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Exponential Bounds and Absence of Positive Eigenvalues
for JV-Body Schrδdinger Operators

Richard Froese*'** and Ira Herbst*'***

Institut Mittag-Leffler, Auravagen 17, S-182 62 Djursholm, Sweden

Abstract. For a large class of iV-body potentials V we prove that if ψ is an
eigenfunction of — A + V with eigenvalue E then sup {α2 + E : α ̂  0,
exρ(α|x|)φeL2} is either a threshold or +oo. Consequences of this result are
the absence of positive eigenvalues and "optimal" L2-exponential lower
bounds.

I. Introduction

In this paper we will be concerned with the iV-body Schrδdinger operator

H = H0 + V, (1.1)

V= Σ Vij9 (1.2)
1 ^ i < j ^ N

in Z^R^" 1 *). Here Ho arises from the operator

&o=- Σ^i/^i (1.3)

by removing the center of mass (see [16, 17] and Sect. II for more details). Each Vtj

is multiplication by a real-valued function vtj(xf — xβ, where here xeIRviV is written
x = (x l 5..., χN). Let h0 be — A in L2(RV). We assume in what follows that each two-
body potential vtj satisfies

(a) ^ . ( I + ZIQ)"1 is compact, (1.4)

(b) (l + Λ o Γ ^ ^ o K l + ^ Γ 1 i s compact. (1.5)
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From (a) it easily follows that vtj is a tempered distribution. What is meant by (b) is
that the tempered distribution w^y) = y Vv^y) has the property that the sesqui-
linear form Λ . r , ίiΛ . x Λ . ,A _ x 1 ,

QU )((i+h)~ 7 wf/i+ΛOΓ ^)

extends from ^(W) x 5^(RV) to the form of a compact operator on L2(RV)
An important set for our purposes is the set of thresholds. To describe this set

we need further notation. Given a subset C of {1,2,..., N} with cardinality \C\ > 1,
l e t H(C) = H0(C)+V(C),

V(C)= £
ieCJeC

as operators in L 2 (R v ( | c | ~ 1 ) ). The operator H0{C) arises from the operator

H0(C)=-Σ

by removing the center of mass. If \C\ = 1 we define H(C) = 0.
We define the set of thresholds, &~(H), associated with H as

: There exists a partition {C1? C 2,..., Ck} of
{1,..., N} into fe ̂  2 disjoint subsets, and for each
j an eigenvalue E. of ^(C^, such that E = Eγ + . . . + Ek}. (1.6)

We will also need the distance function
\ l / 2

J , (1.7)

(1-8)

where |xf —R| denotes the Euclidean distance in 1RV.
Our first main result is as follows:

Theorem 1.1. Suppose H = H0 + V with two-body potentials satisfying (1.4) and (1.5)
above. Suppose Hψ = Eψ. Then

sup{α 2 + E : α ^

is either a threshold or + 00.

Under conditions (1.4) and (1.5) on the two-body potentials, Perry et al. [15]
have shown that &~(H) is a closed countable set. We make implicit use of this fact
in stating a corollary of Theorem 1.1:

Corollary 1.2. Suppose H is as in Theorem i.l and Hψ = Eψ.
(i) Suppose Eφ^(H) and ^{H) n [ £ , 00) is not empty. Let t0 be the first

threshold above E (more explicitly £0 = inf \βΓ{Jί) n [ £ , 00)J. Then for all

β<γto-E,
2CiN-1}). (1.9)
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(ii) Suppose that for some α^O, Qxp(a\x\)ψe L2(W{N ~ 1]\ where a is such that
α2, oo) is empty. Then (1.9) holds for all β>0.

At this point we cannot eliminate the possibility that (ii) occurs (for some ψ Φ 0)
without introducing further hypotheses on the potentials Vtj. One such hypothesis
which eliminates the possibility of such unusual behavior in this situation was
given in [11]. This is the basis for condition (i) of the following theorem. The union
of conditions (i) and (ii) below forms a rather wide class of potentials.

Theorem 1.3. Suppose H = H0 + V with V as in (1.2) and each vtj is h0-bounded with
bound zero. Suppose (ho + l)~1y-Vvij(ho + iy1 is bounded for each (if). Let
p = Max(2, v—1). Suppose either that

(i) for each ε > 0 and (ij) there is a cε such that

or

(ii) for each (ij), vtje LP(W) + L°°(IRV) and there is a decomposition vtj = v\j] + v\f
such that (1+ |y|)ι;jy)GLp(lRv) + L00(lRv) and for each ε > 0 there is a cε such that

Suppose that Hψ = Eψ with exp(α|x|)tpGL2(lRv(iV 1}) for all α. Then ψ = 0.

