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Abstract. For a large class of N-body potentials V' we prove that if p is an
eigenfunction of —A+V with eigenvalue E then sup{a’+E:0>0,
exp(a|x|)we [?} is either a threshold or + oo. Consequences of this result are
the absence of positive eigenvalues and “optimal” L*-exponential lower
bounds.

1. Introduction

In this paper we will be concerned with the N-body Schrodinger operator

H=H,+V, (1.1)
V= Z Viis (1.2)
15i<j=N

in L2(R"W~Y). Here H,, arises from the operator
. N
Hy=— Y 4/2m, (1.3)
i=1

by removing the center of mass (see [16, 17] and Sect. II for more details). Each V;;
is multiplication by a real-valued function v, (x,— x;), where here xeIR*~ is written
x=(xy, ..., Xy). Let hy be — 4 in L*(R*). We assume in what follows that each two-

body potential v;; satisfies
(a) v;{l4+he)™ " is compact, (1.4)
(b) (L+ho) Y(y-Vo,)(14+ho)™ ' is compact. (1.5)
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From (a) it easily follows that v; is a tempered distribution. What is meant by (b) is
that the tempered distribution w;(y)=y-Vv,,(y) has the property that the sesqui-

linear form 0 9)=((1+he) i wi(1+ho)~ 1g)
=wil(L+h) " -(1+he)""9)

extends from &(R") x #(R") to the form of a compact operator on L*(R").
An important set for our purposes is the set of thresholds. To describe this set
we need further notation. Given a subset C of {1,2, ..., N} with cardinality |C|> 1,

let H(C)=H(C)+ V(C),
V(€)= Z Vij
ieC, jeC
i<j

as operators in L2(R*I1~Y). The operator H,(C) arises from the operator

ﬁO(C)= - Z 4;/2m;

ieC

by removing the center of mass. If |C|=1 we define H(C)=0.
We define the set of thresholds, 9 (H), associated with H as

7 (H)={EeR: There exists a partition {C,,C,,...,C,} of
{1,...,N} into k=2 disjoint subsets, and for each

j aneigenvalue E; of H(C)), such that E=E, +...+ E,}. (1.6)
We will also need the distance function
N 1/2
|x|= (Z 2mi|xi—R|2) , (1.7)
i=1

where |x;— R| denotes the Euclidean distance in R".
Our first main result is as follows:

Theorem 1.1. Suppose H=H,+ V with two-body potentials satisfying (1.4) and (1.5)
above. Suppose Hp=Eyp. Then

sup{a?+E:a=0,exp (a|x])pe ARV~ D)}
is either a threshold or + co.
Under conditions (1.4) and (1.5) on the two-body potentials, Perry et al. [15]

have shown that 7 (H) is a closed countable set. We make implicit use of this fact
in stating a corollary of Theorem 1.1:

Corollary 1.2. Suppose H is as in Theorem 1.1 and Hyp=Ey.
(i) Suppose E¢T (H) and I (H)N[E, ) is not empty. Let t, be the first
threshold above E (more explicitly t,=inf[F(H) n[E, ©)). Then for all

B<)t,—E,

exp(Blx)ype LR D). (1.9)
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(ii) Suppose that for some a=0, exp(a|x|)pe [H(R*N~V), where o is such that
T (H)N[E+0o?, ) is empty. Then (1.9) holds for all f>0.

At this point we cannot eliminate the possibility that (ii) occurs (for some = 0)
without introducing further hypotheses on the potentials V;;. One such hypothesis
which eliminates the possibility of such unusual behavior in this situation was
given in [11]. This is the basis for condition (i) of the following theorem. The union
of conditions (i) and (ii) below forms a rather wide class of potentials.

Theorem 1.3. Suppose H=H,+V with V as in (1.2) and each v;; is hy-bounded with
bound zero. Suppose (hy+1)"'y-Vv,(ho+1)"" is bounded for each (ij). Let
p=Max(2,v—1). Suppose either that

(i) for each ¢>0 and (i,j) there is a c, such that

o y-Vv;Sehy+c,,

(i) for each (i.j), v;;€ P(R")+ L*(R") and there is a decomposition v;;=v(} +v{?
such that (1+|y)v{)e (R")+ L*(R") and for each >0 there is a c, such that
y- Vol Sehy+ec,

Suppose that Hyp = Eyp with exp(a|x|)ye L2 (R"™~Y) for all o. Then yp=0.

Remark. The condition y-Vv;<¢h,+c, is certainly satisfied for all ¢>0 if
(L+]yDhv;,;e AR"), where g>v and ¢=2 |this follows from y-Vp,;

= Y (DY) — (V) D, —vy5), where here D, =0/dy, is considered an operator|.
k=1

But it need not be if v;; is as singular as is allowed in (ii).

From Corollary 1.2 and Theorem 1.3 we have

Corollary 1.4. Suppose H=H,+V with two-body potentials v;; satisfying (1.4),
(1.5), and either condition (i) or (ii) of Theorem 1.3. Then H has no positive
eigenvalues and if Hy= Ey with p=0 it follows that

exp(alx)p¢ ZR'V-Y);  o>]/—E. (1.10)

Proof. Assume inductively that for 1=<|C|<k (where k<N) that H(C) has no
positive eigenvalues. Then it follows that for |Cy|= k+1, H(C,) has no positive
thresholds. Hence if H(C,)y = Eyp with E>0 it follows from (ii) of Corollary 1.2
that exp(B|x|)weL? for all f>0. However from Theorem 1.3 this is impossible
unless p=0. Since our inductive assumption is clearly true for |C|=1 we learn that
H(C) has no positive eigenvalues for any |[C|SN. Hence H has no positive
eigenvalues (and no positive thresholds).

