ensure that the

gF
number of poles in away from zero and infinity balances the distinct poles in

0102
ψv ψ3.

(c) ψι divides H or φ 3 divides h.
In this case n 1 3 is no longer zero and the usual remarks apply as regards

singularities.

7. Spherically Symmetric Monopoles in SU(3)

Not all the cases listed under Sect. 7 have spherically symmetric monopoles
amongst their cylindrical ones.

The equations of spherical symmetry are:

ζ2Tζ+yζfζ=9€~C9 (7 2)

From the diagonal terms we obtain:

Bti = kt, bu = kt-^Vt-yoO.

For case (i) the analysis is similar to that in the SU(2) case (Sect. 5) yielding

ί f=l a n d ρ 1 3 = - ( e τ α i - e y α 3 ) .
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In any of the cases where ρ 1 3 Ξ O we have the equation:

and similarly for C and c. If ρ 1 2 , ρ23
 a r e non-vanishing this gives, B23 = ζ*1ψ1B

r

23

and b12 = ζ^ψ3b\2 and so also, from the eα2y term: Bf

23gζ^~Λi2= -bf

12Fζ^3~n23 = 0
since the left-hand side has powers of ζ greater than zero and the right-hand side
less than zero. Hence only B12 and b23 are not zero. The equation in ρ 1 2 then
becomes:

δy ζ dy

in which the £α2y term is:

dy

The ζ dependence implies k2 = kί. But this leaves us with an equation which for
α 1 φ α 2 has no finite polynomial solution, and we have no spherical monopoles
here.

So suppose £ 2 3 Ξ Ξ 0 as well. In this case B12 and b12 only remain. Then the
equations for ρ 1 2 we have are:

dQi2

(7.3)

The eWl term in the first equation gives,

If φx had a pole in y other than at y = 0 then it would be made second order by
differentiation and could not be compensated on the right hand side. So up to a
multiplicative constant φ1=yPι. Similarly φ3 = y~p\ Also, the C-dependence
requires that k2 = k1. Now,

Bί2= _yζ-"i2-^i-l φlyPi-ίi-ni2}y-ίi-n12 ^

dy

Since G can have no factors of y we can only avoid poles in B12 if pί — ίx — n12 = 0
and G is constant. Likewise g is constant and pί + nί2 + £2 = 0, from the eya2 term
in the second of Eq. (7.3).
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The remaining equations are:

Then, since g and G have no factors of y,

But the ζ-dependence requires that n 1 2 + / 2 + 1^0 and tf1 + n12—lSO which
can be written 1 — p ^ O ; therefore pί = l and G, g are constants. This leaves us
with the following for g:

0 0 ζ-2ί-2ey«3J

Similarly in the case ρ 1 2 = 0 we obtain:

0 0

0

These appear to be other simple SU(2) embeddings.
A more interesting case occurs when ρ 1 3 Φθ. This time from the ρ 1 3 equations

we obtain φ1=γp\ φ3

:=y~P3 as before. The other equations reduce to the
following shape, for example,

V

The non-singularity of B12 requires k2 = k1 and that [_(p1 — ̂ 1 — nί2)G
have no poles at y = 0. This requires that p1 — ̂ 1 — n12 = 0 and either G'= 0 or
Pi = 1. But the companion equation to the above is:

and this clearly requires p 1 = l. A similar argument for the other three sets of
equations produces the following:

— n23 — ί 2— —
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Since ίγ + / 2 + ̂ 3 = 0 also we must have fγ = 2, / 2 = 0, / 3 = — 2. Then (we can only
satisfy the singularity conditions when ρ 1 3 has all those eWι terms) we obtain for g:

where

lζ2eγai ζρ

0

0

12 β l 3

(7.6)

F0g0oc32cc21(
1 '

and α^ = α — α7 .

Remarks. It is known that the so-called maximal embedding of SU(2) in SU(3) has
a spherically symmetric monopole [10] whose behaviour is determined by the
functions

• + •

'r * \ α 1 2 α 1 3 α 3 2 α 1 2 α 3 1 α 3 2 /

+ + ,
r ^ \ α 1 2 α 1 3 α 3 2 α 1 2 α 3 1 α 3 2 /

where the ai are associated with the direction of symmetry breaking. For the
Higgs field along the z-axis is given by

where H1 =

Φ

1 0 0

dr
(7.7)

0 0

0 - 1 0 and H2 = 0 1 0 span the Cartan algebra of SU(3).

0 0 0/ \0 0 - 1 ,

If we assume oιί > α 2 > α 3 , then the asymptotic behaviour of φ is:

α, 0 θ\ /l 0 0

0 α2 0 - - 0 0 0

0 0 α3/
 Γ \ 0 0 - 1

That the patching-matrix (7.6) gives this monopole is strongly suggested by the
following two interesting observations,
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and

= 012" -Q2i=-FJo^iU2la2ZQ2(y)ly2.
dy dy

This immediately generalises the pattern in SU(2), where

(1 0\ d / sinhΛ

since here ρ —
sinhy

The form of (7.6) suggests a generalization to SU(n). For we can write the whole
of the patching matrix g as an integral in a new complex variable η, around a
contour enclosing the αf in the following way:

fa-αk)