Remark. The condition y'Vvij^εh0 + cε is certainly satisfied for all ε>0 if

this follows from y VvtjO where q>v and q^
V

= Σ (Dk(ykvij)~(ykvij)Dk~vij)> where here Dk = d/dyk is considered an operator I.
fc=l J

But it need not be if vtj is as singular as is allowed in (ii).
From Corollary 1.2 and Theorem 1.3 we have

Corollary 1.4. Suppose H = H0 + V with two-body potentials vtj satisfying (1.4),
(1.5), and either condition (i) or (ii) of Theorem 13. Then H has no positive
eigenvalues and if H\p — E\p with φφO it follows that

^1'-^); α> ] / ^ £ . (1.10)

Proof Assume inductively that for l^ |C|^fe (where k<N) that H(C) has no
positive eigenvalues. Then it follows that for | C 0 | = fe+1, H{C0) has no positive
thresholds. Hence if H(C0)xp = E\p with £ > 0 it follows from (ii) of Corollary 1.2
that Qxp(β\x\)ψeL2 for all β>0. However from Theorem 1.3 this is impossible
unless ψ == 0. Since our inductive assumption is clearly true for \C\ = 1 we learn that
H(C) has no positive eigenvalues for any \C\^N. Hence H has no positive
eigenvalues (and no positive thresholds).

Now (1.10) follows easily from (ii) of Corollary 1.2 and Theorem 1.3. •
We remark that as shown in [11], the "lower bound" (1.10) is close to being

optimal at least if one allows V(x) to be slightly more general than an JV-body
potential [see (2.45)]. For in the latter paper an example is constructed of an
N-body-like potential V such that — A + V has an eigenfunction ψ whose decay
rate is controlled by a threshold which is arbitrarily close to zero.
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In [11], (1.10) is proved in certain important special cases including for
Hamiltonians which describe atomic and molecular systems. We believe that for
generic V there are no embedded eigenvalues and that the decay rate of
eigenfunctions is controlled by the lowest threshold. A proper formulation and
proof of such a result would be very interesting.

Theorem 1.3 is a kind of unique continuation theorem. We expect that
conditions (i) or (ii) of that theorem are far from optimal in eliminating arbitrarily
rapid exponential decay.

The ideas in this paper are directly descended from [11,12]. The latter paper
proves absence of positive eigenvalues for a large class of one-body potentials
using a similar method. The proof of Theorem 1.1 relies heavily on ideas from
[11,12] and on the "Mourre estimate" [14] which was proved for JV-body systems
by Perry et al. [15]. The unique continuation type argument on which Theorem
1.3 is based is also an extension of ideas which appear in [11,12]. Indeed under
condition (i) of that theorem, the result already appears in [11].

There are of course situations aside from those in [11,12] in which partial
results along the lines of Theorem 1.1 and Corollary 1.4 were previously known.
For one-body systems of the type considered here the absence of positive
eigenvalues was proved by Kato [13], Agmon [2], and Simon [8] (see the book by
Eastham and Kalf [9] for further developments). For JV-body systems with
potentials dilation-analytic in angle θ o ^π/2, absence of positive eigenvalues was
known from the work of Balslev [5] and of Simon [19]. Previous to this work
Weidmann [21, 22] had used the virial theorem to prove absence of positive
eigenvalues for a class of homogeneous potentials. The work of Agmon [1] is also
relevant here. The fact that eigenfunctions corresponding to non-threshold
eigenvalues decay exponentially (at some rate) was known for dilation-analytic
potentials from the work of Combes and Thomas [6], but as far as we are aware
the bound involving the first threshold above E is new, except of course when E is
below the essential spectrum, in which case more detailed estimates are available
[3, 7]. From the work of Agmon [3], it follows that for even more general two-
body potentials, eigenfunctions with eigenvalues E < 0 must decay exponentially in
certain cones even if Eeσess{H).

Some further discussion and references can be found in the notes section of
[17].

The organization of this paper now follows. In Sect. II we prove a result
(Theorem 2.1) from which Theorem 1.1 follows given the Mourre estimate
(Theorem 2.3) of Perry et al. [15]. In Sect. Ill we prove a unique continuation type
result (Theorem 3.1) from which Theorem 1.3 follows. Theorems 2.1, 2.3, and 3.1
are given for potentials V which are more general than JV-body potentials. The
results which generalize Theorem 1.1 and Corollary 1.4 are given in Corollaries 2.4
and 3.2, respectively.

II. The Mourre Estimate and Exponential Upper Bounds

In this section we consider operators of the form

H=-A + V (2.1)
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in L2(R"), where V is multiplication by a real-valued function satisfying

(a) Fis zl-bounded with bound less than one, (2.2)

(b) ( - A +1)~1 x - VV{~ A +1)'1 is bounded. (2.3)

Let D be the operator in L2(IR") defined by

(Df){x)=Vf(x),

and denote by A the generator of dilations:

A = (xD + D x)/2. (2.4)

We will also need the projection-valued measure {E(A): A a Borel subset of R}
associated with the self-adjoint operator H.

We say that the "Mourre estimate" is satisfied at a point AoeIR if there exists a
non-empty open interval A containing λ0, a constant c o > 0 and a compact
operator Ko so that

E(Δ)IH9 A] E(A) ̂  c0E(A) + Ko. (2.5)

Clearly the set of λ0 for which the Mourre estimate is satisfied is open. We denote
by S(H) the complement of the latter set. The estimate (2.5) was introduced by
Mourre [14] who proved that it was satisfied at non-threshold points for certain
3-body Hamiltonians, and used it to prove σ s c (H) = 0. Mourre's result was
improved and extended to iV-body Hamiltonians by Perry et al. [15] (see Theorem
2.3 below).