Now (1.10) follows easily from (ii) of Corollary 1.2 and Theorem 1.3. [J

We remark that as shown in [11], the “lower bound” (1.10) is close to being
optimal at least if one allows V(x) to be slightly more general than an N-body
potential [see (2.45)]. For in the latter paper an example is constructed of an
N-body-like potential V such that — 4+ V has an eigenfunction ¢ whose decay
rate is controlled by a threshold which is arbitrarily close to zero.
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In [11], (1.10) is proved in certain important special cases including for
Hamiltonians which describe atomic and molecular systems. We believe that for
generic V there are no embedded eigenvalues and that the decay rate of
eigenfunctions is controlled by the lowest threshold. A proper formulation and
proof of such a result would be very interesting.

Theorem 1.3 is a kind of unique continuation theorem. We expect that
conditions (i) or (i) of that theorem are far from optimal in eliminating arbitrarily
rapid exponential decay.

The ideas in this paper are directly descended from [11,12]. The latter paper
proves absence of positive eigenvalues for a large class of one-body potentials
using a similar method. The proof of Theorem 1.1 relies heavily on ideas from
[11,12] and on the “Mourre estimate” [ 14] which was proved for N-body systems
by Perry et al. [15]. The unique continuation type argument on which Theorem
1.3 is based is also an extension of ideas which appear in [11,12]. Indeed under
condition (i) of that theorem, the result already appears in [11].

There are of course situations aside from those in [11,12] in which partial
results along the lines of Theorem 1.1 and Corollary 1.4 were previously known.
For one-body systems of the type considered here the absence of positive
eigenvalues was proved by Kato [13], Agmon [2], and Simon [8] (see the book by
Eastham and Kalf [9] for further developments). For N-body systems with
potentials dilation-analytic in angle 0,=7/2, absence of positive eigenvalues was
known from the work of Balslev [5] and of Simon [19]. Previous to this work
Weidmann [21,22] had used the virial theorem to prove absence of positive
eigenvalues for a class of homogeneous potentials. The work of Agmon [1] is also
relevant here. The fact that eigenfunctions corresponding to non-threshold
eigenvalues decay exponentially (at some rate) was known for dilation-analytic
potentials from the work of Combes and Thomas [6], but as far as we are aware
the bound involving the first threshold above E is new, except of course when E is
below the essential spectrum, in which case more detailed estimates are available
[3,7]. From the work of Agmon [3], it follows that for even more general two-
body potentials, eigenfunctions with eigenvalues E <0 must decay exponentially in
certain cones even if E€ o, (H).

Some further discussion and references can be found in the notes section of
[17].

The organization of this paper now follows. In Sect. II we prove a result
(Theorem 2.1) from which Theorem 1.1 follows given the Mourre estimate
(Theorem 2.3) of Perry et al. [15]. In Sect. III we prove a unique continuation type
result (Theorem 3.1) from which Theorem 1.3 follows. Theorems 2.1, 2.3, and 3.1
are given for potentials ¥ which are more general than N-body potentials. The
results which generalize Theorem 1.1 and Corollary 1.4 are given in Corollaries 2.4
and 3.2, respectively.

II. The Mourre Estimate and Exponential Upper Bounds
In this section we consider operators of the form

H=—A+V 2.1)
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in L2(R"), where V is multiplication by a real-valued function satisfying
(a) Vis A-bounded with bound less than one, (2.2)
(b) (—=4+1)7"' x-VV(—4+1)""is bounded. (2.3)
Let D be the operator in L?(R") defined by
DX =Vf(x),
and denote by A the generator of dilations:
A=(x-D+D-x)/2. 2.4)

We will also need the projection-valued measure {E(4): 4 a Borel subset of IR}
associated with the self-adjoint operator H.

We say that the “Mourre estimate” is satisfied at a point 1,eR if there exists a
non-empty open interval 4 containing A, a constant ¢,>0 and a compact
operator K so that

E(A)[H, A1E(4) 2 c,E(4)+ K, . (2.5)

Clearly the set of 4, for which the Mourre estimate is satisfied is open. We denote
by &(H) the complement of the latter set. The estimate (2.5) was introduced by
Mourre [14] who proved that it was satisfied at non-threshold points for certain
3-body Hamiltonians, and used it to prove o, (H)=@. Mourre’s result was
improved and extended to N-body Hamiltonians by Perry et al. [15] (see Theorem
2.3 below).

We use the notation [H, A] for the quantity — 24— x-VV which is a form on
D(A) x D(A).

In this section we will prove the following result and then apply it to N-body

n 1/2
systems. We use the notation |x|= (Z xf) .
i=1

Theorem 2.1. Let H=—A+V in I*(R"), where V. is a real-valued function
satisfying (2.2) and (2.3). Suppose Hy=Evy. Then

sup{a?+E:a>0,exp(x|x)ype L>(R")}
is either + oo or in &(H).
The following lemma, which will be crucial in our proof of Theorem 2.1, was

used in [12]. We sketch a proof (different from that in [12]) in an appendix.

