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Abstract. Existence and uniqueness are shown for the fixed point problem
pertinent to hopping transport in one-dimension with random transfer rates.
Continuity properties of the solution are exhibited. The connection with Dyson's
treatment of the linear harmonic chain with random masses is established.

1. Introduction

Diffusion or hopping transport on the one-dimensional lattice Z is described by the
master equation

Pn=Wn^(Pn^-Pn)+Wn(Pn+ί-Pn), (1.1)

where Pn(t) is the probability of finding a particle at time t on the lattice site n.
Randomness is introduced by assuming the transfer rates Wn, neZ, to be
independent U+-valued random variables, equally distributed according to a
probability measure v. Thus, one is lead to consider expectations

}) (1.2)
neZ

of measurable functions/on !R̂ _. In [1] it has been shown (by supplementing (1.1)
with the initial condition Pn(0) = δn0), that

E(P0(s))=]dte-stE(P0(ή) (1.3)
o

is given by

E(P0(s)) = Π dμs(x)dμs(y)(x + y + s)"ι (1.4)

for 5^0. Here, μs, seU+, is a probability measure on 1R+ satisfying the integral

equation

μ s([0,x))= ff dv(y)dμs(z\ x > 0, (1.5)
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with AStX c U\ given by

\ίy-1+(z^s)-1T1<x} (1-6)

In Sect. 2 it is shown that (1.5) has at most one solution. Section 3 is devoted to
the existence of a solution; the solution is actually "constructed." In Sect. 4 it is
shown that the map 5 ->μs is vaguely continuous. The connection with the work of
Dyson [2] on the linear harmonic chain with random masses is established in Sect. 5.
More detailed properties of μs and quantities derived thereof have been treated
elsewhere [3], [4]; applications are discussed in [5],

2. Uniqueness

Let 9 be the set of (regular Bore!) probability measures on U, and Q) the set of
distribution functions, i.e. the set of functions/:R-*[0,1] which are isotonic, left-
continuous and/(x) - / ( - x) -• 1 as x -• oo. Denote by J the canonical bijection of 9
onto Q)\

= μ{{-ao,x)). (2.1)

+ cLet 0>+ a 0 be the set of probability measures with support in U+ and
the set of distribution functions / with f(x) = 0, x ̂  0. Obviously, J maps
bijectively onto @ + .

Let ve0>+ be fixed and se[R+u{oo}. Define the map T s: ̂ + - » ^ + by

(JTsμ)(x)= jj dv(y)dμ(z\ (2.2)
As,χ

with As x c= U2

+ given by (1.6). By definition, each fixed point of Ts is a solution of the

integral equation (1.5) and vice versa.

As

AO0iX = [0,x)xM + , (2.3)

(2.2) yields immediately

T^μ = v (2.4)

for all μ e ^ + , i.e. T^ has the unique fixed point μ^ — v. For seU+ the following

decomposition of Asx into disjoint subsets holds

The set Bsx c U2

+ is given by

where

oo
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Obviously,

Btx c= BStX9 s<t. (2.8)

The decomposition (2.5) may easily be read off from the graph of φs: U2

+ -> ίR +

given by

\j/s(y,z) = [y" 1 + (z -f s ) " 1 ] " 1 . (2.9)

From (2.2), (2.5), (2.6) it follows that

JTsμ — Jv + KsJμ, (2.10)

where

(KsJf)(x) = ft dv(y)dμ(z\ (2.11)
Bs,x

or, applying Fubini's theorem,

(KJ)(x) = Φf dv(y)f(^^ - s) (2.12)

for/G^ + . Note that Ks does not depend on v({0}). In view of (2.8), the inequality

KJ^KJ, s<t (2.13)

holds. The operator Ks has an immediate extension from its "natural" domain 3 + to
D, the linear span of 3 +. A further extension is obtained by introducing the Banach
space