We use the notation [iί, A] for the quantity — 2A — x VV which is a form on
@(Δ) x @ι(Δ).

In this section we will prove the following result and then apply it to JV-body
/ n \ l / 2

systems. We use the notation \x\ = £ xf

Theorem 2.1. Let H— — A + V in L2(1R"), where V is a real-valued function
satisfying (2.2) and (2.3). Suppose Hψ = Eψ. Then

+ £:α>05exp(α|x|)t/;GL2(IR")}

is either + oo or in S(H).

The following lemma, which will be crucial in our proof of Theorem 2.1, was
used in [12]. We sketch a proof (different from that in [12]) in an appendix.

Lemma 2.2 Let H be as in Theorem 2.1 and Hxp = Eψ. Let ρ(x) = (|x|2 +1) 1 / 2 . For
ε > 0 and λ>0 let

) = xg(x).

Let ψF = Qxp(F)ψ and define the operator

2 (2.6)
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Then ψFe@(A) and

ExpF, (2.7)

(ψF, HψF) = {ψF, ((VF)2 + E)ψF), (2.8)

(ψF, [fl, A]φ F ) = - 41 |0 1 / 2 ^ψ F | | 2 + (φF, {(x F ) 2 # - x • F(FF)2}y>F). (2.9)

// m addition ρλexp(αρ)φEL2(IR") /or α// A and some fixed a^O, then the above also
holds with

λ1)

for all 7 > 0 and λ>0.

Remarks, (i) In case F = λ\n(ρ(l + ερ)~Λ), an easy calculation gives

1 . (2.10)

Although in this case we do not know that ψFe^(A), it easily follows that the
function g1/2AxpF is in L2(IR") so that \\g1/2AψF\\ has an obvious meaning.

(ii) Note that limAln(ρ(l+ερ)"1) = Alnρ, lim (aιρ + λln{l+γρλ~ί)) = {ac + γ)ρ9
£ 4 0 λ-*oo

and this is the reason for our choice of F. Clearly the lemma is also true for other
choices. The crucial fact which makes (2.9) useful is the positivity of \\gll2AψF\\2.
This is a consequence of our choice of radially symmetric, monotone increasing
functions F. For the purpose of understanding why (2.9) can be useful, one should
think of the second term on the right side of (2.9) as negligible and compare (2.9)
with (2.5).

(iii) Formally (2.9) follows from the equation (ψ, [H,exp(F)^4exρ(F)]φ) = 0.

Proof of Theorem 2.1. Before beginning in earnest we illustrate the strategy of the
proof. Suppose Hψ = Eψ and that sup{α2 + £ : α ^ 0 , exp(α|x|)ιpeL2} = αo
+ EφS'(H). Suppose for simplicity that ρAexp(αoρ)φeL2 for all λ. Then if y > 0 and
F = αoρ + λln^ + yρ/l"1) we clearly have lim ||exp(F)φ|| = oo. Thus the vector Ψλ

λ-»oo

= exp(F)φ/||exp(F)φ|| leaves every compact set as A-κx). It turns out that (H — E
— (VF)2)Ψλ^0 so that for small γ, Ψλ has energy concentrated around E-\-a^. If F
were actually equal to (αo + y)|x|, then we would have (x V)2g — (x V){VF)2

= (αo + 'y)|x|~1 which contributes negligibly to (2.9) as λ-+oo. This is not far from
true. Since the energy of Ψλ is concentrated around E + &\ and Ψλ converges to
zero weakly, the negativity oί(Ψλ, [H, A~]Ψλ) which follows from (2.9) contradicts
its positively guaranteed by the Mourre estimate.

We now proceed to implement these ideas. We first show that if Eφ$(H) then
ρAtpeL2(IRM) for λ>0. Assume the contrary so that for some 2>0, ρλψφL2{W). Let
F = λln(ρ(l-fερ)' 1 )and

By the monotone convergence theorem, | | *F F | | 2 = j(ρ/(H-ερ))2A|ιp|2ίiMx converges
to §ρ2λ\ψ\2dnx— + oo so that for any bounded set B

l imf B | !P β |Vx = 0. (2.11)
ε|0
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By explicit calculation we find

(ΓF)2 = λ 2 ( l - ρ - 2 ) ρ - 2 ( l + ε ρ ) - 2 , (2.12)

so that \VF\ ^ λρ~ \ It follows from this, Eq. (2.8), and the fact that V is A -bounded
with bound less than 1 that || VΨε\\ is bounded as ε JO. Using this fact, it similarly
follows from (2.6) and (2.7) that \\(-Δ + ί)Ψε\\ is bounded as εjO. Hence from
(2.11), (—A + l)Ψε converges weakly to zero as ε |0 . From the compactness of
ρ~ιD{-A + iyι we have as εjO

-+0.