Lemma 2.2 Let H be as in Theorem 2.1 and Hy=Ey. Let o(x)=(]x|*+1)Y/2. For
e>0 and A1>0 let
F(x)=Aln(e(1+e0)™ 1),

VF(x)=xg(x).
Let yp=exp(F)y and define the operator
H(F)=H—(VF)>*+(D-VF+VF-D); 9(H(F)=2(4). (2.6)
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Then e 2(4) and
H(F)yp=Eyp, 2.7)
(Wp Hpp) =(p (VF)? + E)yy), (2.8)
(pp [H, AJpp) = — 49" 2 Ay, +(wp {(x-V)’g—x-V(VF)*}yp).  (29)

If in addition o* exp(ag)we L*(R") for all A and some fixed o.20, then the above also
holds with
F=ap+Aln(1+y0i™ 1),
VF=xg,
for all y>0 and 1>0.

Remarks. (i) In case F=/41In(g(1 +&0)™!), an easy calculation gives
g=20 Y(1+e0)~*. (2.10)

Although in this case we do not know that y,e P(A), it easily follows that the
function g'/? Ay, is in L*(R") so that |g'/?Ay,|| has an obvious meaning.
(i) Note that lin(r)llln(g(l +60)” ) =Alng, lim (xg+Aln(1+7y0d~ 1) =(x+7)o,
el A= 0

and this is the reason for our choice of F. Clearly the lemma is also true for other
choices. The crucial fact which makes (2.9) useful is the positivity of ||g*/2? Ay .| %
This is a consequence of our choice of radially symmetric, monotone increasing
functions F. For the purpose of understanding why (2.9) can be useful, one should
think of the second term on the right side of (2.9) as negligible and compare (2.9)
with (2.5).

(iii) Formally (2.9) follows from the equation (y, [H, exp(F)A exp(F)]v)=0.

Proof of Theorem 2.1. Before beginning in earnest we illustrate the strategy of the
proof. Suppose Hy=Eyp and that sup{a?+E:a>0, exp(a|x|)pel?}=0}
+ E¢ &(H). Suppose for simplicity that ¢* exp(a,0)we L* for all A. Then if y>0 and
F=0y0+Aln(1+ 74~ ') we clearly have Alim lexp(F)y|| = co. Thus the vector ¥,

=exp(F)y/|lexp(F)y| leaves every compact set as A— oo. It turns out that (H—E
—(VF)*)¥,-0 so that for small y, ¥, has energy concentrated around E +«3. If F
were actually equal to (a,+7)x], then we would have (x-V)%g—(x-V)(VF)?
=(ato +7)lx|~* which contributes negligibly to (2.9) as A— co. This is not far from
true. Since the energy of ¥, is concentrated around E+o2 and ¥, converges to
zero weakly, the negativity of (¥,, [H, A]¥,) which follows from (2.9) contradicts
its positively guaranteed by the Mourre estimate.

We now proceed to implement these ideas. We first show that if E¢&(H) then
o*we I(R") for A>0. Assume the contrary so that for some 4 >0, g*p¢ L*(IR"). Let
F=/In(o(1+¢0)” ') and

Y. =we/llwell-

By the monotone convergence theorem, || ¥.[|*= j(g/(l +£0))**|p|?d"x converges
to [o**y|?d"x= + oo so that for any bounded set B

lim |7, 1%d"x=0. (2.11)
el
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By explicit calculation we find
(VF?=2*(1-0 %o *(1+e0)™?2, (212)

so that |FF|< Ao~ . It follows from this, Eq. (2.8), and the fact that V' is 4-bounded
with bound less than 1 that ||, is bounded as ¢ 0. Using this fact, it similarly
follows from (2.6) and (2.7) that ||(—A4+1)¥?,|| is bounded as ¢]0. Hence from
(2.11), (— 4+ 1)¥P, converges weakly to zero as ¢|0. From the compactness of
0 !D(—A+1)"" we have as £ 0

IVF-D¥ | <ile” 'DY,|
=Ale”'D(=4+ 1)1 (—4+ DY |

—0.
Similarly ||(VF)?¥,|| and ||(D-VF)¥,| converge to zero so that from (2.7) we have
lim((H-E)¥,[|=0. (2.13)

el0

By definition of &(H), (2.5) holds for some 4 containing E, some ¢, >0 and some
compact operator K,. Without loss of generality we can assume 4=[E—9J, E+J]
for some 6 >0. Since ¥, converges weakly to zero, we thus have

lim inf (¥, E(4)[H, AJE(4)¥,) Z ¢, lim (i)anE(A)‘I’st
el el

=¢,>0, (2.14)
where the equality in (2.14) follows from

lifg [ER\A)Y. [ = lilrg [(H-E)0~'ER\A)Y |
<67 lim |(H~ E)¥,| =0. (2.15)