Then we conjecture the following generalization to SU(w). That,

(7.8)

and that g.. be defined by (7.8) for ί^i
known to be [10]

^n. The extension of (7.7) to SU(n) is

where pm = m(n — m), and the y~PmQm(y) are precisely the determinants of the upper
right-hand submatrices of g. They are non-singular and non-vanishing

A* =
z^w

= Det
Q\ n+ 1 - » ι -' Q\n

Qm n + 1 - m * •» m π

The H w are a basis of the Cartan subalgebra of SU(n):

H m = diag(0,0,..., 1, - 1 , 0,...,0).

n —m n—rn+1

In fact it is not difficult to do the splitting procedure on the z-axis. For when
x12 = x21 =0, y loses its ζ dependence and is, up to a scale, equal to z = r. Then we
split g by solving the following equations:

0

0

ei,(z)
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We choose fc(C = 0) = lM, in which case

0

59

(-D"

Since this is time independent and the Higgs field comes from Alί + A22 we
have

'dz*
n- 1

Σ
m = 1

\r=,= Σ Hm-0nZ)m(r))

as desired. To calculate the Λ^x) we need to know the patching matrix in a
neighbourhood of the z-axis. Because it is spherically symmetric we may use the
fact that under a small rotation: g-^agA and hence

h{ζ=oo)->a{ζ=ao)h(ζ=ao)

From these we may calculate At{x) on the z-axis and since a and A are non-
singular we preserve the non-singularity of the splitting. Then by spherical
symmetry we conclude that the splitting is everywhere non-singular.

Further this splitting will work for SU(3) in the limit aί =ot2 to give the U(2)
breaking of SU(3) starting from

ρ13(α1=α2)^

ey £23(^1 = α 2 ) h

0 0 '-2 - 2 y

which is bundle equivalent to that found by Ward [7, 12].
Again for SU(3) we can find a family of cylindrically symmetric monopoles

which contain the above spherically symmetric one. The family is:

*2 _ ey0t,3 + C

(7.9)

Ql3 =
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where

where cx and c2 are x- and (-independent. By a translation along the z-axis we
could choose c1 + c2 = 0.

There are a number of interesting limits in (7.9). Firstly cί=c2 yields the
spherically symmetric monopole of (7.6) translated along the z-axis.

Secondly, if we assume α 1 > α 2 > α 3 and let c 1 = 0 , c2-> — oo then in the
neighbourhood 1 — ε < l ζ | < l + ε and in the neighbourhood of the origin in R 3,
ρ2 3->0, ρ1 3->0 and

0 ζ-2eW2/

This is simply an embedding of the SU(2) monopole in SU(3). Likewise the limit
c2 = 0, c1-^oo yields Q13—>0, ρ12—•(), and we have an SU(2) embedding in the ρ 2 3

position. This strongly suggests that (7.9) represents two separated SU(2) mo-
nopoles, of separation c1 — c2, embedded in SU(3). In SU(2) such a multimonopole
has no symmetry but here with the greater gauge freedom of SU(3) it appears to
have such. If we allow these two monopoles to coalesce we obtain the spherically
symmetric monopole of charge 2 in the breaking of SU(3) to U(l) x U(l) or to U(2)
if α 1 = α 2 . In the limit oc1=oc2 (7.9) is gauge equivalent to Ward's family of
cylindrically symmetric, U(2) broken monopoles [7, 12].

Conclusions

We have presented a systematic way of finding cylindrically and spherically
symmetric monopoles in SU(3) gauge theory, where SU(3) is broken to
U(l) x U(l). In particular we have written down an Atiyah-Ward patching matrix
which appears to represent a separated two monopole solution which is cylindri-
cally symmetric and reduces to the charge two spherically symmetric monopole, in
the U(l) x U(l) breaking, as the separation vanishes. By taking another limit we
recover the U(2) breaking with a patching function equivalent to Ward's.

Further we have found the patching matrix for the spherically symmetric
charge n—ί monopoles of SU(n) gauge theory and would conjecture that this
arises from a cylindrically symmetric solution of n— 1 SU(2) monopoles separated
along the axis of symmetry.

However we have only shown the non-singularity of the splitting procedure, to
recover the Aμ(x), in the spherically symmetric cases. This remains to be done in
the general case but is difficult if attempted in the conventional fashion.
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We have not fully analysed all the cylindrically symmetric monopoles nor have
we repeated the above methods for the case where two of the ai are equal. This case
is more involved because the bundle transition matrices A and a etc., are no longer
upper triangular. Nevertheless it ought to be examined.

Finally we have assumed throughout that the general form of g in SU(3) can be
chosen to be upper triangular.
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Note added. Ward's deformed imbedding of the charge 1 SU(2) monopole in SU(3) has the following

form [11]:

012

It belongs to case (iv) (b)

-mζ

Ql3

a2--

with

aeaγy-a~γea2y

y — m2

— a2yeaa-\-m2e

ay{y

= e(*2-«1)m^ i n a

the choices:

ψ1=γ-m2,

m
a'

'-f
1

/3 = - l ,

m e

a3y-ea2γ

Q23 ζ y

•^+(y-mV 3 y

-m2)

real parameter.

G — maζ,

F=-m,

H=-a.
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