Similarly \\{VF)2Ψε\\ and ||(D VF)Ψε\\ converge to zero so that from (2.7) we have

=O. (2.13)
ε j O

By definition of S(H\ (2.5) holds for some A containing E, some c o > 0 and some
compact operator Ko. Without loss of generality we can assume A = [E — <5, E + δ]
for some <5>0. Since Ψε converges weakly to zero, we thus have

lim inf (ψ& E{A)[_H, A]E(Δ)Ψε) ^ c0 lim inf \\E(A)Ψε\\2

ε|0 ε|0

= c o > 0 , (2.14)
where the equality in (2.14) follows from

lim ||£(IRV1)ye|| ^l im \\{H- E)δ"xE(β\Δ)Ψe\\
ε |0 εjO

^δ~ι lim \\(H-E)Ψε\\ =0. (2.15)
ε|0

We now use (2.9) to derive a contradiction to (2.14). First by explicit
calculation [using (2.10) and (2.12)] we find

for some c1 independent of ε, so that from (2.9)

lim sup (ψ& IH, A] Ψε)^0, (2.16)
we now claim that ε i 0

lim \\{-Δ + ί)E(R\Δ)Ψe\\ = 0 . (2.17)
ε|0

To see this we use (2.13) and (2.15) to get

lim \\(H + i)E(β\Δ)Ψε\\ ^lim \\E(JR\A)(H-E)Ψε
ε|0 ε|0

ε | 0

which implies (2.17) because V is A -bounded with bound less than one.
We have

(2.18)
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where

From (2.17) and (2.3) we have

(Here we have used [H,A~] = —2A — x-VV.) Similarly lim/2(ε) = 0, so that from
ε | 0

(2.18) and (2.16), we have
lim sup (Ψε,E(Δ)[H,A]E{Δ)Ψε) ^ 0 . (2.19)

ε|0

This contradicts (2.14) so we have shown that \ϊEφS{H\ then ρλψeL2(Rn) for all λ.
Suppose now that the theorem is false so that

sup{α2 + £:exp(αρVeL2(IRn),α>0}=αJ + £ , (2.20)

where α ^ O and oc2

ί+E = Λφ£>(H). Again we know that (2.5) holds with
Δ = [Λ — δ,Λ + δ~] for some <5>0, c o > 0 , and Ko compact. If α 1 = 0 , set α = α 1 = 0 . If
α1 >0, then choose αe[0, αx) so that

(2.21)

In either case we have for all λ>0

ρAexp(αρ)ψeZ2(IRn). (2.22)

Suppose 7 > 0 is such that α + y > α r Then by (2.20) we have

(2.23)

We will obtain a contradiction for sufficiently small y >0. In the following we also
assume ye(0,1]. Let F = ocρ + λln(l-\-yρλ~1) and ψF = exp(F)ψ, Ψλ = ψF/\\ψF\\ As
in the previous argument we conclude from (2.23) that for any bounded set

\\m$B\Ψλ\
2dnx = 0. (2.24)

λ->oo

In the following we denote by bpj= 1,2,... constants which are independent of α,
y, and λ. By direct computation we have

1 Γ 1 ) , (2.25)

so that
\VF\^0L + y^bl9 \ΔF\^b2. (2.26)

It thus follows from (2.8) that HFίFJ Sb3- Using the latter in conjunction with
(2.26) and (2.7) gives

(2.27)
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In particular, (2.27) and (2.24) imply that (—Δ + l)Ψλ converges weakly to zero. In
addition to (2.24) it follows easily that for any bounded set B

lim$B\VΨλ\
2dnx = 0. (2.28)

λ->-oo

We claim that

lim \\(H-E-{VF)2))Ψλ\\=0. (2.29)
A ^ oo

To see (2.29) note first that from (2.7)

l imsup | | ( //-£-(PF) 2 ) ϊ /

A | |= l imsup | | (D FF+P 7 F JD) ίFλ | |. (2.30)
λ~* 00 λ~* 00

Since VF = xg, we find

D VF+VF D = 2gA + x-Vg9 (2.31)

and compute from (2.25)

\x Vg\ύb5ρ-1. (2.32)

From (2.30), (2.32), and (2.24) we have

. (2.33)
λ->oo λ-> oo

By direct calculation and a simple estimate, we have

{x-Wg-ix-^VFΫ^bsQ-^ + yia + y)!!, (2.34)

so that from (2.9) we conclude

(ΨλXH,A\Ψλ)S-4\\gil2AΨλ\\2 + b6(Ψ^ρ-'Ψλ) + y(oc + y)/2. (2.35)

Since ( - A + \γγ\_H,A~\(-A +1)'1 is bounded, and (2.27) holds, we have

\\gU2AΨλV£b7. (2.36)
From (2.32) we have

If χN is the characteristic function of {x : ρ ̂  N}9 we thus have

so that from (2.24) and (2.28) we have

Since N is arbitrarily large, lim \\gAΨλ\\ =0, so that (2.33) implies (2.29). From
λ-> oo

(2.29) we conclude that

\imsup\\{H - E- ct2)Ψ λ\\S2ya + y2, (2.37)
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and thus (from (2.21))

l^\A)ΨJ^\imsup\\(H-E-a2)(2/δ)E(Έ\A)Ψλ\\

(2.38)