We now use (2.9) to derive a contradiction to (2.14). First by explicit
calculation [using (2.10) and (2.12)] we find
l(x- V) g—(x-V)VF))|<c0?
for some ¢, independent of ¢, so that from (2.9)

limsup (¥, [H, A]¥,) <0, (2.16)
we now claim that &l0

lim (— 4+ 1) ER\A)¥ | =0. (2.17)
To see this we use (2.13) and (2.15) to get
lsilng [(H+)ER\A)Y, || = 181113 [E(R\A)(H—E)Y.|l
+lim|E -+l | ER\4) P, =0,

which implies (2.17) because V is 4-bounded with bound less than one.
We have

(¥, [H, A1¥ ) =(¥,, E(A)[H, AJE(N)Y¥ ) + f1(e) + f(e), (2.18)
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where
fi(e=(¥, E(R\A)[H, A]Y,),
f2(e)=(¥,, E(4)[H, AJER\A) Y ,).
From (2.17) and (2.3) we have
lsilrrollfl(S)I §18ilr{)1{!|(— A+ DER\NYP, |- [(4+ D7 '[H, A=A+ 1)1

=4+ D¥ )} =0.

(Here we have used [H, A]=—24—x-VV.) Similarly ling f>(&)=0, so that from
el
(2.18) and (2.16), we have
limsup (7., E(4)[H, AJE(4)¥ ) <0. (2.19)
el0

This contradicts (2.14) so we have shown that if E¢ &(H), then o*pe L*(R") for all A.
Suppose now that the theorem is false so that

sup{a®+E :exp(xo)ype LA(R"),a >0} =a?+E, (2.20)

where o, =0 and o?+E=A¢&(H). Again we know that (2.5) holds with
A=[A—9, A+ 5] for some >0, ¢,>0, and K, compact. If o, =0, set a =0, =0. If
o, >0, then choose ae[0,a,) so that

w?+Ee[A—6/2,A+6/2]. (2.21)
In either case we have for all A>0
o* exp(ag)pe LA(R"). (2.22)
Suppose y>0 is such that a+y>0a,. Then by (2.20) we have

exp((a+7)o)p| =oc0. (2.23)

We will obtain a contradiction for sufficiently small y > 0. In the following we also
assume ye(0,1]. Let F=oo+Aln(1+7y04™ ") and yy=exp(F)y, ¥, =v;/|lpgl. As
in the previous argument we conclude from (2.23) that for any bounded set BCIR”,

lim [ ,]¥,)2d"x=0. (2.24)
A=

In the following we denote by b, j=1,2, ... constants which are independent of «,
y, and A. By direct computation we have

VF=0 x(a+y(1+y0i~ DY), (2.25)

so that
VF|Sa+y<b,, [AF|<b,. (2.26)

It thus follows from (2.8) that ||VV'P,|| <b,. Using the latter in conjunction with
(2.26) and (2.7) gives
[(—4+ 1Y, =b,. (2.27)
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In particular, (2.27) and (2.24) imply that (— 4+ 1)¥, converges weakly to zero. In
addition to (2.24) it follows easily that for any bounded set B

llim [IV¥,)2d"x=0. (2.28)
We claim that
}im [(H—E—(VF)*))¥,|=0. (2.29)
To see (2.29) note first that from (2.7)
limsup |(H—E—(VF))Y,| =limsup((D-VF+VF-D)¥,| . (2.30)
A= A=
Since VF =xg, we find
D-VF+VF-D=2gA+x-Vyg, (2.31)
and compute from (2.25)

g=0 "o+yd+yel Y H= (4!,

x-Pgl<bso™". (232)
From (2.30), (2.32), and (2.24) we have
limsup |[(H—E—(VF)*)¥,| =limsup2|gAY?,] . (2.33)
A= A= 00

By direct calculation and a simple estimate, we have
(x-V)g—(x-V)VF)? =bse™ ' +7(o+7)/2, (2.34)
so that from (2.9) we conclude
(P, [H, A1) < —4g' P AP, |2 +bs(¥s 07 ")+ +7)/2.  (239)
Since (—A4+1)"[H, A](— 4+1)"! is bounded, and (2.27) holds, we have

lg'2AY,|*<b,. 2.36
From (2.32) we have g g 7 (2.36)

lgAY;1? <(@+y)lle™2g"2A¥, |12
If yy is the characteristic function of {x:9 <N}, we thus have
gAY, 112 = (@+9)lxng' AY, >+ (@+y)N " 1b,,
so that from (2.24) and (2.28) we have
1irlnqsupHgA‘P;‘||2g(oc+y)N_1b7.

Since N is arbitrarily large, lim |gAY,| =0, so that (2.33) implies (2.29). From
A=
(2.29) we conclude that
limsup [|(H—E—o?)¥,|| <2ya+7y2, (2.37)
A= 0
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and thus (from (2.21))
lim sup | EQR\A)Y, || <lim sup | (H — E—a?)(2/0) ER\A) |
A= A= 0

Sbyy, (2.38)
limsup |(H + 1) ER\MN) Y, || <|E + o +i|bgy + limsup [[(H— E—a?),|
A= Ao

<byy. (2.39)
From (2.39) it follows that
limsup [|(— 4+ D) E(R\MNY,||<b, 7. (2.40)