^ α = L1(U + ,p0), — - = α(l 4- x ) " 1 - α , 0 < α < 1, (2.14)

with norm

00

| |/L=αJdx(H-xΓ 1-«|/(x) | . (2.15)
0

Using Fubini's theorem and a change of variable

y-x

yields

s (2.16)

00 CO

|| KJ\\a ^ a j dv(y) j dzks(y,z)\f(z)\, (2.17)
0 0

with equality holding for/^O, and

./ + j< ! +£Γr 1 -" ( 1 1 8 )

s+y+zj
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The estimates

(l+zΓ^'^α+z)-1-*, (2.19)

which hold for y > 0, z > 0, lead to

\\KJ\\a<\\f\\a] dv{y)(^~\ \ fφO, (2.20)

and

(2.21)

By Lebesgue's dominated convergence theorem, (2.20) yields

lim | | K s / | | β = 0 , (2.22)
s-> oo

i.e. Ks is strongly continuous at infinity.
As a consequence of (2.21), the equation

f=9+KJ (2.23)

has at most one solution fe&a for any ge$a, g φθ. Thus, in view of (2.10), the
following uniqueness theorem holds.

Theorem 2.1. The map Ts\gP + ->& + , defined by (2.2), has at most one fixed point.

3. Existence

The functions

/<"> = Σ K?Jv9 n^O (3.1)

belong to ̂  + , by induction, as

fϊ^Jv + KJ?-"; (32)

and, from (2.10), withf(

s

n~1)e^+ also

f(

s

n) = JTSJ~X f{"~~1] (3.3)

is in <3) + . Furthermore, (3.1) yields

/ ( « ) = / ( - ! ) + K sW. (3.4)

Hence,

as Ks is positivity preserving. Consequently,

l im/?>=/ s (3.6)
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exists pointwise. As each/<M), n ̂ 0 , is isotonic, also/s is isotonic. Thus, the limits

lim/s(y)==/s(x_), \im
yϊx yix

exist. Assume fs not to be left-continuous, i.e.

==/s(x_), \imfs(y)=fs(x + ) (3.7)
yix

Φ)-fa(x-) = «>0. (3.8)

For n sufficiently large (say n> N)

0^fs(x)-f;\x)<α/2, n>N, (3.9)

and for y < x

0^βs

n\y)^fs(y)Sfs(x-l (3.10)

i.e.

f{

s

n)(x)-fin)(y)>α/2, n>N. (3.11)

Taking the limit y t x yields

fs

n)(x) -f{

s

n)(x-)^α/2, n>N. (3.12)

This contradicts the left-continuity oϊp"\ n^O. Finally (3.5) yields

= l, (3.13)

a n d

fϊn)=0, x^O, n^ί (3.14)

yields

/β(x) = 0, x^0. (3.15)

Hence, / is in 9) +.

Furthermore, by Lebesgue's dominated convergence theorem

lim II/,-/? 'II. = 0 . (3.16)Js J s l lα
«-* oo

As Ks is bounded, (3.2) combined with (3.16) leads to

fs = Jv + KJs (3.17)

or, with (2.10)

fs = JTsJ~% (3.18)

Hence, the following theorem holds.

Theorem 3.1. The sequence

jTn

sv= £ K™Jv (3.19)
m = 0

is in @ + . It converges pointwise and in ̂ ^-norrn. Its limit, fs, defines a probability
measure μs = J~ιfs which is a fixed point of Ts.
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Remark 1. As K^ = 0, (3.1) reduces to / ^ = Jv,n^ 1, i.e. /^ = Jv, in accordance
with Sect. 2.

Remark 2. Let/ 0 E^ + be given by

{ X = ll- (3.20)

Applying Ko to/ 0 yields, according to (2.12) and (2.7),

Kofo=fo-Jv, (3.21)

i.e. J~1f0 = δ0 (Dirac measure) is fixed point of To.