£ - α 2 ) l ί ' Λ | |

9 (2.39)

From (2.39) it follows that

(2.40)

From (2.5) and the fact that Ψλ converges weakly to zero we have

lim inf (<Pλ, E(Δ)\_H, A]E{Δ)Ψλ) ^ c 0 lim inf || E{Δ)Ψ}
Λ-+00 λ-*oo

|2

^co(ί-(b8γ)2). (2.41)

From (2.35) however,

(2.42)
λ->oo

As in previous argument (2.27), (2.40), and (2.42) imply

lim sup(<FA, E{Δ)IH9 A\E{Δ)Ψ λ) ^b12y. (2.43)

Since c0 is a fixed positive number, (2.43) contradicts (2.41) for all small enough
y > 0. Thus the theorem is proved. •

To apply Theorem 2.1 to operators of the form (1.1), let us first introduce some
notation [3]. Define the inner product

<x,y>= Σ 2 m Λ yi (2.44)

on 1RV]V. Here x = (xv ...,xN), y = {yι,.. ,yN), and x^y^ indicates the usual inner
product in 1RV. Given a point xeRv i V, let the center of mass of x be given by

Define the subspace X C 1RV]V by

and the projections Πυ : IRviV-^lRviv

ί π Ϊ =
[ ij )k 0; otherwise.

Note (Π^^mjiXi-Xjj/im^πij), (n^^m^x^ — x^m^m^. It is easy to check
that Πij is an orthogonal projection relative to the inner product < , > and that
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Ui X-+X. The reason that (2.44) is natural is that if

j
ί = l

then in fact - Ho is the Laplace-Beltrami operator for R v N with inner product
< , >. In other words if we introduce an orthogonal basis {ev ..., evN} in IRvN and

vN

define the coordinates {xα: α = 1,..., vN} of a point x by writing x = Σ xαeα, then
α = 1

Removal of the center of mass motion in this language can be understood by
writing

Δ=ΔX + ΔX±,

where X®Xλ=WN and Δx is the Laplace-Beltrami operator for the subspace X
with inner product (2.44). The operator Ho (Ho with center of mass removed) is
just — Δx so that (1.1) can be written

H=-Ax+V.

The potentials (Vij(x) = υij(xi — xJ)) clearly satisfy Vij(x)=Vij(Πijx) and thus can
be considered functions on Range Πtj CX. We are thus led to consider operators of
the form (1.1) on L2(IR"), where

V(x)= Σ VJtΠiX). (2.45)

Here 77f is a non-zero orthogonal projection. We assume that each Vi is a real-
valued function such that (denoting v ^ d i m Range I7ί? zl = Laplacian in L2(lRVί))

(a) VJί-Δi+iy1 is compact on L2(RVi). (2.46)

(b) (-Ai+ϊ)-ίyVVji-Δi+ίy1 is compact on L2(RVi). (2.47)

The statement of the Mourre estimate for these more general operators
requires a definition of ̂ ~(H). Let ̂  = {1,2,..., M}. For each non-empty iQJί, let

irl=[xeW:x= Σ w f w i t n uieRangeΠλ ,
I iel J

and let τΓ0 = {0}. Let J^ be the family of subspaces of IR" given by

^ = {ri:lCJί). (2.48)

For ^ e # - with ^ + { 0 } 5 let

HΨ=-ΔΨ+ Σ ^ ( ^ ) , (2-49)
Range ΠiCΨ

where Zlr is the Laplace operator for the subspace y and Hr is an operator in
L2(IRfc) with k = dimir. If 1T is {0} we define Hr = 0 on C. We can now define

is an eigenvalue of H^ for some ' T e J ^ with iΓ + IR"} . (2.50)
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Theorem 1.1 follows from Theorem 2.1 and the following result (Theorem 2.3)
of Perry et al. [15]. Actually in the latter paper the Mourre estimate is only an
intermediate result. The authors consistently make assumptions stronger than
(2.46) and (2.47) which they need in order to prove absence of singular continuous
spectrum, although these stronger assumptions are not needed to prove the
Mourre estimate. In addition in [15] the Mourre estimate is only proved when Fis
an JV-body potential of the form (1.2) and not in the more general case where V is
given by (2.45). However the authors explicitly state that their method works for
these more general potentials with a suitable definition of thresholds. In [10] we
give an alternative (and we believe, simpler) proof of the following result:

Theorem 2.3 [15]. Suppose H=-A + Vin L2(W\ where V is given by (2.45) with Vt

real-valued multiplication operators satisfying (2.46) and (2.47). Define &~{H) by
(2.50). Then ^(H) is a closed countable set and

It is not difficult to see that the set &~(H) as defined in (2.50) coincides with the
set of thresholds defined in Sect. I if V is an JV-body potential of the form (1.2).