A=
From (2.5) and the fact that ¥, converges weakly to zero we have
li}n inf(¥;, E(A)[H, A]JE(A)¥,) 2 ¢, liminf || E(4) ¥, | *
— 00 A=
2ol _(bsy)z)- (2.41)
From (2.35) however,

limsup(¥,,[H, AJ¥,) S y(a+7)/2<byyy. (2.42)
A0

As in previous argument (2.27), (2.40), and (2.42) imply

lim sup (¥, E(4)[H, A1E(4)¥,)<b,,y. (2.43)

Since ¢, is a fixed positive number, (2.43) contradicts (2.41) for all small enough
y>0. Thus the theorem is proved. [J

To apply Theorem 2.1 to operators of the form (1.1), let us first introduce some
notation [3]. Define the inner product

<x, y>‘=

12

N
2mx; y; (2.44)
=1

on RN, Here x=(xy,...,Xy), y=(¥;,...»¥y), and x;-y; indicates the usual inner
product in R". Given a point xe R", let the center of mass of x be given by

(o) (3]

Define the subspace X CRM by
X ={xeR"V :R(x)=0},
and the projections IT,;: RN —>R"Y

xp—(mpx;+mpx)/(m;+my); k=i or j
0; otherwise.

(1,={

Note (I1;;x);=mx;— x)/(m;+m;), (I1;;x);=mx;— x;)/(m;+m)). It is easy to check
that IT;; is an orthogonal projection relative to the inner product <, -> and that
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II; X—X. The reason that (2.44) is natural is that if
' - N
H0= - Z Axi/zmi’
i=1
then in fact — ﬁo is the Laplace-Beltrami operator for R'Y with inner product

{+, ). In other words if we introduce an orthogonal basis {e,, ...,e 5} in R"Y and
vN

define the coordinates {x*:a=1,...,vN} of a point x by writing x= ) x%,, then

a=1

vN
Hy=— Y 0*/(0x*?=—4.
a=1

Removal of the center of mass motion in this language can be understood by
writing
A=A+ 4y, ,

where X @X*=IR"¥ and Ay is the Laplace-Beltrami operator for the subspace X
with inner product (2.44). The operator H, (H, with center of mass removed) is
just — A4y so that (1.1) can be written

H=—A,+V.

The potentials (V;(x)=v;;(x;— x)) clearly satisfy V,(x)=1V;(I;x) and thus can
be considered functions on Range I1;;CX. We are thus led to consider operators of
the form (1.1) on L*(IR"), where

Vi)=Y V(IIx). (2.45)

e

]
—-

Here II; is a non-zero orthogonal projection. We assume that each V; is a real-
valued function such that (denoting v,=dim Range IT,, 4,=Laplacian in I*(R"))
(a) V(—4;+1)" ! is compact on L*IR"). (2.46)
(b) (=4,+1)"'y-VV(—4,+1)"" is compact on L*(R"). (2.47)
The statement of the Mourre estimate for these more general operators
requires a definition of 7 (H). Let #={1,2, ..., M}. For each non-empty I C ./, let
= {xe]R” :x= )Y u;, with u;e Range Hi} ,

iel

and let ¥, ={0}. Let # be the family of subspaces of IR" given by

F={V7:1CM}. (2.48)
For v e # with ¥ =+ {0}, let
H,=—A,+ Y V{x), (2.49)
RangeII;,C¥

where A, is the Laplace operator for the subspace ¥” and H,, is an operator in
[*(RY) with k=dim¥. If " is {0} we define H,,=0 on C. We can now define

7 (H)={E :E is an eigenvalue of H, for some ¥ €% with ¥ +IR"}. (2.50)
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Theorem 1.1 follows from Theorem 2.1 and the following result (Theorem 2.3)
of Perry et al. [15]. Actually in the latter paper the Mourre estimate is only an
intermediate result. The authors consistently make assumptions stronger than
(2.46) and (2.47) which they need in order to prove absence of singular continuous
spectrum, although these stronger assumptions are not needed to prove the
Mourre estimate. In addition in [157] the Mourre estimate is only proved when V' is
an N-body potential of the form (1.2) and not in the more general case where V' is
given by (2.45). However the authors explicitly state that their method works for
these more general potentials with a suitable definition of thresholds. In [10] we
give an alternative (and we believe, simpler) proof of the following result:

Theorem 2.3 [157]. Suppose H= — A+ V in [*(R"), where V is given by (2.45) with V,
real-valued multiplication operators satisfying (2.46) and (2.47). Define J (H) by
(2.50). Then J(H) is a closed countable set and

SH)CT (H).

It is not difficult to see that the set J(H) as defined in (2.50) coincides with the
set of thresholds defined in Sect. I if ¥ is an N-body potential of the form (1.2).
Combining Theorems 2.1 and 2.3 we have

Corollary 2.4. Suppose H is as in Theorem 2.3 and  (H) is given by (2.50). Suppose

Hy=Ey. Th
p==ap. Hhen sup{a?+E :0=0,exp(x|x|)pe LHRY}

is either + o0 or in I (H).