Combining Theorems 2.1 and 2.3 we have

Corollary 2.4. Suppose H is as in Theorem 2.3 and SΓ{β) is given by (2.50). Suppose

Hψ = Eψ. Then s u p { α 2 + £ :α^0,exp(αM)φeL2(R")}

is either + oo or in

We end this section with an example which shows that the Mourre estimate is
valid for more general potentials than those satisfying (2.46) and (2.47). Our
example may seem impossible at first glance because it involves the von Neumann
and Wigner [23] potential which has a positive energy bound state:

Lemma 2.5. Let H= -d2/dx2 + V(x), where V(x)=V1(x) + φinkx)/x and
(a) α is real, k > 0,
(b) Vί is real and V1( — d2/dx2 + l)~ί is compact,
(c) {-d2/dx2 + iyί(x VV1)(-d2/dx2 + iy1 is compact

Then £(H)C{0,k2/4}. In addition if |α|<fc, then £(H)C{0}.

Proof We follow [11,12] except for one important difference. Let Ho= —d2/dx2

and suppose / is a real-valued function in C (̂1R). Then it is easily seen that
(i/0 + l)(/(H)-/(H 0 )) is compact. Thus

/(£Γ)[£Γ, A] f(H) =f(H0)lH, A] f(H0) + compact

=f{H0){2H0 -{x'VV1) + φinkx)/x - fcα cosfoc)/(tf0)

= 2H0(f{H0))2 - /cα/(#0)(cos kx)f(HΌ) + compact. (2.51)

If we write p= — id/dx and coskx = (eίkx+ e~ikx)/2, we have

f(H0) coskxf(H0) = l/2{f(p2)eίkxf(p2) +f(p2)e~ίkxf(p2)} .

Since eιkxpe~ίkx = p — k, we have

f(P

2)eikxf(p2) =f(p2)f((p-k)2)eikx.
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Suppose f(p2) = g(p), where g has support in {p : \p — po\<s or \p + po\<ε} for some
p0 >0, and p0 φ fc/2. Then if ε is chosen so that ε < fc/2 and ε < \p0 — fc/2|, the reader
can easily check that f(p2)f{(p-k)2) = 0. Thnsf(H0)coskxf{H0) = 0 and

/(H)[H, ^]/(H) = 2H0(f(H0))2 + compact.

If ε is small enough 2H0f(H0)
2^c0f(H0)

2 for some c o > 0 , so that again using the
compactness of f(H0)

2—f(H)2 the Mourre estimate follows for positive λ0

{λo=pl). For A a compact interval contained in (— oo,0), E(A) is compact so that
for negative λθ9 the Mourre estimate is trivial.

To prove the last statement of the Lemma, according to (2.51) it is sufficient to
show that if |α|<fc,

2HJ(H0)
2 - kaf(H0) cos kxf(H0) ^ c0 f(H0)

2 (2.52)

for some c0 > 0 and some / which is 1 in an interval containing fc2/4. Suppose
δe(0,1). Let χ + be the indicator function of

and χ_(x) = X + (-x).

Then with f(H0) = χ+(p) + χ_(p), we have

2H0f(H0)
2 ^ ((1 - δ)2k2/2)f(H0)

2. (2.53)

We will show that

||/(H0)cosfex/(iί0)|| = l/2, (2.54)

so that from (2.53) and the fact that f(H0)
2=f{H0)

2H0 f(H0)
2 - kaf(H0) cos kx f(HΌ) ^ f(H0)

2((l - δ)2 (k2/2) - |fcα|/2). (2.55)

If δ is small enough (2.55) implies (2.52), so that it only remains to prove (2.54).
Using χ_eikxχ+ =χ+eikxχ+ =χ_eikxχ_ =0, it is easy to see that

ikxχ_+χ_eikxχ+}. (2.56)

so that | |B | |^l/2. Clearly if χ + ιp = ψ, then Bψ = ί/2e~ikxψ and hence ||B|| = l/2.
This gives (2.54). •

Corollary 2.6. Let H be as in Lemma 2.5. Then H has no positive eigenvalues except
possibly at k2/4. If |α| < k then H has no positive eigenvalues.

Proof. According to Theorem 2.1 and Lemma 2.5, if Hxp = Exp with £ > 0 , then if
|α|<k or E + k2/4 we must have exρ(αx)ipeL2(1R) for some α>0. This contradicts
Theorem II. 1 of [11] unless ψ = 0.

Remark. Results of this type have been proved by O.D.E. techniques [4, 8, 16] in
the case where |t^(x)^c(l+|x|)~1~ f i for some ε>0. In fact in [4, 16] it is shown that
if |α| >k, a positive eigenvalue can indeed occur. (With a short range potential Vl9

the borderline case |α| = fc does not produce a positive eigenvalue [4,16].)
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III. Exponential Lower Bounds

In this section we will consider self-adjoint operators of the form

H=-Δ + V (3.1)

in L2(IRΠ), where as in the last part of Sect. II, V is a function of the form

V(x)= Σ VjJIiX). (3.2)
i = 1

Here 17ί:lR
n->IRn is an orthogonal projection (with respect to the usual inner

product). We will sometimes abuse notation and consider Vt to be a function on
IRVi, v. = dim(Rangel7;)>0.

We state the following result whose proof is the subject of this section. (The
first part of the theorem is given in [11].)

Theorem 3.1. Suppose H is of the form (3.1) and V is given by (3.2), where Vt is a
real-valued measurable function. Let pf = Max(2, vf — 1). Suppose either that

(i) V is A-bounded with bound less than one, (—A + l)~1x-VV(—A + l)'1 is
bounded, and for some b1 and b2 with bί<2, we have

ί 2
or

(ii) for each i, V;.eLPi(Rv0 + L°°(lRv0 and there is a decomposition V^
where (l + lyl^eUW^ + L^QB?') and for each ε>0, y VV}1^ -εAi + bε for
some bε.

Suppose that Hψ = Eψ with exp(α|x|)φeL2(lR") for all α. Then ψ = 0.

We refer the reader to the remark made after Theorem 1.3 for a comment
about the relationship of conditions (i) and (ii).

Proof That (i) implies the result follows from [11]. We do not repeat the proof
here although the astute reader will be able to reconstruct such a proof from what
follows. Thus assume that (ii) holds.

For simplicity we first consider the case n^3 and indicate the necessary
modifications for n^2 later. Suppose that t/ φO and let ψ(X = exp(otr)ψ, r = \x\, and
define ΨΛ = ψJ\\xpa\\. Then as in Lemma 2.2 we find Ψae@{H),

(3.3)

(3.4)

(3.5)

(3.6)

These equations all appear in [11]. They are not difficult to obtain from those in
Lemma 2.2. The singularity at r = 0 is not harmful if n ̂  3. Taking the norm of both
sides of (3.3) gives

2. (3.7)
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A computation shows that as a quadratic form on 3>(Δ) x 9ι(Δ)

3)r- 3 , (3.8)

Thus from (3.7), (3.8), and (3.9) it follows that

\\(-Δ-u2-E)ΨJ^\\VΨJ. (3.10)

Here we have used the fact that the matrix (Qi}) is non-negative. Let

We claim that
lim UK*:;1 | l=0 . (3.11)

Given (3.11) it follows from (3.10) that for large enough α

so that
\\(-A-ot2

and thus
\\KaΨa\\^2a. (3.12)

From (3.5) it follows that for all large α and some cί > 0

^Cla. (3.13)

Let W1=x VV{1\ W2 = x-VV{2\ By assumption we have -A-W2^-b for
some b. Using (3.6) and (3.13) gives

2-(Ψa,W1Ψa). (3.14)

Since from (3.12)
W μoi2), (3.15)

if we can show that

(3.14) will provide a contradiction for large α. Thus we must prove (3.11) and (3.16).
To see (3.11) first note that ||JS:~1I|-*O so that to prove WVJtΠfήK^W-^O, we

can assume that F;eLPι(lRVι). Since we can always write Vi=fε

Ji-gε with gεeL°°(lRVl),
,<ε it suffices to show that

,,.- (3.17)
α->oo

To see (3.17) we factor L2(lR") = L2(IRVί)®L2(IR"-Vι) and write

1 2 2 + α 2 ) - 1 / 2 , (3.18)
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where Δy is the v dimensional Laplacian in the variable y and Δ± involves
orthogonal coordinates. To prove (3.17) it thus suffices to show that for each
ίe[0,oo)

^ ) ^ y + i - ^ 2 - £ : ) 2 + a 2 ) - 1 / 2 | | ^ c | | ^ | | P i , (3.19)

where c is independent of t and α and the norm on the left in (3.19) is in L2(IRVi). To
prove (3.19) we use the estimate [20]

Δ^t-^-Er + ocψ^^mjf.J^πy^, (3.20)

where ftjy) = ((\y\2 + t-a2 - E)2 + <x2y112. We claim that

I I Λ J P ^ C , (3.21)

where c! is independent of t and α for large α. Clearly once (3.21) is proved we will
have shown (3.11). To estimate | |/ ί > α | |p. we assume that t — a2 — E= — β2^ — 1.
Otherwise (3.21) is easy. We have with / = /ί>α

JL/W'= ί I / W + J \f\PίdyVi. (3.22)
\y\2<2βi \y\2>2β2

The first integral in (3.22) can be estimated by

00

cβv ~ι j ((x2 - β2)2 + α 2 ) " P i l 2 d x . (3.23)
0

We use {x2-β2)2^β2{x-β)2, where β^l to show that (3.23) is less than

Vi'1 ] (β\x- β)2 + <x2yPit2dx^4c(βv^2l*Pi-1)] (s2 + \
0 0

^ const.

The second term in (3.22) is easily shown to be bounded and hence (3.21) follows.
We must now prove (3.16). Since x VVi(Πix) = (Πix)-(VVi)(Πixl it suffices to show
that

(3.24)

uniformly in ί for ί^O. Note that y- VV^ = lyD, V^)'\=D-{yVll))-{yV^))-D
— V Vf1'. By our previous estimate we already know that

uniformly in ί, so we need only show that

sup | | D y ( ( - J y + ί - α 2 - £ ) 2 + α 2 ) - 1 / 2 | | < o o . (3.25)
ί ^ 0 , α ^ 1