We end this section with an example which shows that the Mourre estimate is
valid for more general potentials than those satisfying (2.46) and (2.47). Our
example may seem impossible at first glance because it involves the von Neumann
and Wigner [23] potential which has a positive energy bound state:

Lemma 2.5. Let H= —d?/dx?+ V(x), where V(x)=V,(x) +a(sinkx)/x and
(@) o is real, k>0,
(b) V, is real and V,(—d?*/dx*+1)"* is compact,
(©) (—d?*/dx*+1)" x-VV)(—d*/dx*+ 1)~ is compact.
Then &(H)C{0,k*/4}. In addition if |«| <k, then &(H)C{0}.
Proof. We follow [11,12] except for one important difference. Let H,= —d*/dx>
and suppose f is a real-valued function in Cg(IR). Then it is easily seen that
(Hy+D(f(H)— f(H)) is compact. Thus
SUH)[H, A1f(H)=f(H)[H, A] f(H,)+ compact
=f(Hy)2H,—(x-VV})+a(sinkx)/x — ko coskx) f(H)
=2H(f(H))*— ka.f(H)(coskx)f(H,)+compact. (2.51)
If we write p= — id/dx and coskx =(e** 4+ e~ **)/2, we have

f(Ho)coskx f(Ho)=1/2{f(p*)e™{ (p*) + f(p*)e ™1 (p*)}.

Since e**pe” **=p—k, we have

@ f () =f(p) f((p—k)*)e™ .
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Suppose f(p?)=g(p), where g has support in {p : [p— p,| <€ or |p+ p,| <&} for some
Po >0, and p,#k/2. Then if ¢ is chosen so that e <k/2 and e <|p,— k/2|, the reader
can easily check that f(p?)f((p—k)*)=0. Thusf(H,)coskx f(H,)=0 and

f(H)[H, A1f(H)=2H,(f(H))* 4+ compact.

If ¢ is small enough 2H,, f(Hy)* = ¢, f(H,)? for some ¢, >0, so that again using the
compactness of f(Hy)>—f(H)* the Mourre estimate follows for positive 1,
(Ao =pd). For 4 a compact interval contained in (— c0,0), E(4) is compact so that
for negative 4,, the Mourre estimate is trivial.
To prove the last statement of the Lemma, according to (2.51) it is sufficient to
show that if |o| <k,
2H, f(H,)? — kaf (Ho) coskx f(Ho) Z ¢ f (H,)? (252)

for some ¢, >0 and some f which is 1 in an interval containing k?/4. Suppose
0e(0,1). Let x_ be the indicator function of

[(1—0)k/2,(1+0)k/2] and y_(x)=y.(—x).
Then with f(Hq)=y,(p)+x_(p), we have
2H, f(Ho)* Z((1—9)*k?/2) f(H,)*. (2.53)

We will show that
I f(Ho)coskx f(Ho)| =1/2, (2.54)

so that from (2.53) and the fact that f(H,)*=f(H,)
2H, f(Hy)*—kof (H,) coskx f(Hy) = f(Hy)*(1—6)*(k?/2)— |ketl/2).  (2.55)

If 6 is small enough (2.55) implies (2.52), so that it only remains to prove (2.54).
Using y_e™*y, =y, ey, =y_e*y_=0, it is easy to see that

B= f(H,) coskx f(Hy)=1/2{y, " y_ +x_e*x.}. (2.56)

W h i —ikx
¢ have 1Byl 2=/ {1 ey w2+ lx_e” ™ 5, pl?}

WD wli? + o wl 2 =/4) Iwl?,

so that ||B|| £1/2. Clearly if y,w=1, then By=1/2¢e”**p and hence |B| =1/2.
This gives (2.54). O

Corollary 2.6. Let H be as in Lemma 2.5. Then H has no positive eigenvalues except
possibly at k?*/4. If |«|<k then H has no positive eigenvalues.

Proof. According to Theorem 2.1 and Lemma 2.5, if Hp= Eyp with E>0, then if
lo| <k or E=k?*/4 we must have exp(ax)ye L*(R) for some a>0. This contradicts
Theorem II.1 of [11] unless p=0.

Remark. Results of this type have been proved by O.D.E. techniques [4, 8, 16] in
the case where [V;(x)<c(1+]x])~* ¢ for some ¢>0. In fact in [4, 16] it is shown that
if || > k, a positive eigenvalue can indeed occur. (With a short range potential V,,
the borderline case |¢| =k does not produce a positive eigenvalue [4, 16].)
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III. Exponential Lower Bounds
In this section we will consider self-adjoint operators of the form
H=—A4+V (3.1

in L*(R"), where as in the last part of Sect. II, V is a function of the form
M
Vi)=Y VT, (32)
i=1

Here II,:R"—>IR" is an orthogonal projection (with respect to the usual inner
product). We will sometimes abuse notation and consider V; to be a function on
R*, v,=dim(RangeIl,)>0.

We state the following result whose proof is the subject of this section. (The
first part of the theorem is given in [11].)

Theorem 3.1. Suppose H is of the form (3.1) and V is given by (3.2), where V. is a
real-valued measurable function. Let p,=Max(2,v,—1). Suppose either that

(i) V is A-bounded with bound less than one, (—A+1)"1x-VV(—A4+1)"1 is
bounded, and for some b, and b, with b, <2, we have

x-VVE—b4+b,,
or

(i) for each i, Vie IP(R")+ L*(R") and there is a decomposition V,= V) + V?,
where (1+|y)V Ve IP(R*)+ L°(R") and for each ¢>0, y-VVI¥< —¢A,+b, for
some b,.

Suppose that Hy = Ey with exp(e|x|)pe X(R") for all a. Then y=0.

We refer the reader to the remark made after Theorem 1.3 for a comment
about the relationship of conditions (i) and (ii).

Proof. That (i) implies the result follows from [11]. We do not repeat the proof
here although the astute reader will be able to reconstruct such a proof from what
follows. Thus assume that (ii) holds.

For simplicity we first consider the case n=3 and indicate the necessary
modifications for n<2 later. Suppose that p=+0 and let y, =exp(ar)y, r=|x|, and
define ¥, =v,/|ly,|l. Then as in Lemma 2.2 we find ¥ e 2(H),

(—d—a?>—E+aB)¥,=—-V¥,, (3.3)
B=r"'(x-D)+(D-x)yr~ !, (3.4
(Y,HY)=0>+E, (3.5)

(P, [H,A1¥,)= —4af| Ar~ 129 2. (3.6)

These equations all appear in [11]. They are not difficult to obtain from those in
Lemma 2.2. The singularity at » =0 is not harmful if n = 3. Taking the norm of both
sides of (3.3) gives

(= 4—0>~E)?,|>+o?|BY,|* + ¥, [B, A1¥)=|V¥.[*. (3.7)
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A computation shows that as a quadratic form on 2(4) x 2(4)

[B,4]=—4Y.D,Q,D;+(n—1)n—3)r2, (3.8)

where Q;(x)=r" 1(5ij - xixj/rz) . (3.9)
Thus from (3.7), (3.8), and (3.9) it follows that

(=4—a?=E)P,| <[V, (3.10)
Here we have used the fact that the matrix (Q;;) is non-negative. Let

K,=((—A—o2—Ey+a?)"2,

We claim that .
lim || VK, | =0. (3.11)

Given (3.11) it follows from (3.10) that for large enough o

I(-=4-o?—E)¥, [ £1/2|K,?,[ £1/2I(- 4=~ E)¥, [ +1/20,

so that
[(—4—a*—E)Y, || Sa,

and thus
IK, P, < 2. (3.12)

From (3.5) it follows that for all large « and some ¢, >0

VY.l zco. (3.13)

Let W,=x-VV®, W,=x-VV®. By assumption we have —A—W,=—b for
some b. Using (3.6) and (3.13) gives

0=2(¥,,(—24—W,—W)¥P)Z —b+cla’— (Y, W, P,). (3.14)

Since from (3.12)
(P, Wi YOS K, W, K |- (40), (3.15)

if we can show that

lim | KWK 1) =0, (3.16)

(3.14) will provide a contradiction for large o. Thus we must prove (3.11) and (3.16).

To see (3.11) first note that K, '[|—0 so that to prove | V(II,x)K; !||—0, we
can assume that Ve I”(IR™). Since we can always write V,=f, + g, with g€ L*(IR"),
[BA p<E it suffices to show that

limsup | V(IT0)K,; ' cllVill,,- (3.17)
To see (3.17) we factor L2(R")=I*(R*)Q@L*(R" ) and write

VUT0K, ' =Vi)(—4,— 4, — >~ E)*+0?)" 12, (3.18)



444 R. Froese and 1. Herbst

where 4, is the v; dimensional Laplacian in the variable y and 4, involves
orthogonal coordinates. To prove (3.17) it thus suffices to show that for each
te [0, c0)

V(= 4, +t—a?—EP?+a?)" 2| <c |V, (3.19)

where ¢ is independent of t and « and the norm on the left in (3.19) is in Z*(R%). To
prove (3.19) we use the estimate [20]

IVO)(= 4, +t =02 = E)*+o®) 2| | Vi, | £, ], 27) =", (3.20)
where f, ,(y)=((y*+t—o?>—E)*+a*)~ "2 We claim that
ISl i =cs (3.21)

where ¢’ is independent of ¢t and « for large «. Clearly once (3.21) is proved we will
have shown (3.11). To estimate | f, |, we assume that t—a>—E=—f>< —1.
Otherwise (3.21) is easy. We have with f=f, ,

Jiffrdy = [ ifdye [ fdy. (322)

Iy|> < 2p2 [y]2 > 2p2

The first integral in (3.22) can be estimated by
B [ ((x2=BH? o) P 2dx. (3.23)
0
We use (x2— B?)?=p*(x— p)?, where f=1 to show that (3.23) is less than

2cprit ? (B*(x— B)* +a?)Pi2dx <4c(f* 2 jari 1) Ojo (s241)7Pi2gs
0 0

<const.

The second term in (3.22) is easily shown to be bounded and hence (3.21) follows.
We must now prove (3.16). Since x - VV{(II,x)=(I1,x)- (V' V})(II x), it suffices to show
that

lim [[((— 4, +t— 0 — E)*+02) 12y PVO)(— 4, +t—a? — E)? +a?)~ V2| =0
(3.24)

uniformly in t for t=0. Note that y-VV"'=[y-D,V"=D-(yV")—(yV")-D
—v, V. By our previous estimate we already know that

lim [[(L+[y)V (=4, +t—a? = E)>+a?)" 12| =0

uniformly in ¢, so we need only show that

sup [|D,(—4,+t—o>—E)*+a*) " ?|<o0. (3.25)

t=0,a=1
Inequality (3.25) follows from the numerical estimate
sup {x|((x|>+t—o?—E)?*+a*)~ 12 : xeR", t 20,021} <0,

which is easy to prove. Hence the proof of Theorem 3.1 is complete in the case
n=3.
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To handle the case n <2 we introduce a cutoff function ne C*(R") which is zero
in a neighborhood of x=0 and one in a neighborhood of infinity. Assuming that
w=0 we can choose # so that yyp=+0. Defining ¥, as before, we have