Inequality (3.25) follows from the numerical estimate

which is easy to prove. Hence the proof of Theorem 3.1 is complete in the case
n>3.
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To handle the case n^2we introduce a cutoff function ηe C°°(IRM) which is zero
in a neighborhood of x = 0 and one in a neighborhood of infinity. Assuming that
φΦO we can choose η so that ηxpή^O. Defining Ψa as before, we have

where _

By choosing the support of 1 — η sufficiently small we can arrange that

\\ga\\^xp(-δa)\\ηΨJ

for some δ>0. Since {n- l){n-3)^Wa,r-^Wa)^-c\^Wa\\2 for some c (depend-
ing on η), we easily find the estimate

\\KaηΨa\\£c'aL\\ηΨa\\ (3.26)

in the same way as before. Similarly we can arrange

(ηΨa,HηΨa) = {E + a2 + 0{exp( — δa)))\\ηΨJ\2, (3.27)

and
2

9 (3.28)

for some δ > 0 by choosing the support of 1 — η sufficiently small.
Proceeding as before using (3.26) through (3.28) yields the result. •
We give the result analogous to Corollary 1.4 for the more general potential of

the type given in (3.2) in the following corol lary:

Corollary 3.2. Suppose H = — A + V with V of the form (3.2). Suppose each V{ is real
and satisfies (2.46) and (2.47). Let pi = Max(2, vf— 1). Suppose in addition that either

(i) for each ί and ε>0, y VV^y)^. —εΔi + bε for some bε,
or

(ii) for each i, ^eLP l(RV l) + L°°(IRvO and there is a decomposition F = F ( 1 ) + F/2),
where (1 + |y|)l/.(1)eLί?ι(IRVi) + Lc0(lRVι) and for each ε>0, yW[2)^-εΔi + bε for
some bε.

Then H has no positive eigenvalues and if Hψ = Eψ with φ + 0, it follows that

α> j / ^

The proof of this result is very similar to the proof of Corollary 1.4. The
induction is now on the family of subspaces ^ defined in (2.48). We omit the
details.

Appendix: Proof of Lemma 2.2

In this appendix we sketch the proof of Lemma 2.2 using a method which is
different from that in [11] or [12].

Let F be either of the two functions given in the lemma, and let £ = exp(F).
Suppose φeCJ)(Rn). Then the following formula is not difficult to derive

(φ,ίξAξ, -Δ-]φ) = (ξφ,ίA, -Δ^ξφ)-4\\gί'2Aξφ\\2+ (ξφ,Gξφ), (A.I)
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where

G(χ) = (x. V)2g - x - V(VF)2. (A.2)

By definition of the distribution x VV, it is easy to see that

(-ξAξφ, Vφ)-(Vφ,ξAξφ)= -(A{ξφ), V{ξφ))-(Vξφ,A{ξφ))

= (ξφ,x VVξφ). (A.3)

Here if W is the distribution x-VV, that is

then (ξφ.X'VVζφ) means W(\ξφ\2). We have assumed that (-zJ + 1)"""1*
'VV( — Δ + iyι extends to a bounded operator, so we will continue to use the
notation (/,(χ VV)f) for fe®{Δ).

Hence from (A.1) we have

-2Re(ξAξφM-E)φ) = (ξφ,lA,mξφ)-4\\gίl2Aξφ\\2 + (ξφ,Gξφ). (A.4)

Suppose F = λ\n(ρ(l +ερ)~1). Then ξ is a bounded function in C^QR") and we
have g:gconstρ~3, |G|^const, \VF\ ζconst, |zlF|^const.

Let H(F) and φ be as in the lemma. Then clearly H(F) is a closed operator on
@(Δ) with C^(IR") a core. In addition H{F)ψF = EψF in the sense of distributions
(ψF = ξψ), so that since C^ is a core for ί/(F) we must have ψFe@(Δ) and H(F)ψF

= ExpF as vectors in L2(W). Equation (2.8) thus follows by writing

= Re(ψF,H(F)ψF)

= (ψF(H-(VF)2)xpF).

To prove (2.9) we first note that if χ is in C^(IRn), it is easy to prove (A.4) for φ = χxp.
Let χ(χ) = χm{x) = χ^x/m), where χ1 e CQ(W) is one in a neighborhood of the origin.
We have

(A.5)

Clearly the right side of (A.5) converges pointwise to zero and

independent of m so by the dominated convergence theorem

lim| |( l + ρ)(tf-£)χmv>| |=0. (A.6)
m->oo

It is easy to see that ||(1 +QYιξAξχm\p\\ is bounded as m-^oo so that the left side of
(A.4) converges to zero. Similarly the right side converges and we obtain (2.9).

The lemma is even more easily proved with F = OLQ + λ\n{\ -\-jQλ~ι) because it
follows from the assumptions that ρkQxp(F)ψ = ρkξψ is in L2 for all fe. We first
rewrite

(ξAξφ, (H - E)φ) = {Aξφ, (H(F) - E)ξφ).
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It follows as above that ψFe!3(Δ) and (H(F) — E)ψF = 0. Using the same approxi-
mation scheme as above, it follows that (H(F) — E)χmψF->0 and ΛχmψF is bounded
(the latter because it easily follows that ρkAψFeL2 for all k). We omit the details of
the proof.
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