(—A—o?>—E+aBn¥,=—Vn¥,+g,,
where Gy = — (AP, — 20y -V, +20(x-Vn)¥, 1.
By choosing the support of 1—# sufficiently small we can arrange that

9.l =exp(—do) 7 ¥, |

for some 6>0. Since (n— 1)(n—3)n¥,r *n¥,)= —clln?,||* for some c (depend-
ing on ), we easily find the estimate

1K, =caln?, (3.26)
in the same way as before. Similarly we can arrange
(¥, Hn'?,)=(E+o’ +0(exp(— o)) [n?,]°, (3.27)
and
(¥, [H,AIn¥,) < 0(exp(—00)) [n¥,[>, (3.28)

for some 6 >0 by choosing the support of 1—# sufficiently small.

Proceeding as before using (3.26) through (3.28) yields the result. []

We give the result analogous to Corollary 1.4 for the more general potential of
the type given in (3.2) in the following corollary:

Corollary 3.2. Suppose H= — A+ V with V of the form (3.2). Suppose each V; is real
and satisfies (2.46) and (2.47). Let p;=Max(2,v;—1). Suppose in addition that either
(i) for each i and >0, y-VV(y)< —¢ed,+b, for some b,
or
(i) for each i, Ve IP(R")+ L(R") and there is a decomposition V,=VV + V?,
where (1+|y)V Ve IP(R*)+ L*(R™) and for each ¢>0, y-VV?< —¢ed,+b, for
some b,
Then H has no positive eigenvalues and if Hy=Ey with =0, it follows that

exp(a|x))p¢ *(R"); o>]/—E.

The proof of this result is very similar to the proof of Corollary 1.4. The
induction is now on the family of subspaces & defined in (2.48). We omit the
details.

Appendix: Proof of Lemma 2.2

In this appendix we sketch the proof of Lemma 2.2 using a method which is
different from that in [11] or [12].

Let F be either of the two functions given in the lemma, and let &=exp(F).
Suppose pe CF(R"). Then the following formula is not difficult to derive

(9,[4E, — A1p)=(Co,[4, — A]lp)—4]g"* Alo|* + (o, GLp), (A1)
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where
G(x)=(x-V)*g—x-V(VF)>. (A2)
By definition of the distribution x- V'V, it is easy to see that

(=CALp, Vo)—(Vo,lALp)= —(A(Ce), V(EQ) — (Vip, A(Lw))
=, x-VVip). (A.3)
Here if W is the distribution x- V'V, that is

W)= — V() (lz a,(x,f>> &x,

then (¢@,x-VVEp) means W(Ep|?). We have assumed that (—A+1)"'x
-VV(—A+1)"" extends to a bounded operator, so we will continue to use the
notation (f,(x-VV)f) for fe 2(A).

Hence from (A.1) we have

—2Re(EA¢g,(H—E)p)=((p,[A, HI¢p)—4llg"*Alop| > + (o, GEp). (A4)

Suppose F=A1n(o(1 +¢&g)~ ). Then ¢ is a bounded function in C*(R") and we
have g <constg ™3, |G| <const, |V F|<const, |4 F| < const.

Let H(F) and v be as in the lemma. Then clearly H(F) is a closed operator on
2(4) with C3(R") a core. In addition H(F)yp=Ewy, in the sense of distributions
(pp=_w), so that since C is a core for H(F) we must have ype 2(4) and H(F)y,
= Ey, as vectors in I*(R"). Equation (2.8) thus follows by writing

(e HF)pp)=E |yl 2
=Re(pp, H(F)yy)
= (H=(VF)*)ypp).
To prove (2.9) we first note that if y is in Cg’(IR"), it is easy to prove (A.4) for ¢ = yp.
Let y(x) = x,(x) = x,(x/m), where yx, € C3(R") is one in a neighborhood of the origin.

We have
(1+0)(H—= E)p =1+ 0)(— (41w —2V - V). (A.5)

Clearly the right side of (A.5) converges pointwise to zero and
(1+o) 4y + (1 +0)|Vy,l =const,

independent of m so by the dominated convergence theorem
Tim [[(1+Q)(H — E)y, 1 =0. (A.6)

It is easy to see that ||(140)~ '£A&y,w| is bounded as m— oo so that the left side of
(A.4) converges to zero. Similarly the right side converges and we obtain (2.9).

The lemma is even more easily proved with F=0g+ A1n(1+7y04~ ') because it
follows from the assumptions that o*exp(F)y= "¢y is in I* for all k. We first
rewrite

(Ao, (H—E)p)=(Alo,(H(F)— E) ).
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It follows as above that ype 2(4) and (H(F)— E)yp;=0. Using the same approxi-
mation scheme as above, it follows that (H(F)— E)y,,wr—0 and Ay, vy is bounded
(the latter because it easily follows that o* Ay, [? for all k). We omit the details of
the proof.
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