Remark 3. The ordered case of (1.1) is characterized by Wn = w, w ̂  0, neZ. This is
equivalent to v = δw. For w = 0, (2.2) yields

JTsμ=f0 (3.22)

for arbitrary μ e ^ + , i.e. <50 is fixed point of Ts, seU+ u{oo}. For w>0, the point
(w,a(s)) with

) 1 / 2 - 5 ] , SGU+, (3.23)

and

α(oo) = lim a{s) = w (3.24)
s-> oo

is mapped onto itself by ̂ s defined in (2.8). Hence, μs = δa(s) is fixed point of Ts,
seU+ u{oo}.

Remark 4. Replacing 4̂S x in (2.2) by its closure and taking the limit x -• 0 yields
(7»({0}) = v({0}). In particular,

μs({0}) = v({0}). (3.25)

4. Continuity Properties

In this section continuity properties of Ks and μs are discussed. Let #(^ α ) be the set of
bounded operators on J^α.

Theorem 4.1. Tte map s->KS from U+ u{oo} to«Wa), rfe/inerf by (2.70) am/ (2.7), is
strongly continuous.
Proof. As ^ ^ = 0 , strong continuity at oo is equivalent to (2.22). Let
0 ^ 5 < ί < o o a n d / e ^ α , / ^ 0 . Then

OO 00

IIKJ- KJII. = α J dv(y) J dz[lψ,z) - kt(y,z)}f(ή, (4.1)
0 0

with ks given by (2.18). In view of the estimates (2.19) Lebesgue's dominated
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convergence theorem is applicable yielding

U m | | K t / - X , / | | β = 0 . (4.2)
s->ί

The extension to arbitrary/eJ?α is trivial as Ks is positivity preserving.

Theorem 4.2. The map

* - / , = Σ K™Jv ( 4 3)
m = 0

/rom IR+ u{oo} ίo ̂ a is continuous.
Proof. By Theorem 4.1, K™Jv is continuous. Hence, f("\n^ 1, given by (3.1), is
continuous. From

f?£fP,nZl, (4.4)

shown below by induction, it follows that/*"* converges uniformly to/ s . Hence,/S is
continuous. For n — 1, (3.2) and (2.13) yield

^ K0Jv=f^\ (4.5)

Assume/f" 1 ' g/^""1 '. Again using (3.2) and (2.13) leads to

/<"» =Jv + KJ(ΓU ^Jv + ̂ o / ί " " υ ^^ + Kof
(o'υ =/oM> (4-6)

This completes the proof.
Let C0(U) denote the set of IR-valued continuous functions on U with compact

support, and CQ{U) the subset consisting of the functions in C0(R) having a
continuous derivative.

Theorem 4.3. The map s->μs = J'ιfsfrom U+u{oo} to 0> + is vaguely continuous,
i.e.

μs(9) = ί ^ W ^ W , ^eC0(R) (4.7)

depends continuously on s.

Proof. It is sufficient to prove the latter statement for AeCj(IR) as Cj((R) is dense in
C0((R) with respect to the sup-norm. Partial integration leads to

μs(h)=-Sh'(x)fs(x)dx, (4.8)

where h' is the derivative of h. Hence,

\μt{h) - μs(h)\ £S\h'(x)\\ft(x) -f,(x)\dx. (4.9)

Setting

Ca(h)= supl/z'WIp^x)-1, (4.10)

(4.9) yields the estimate

\μt(h) - μs(h) I ̂  Cβ(Λ) || ft -fs ||β, (4.1

which, together with Theorem 4.2., proves continuity of μs(h) in s.
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5. The Disordered Harmonic Chain

A fixed point problem similar to the one of Sect. 1 was posed by Dyson [2] in the
context of the mass-disordered infinite linear harmonic chain. Results analogous to
those of Sects. 2-4 are obtained, and the connection between the two fixed point
problems is exhibited.

An infinite linear harmonic chain is described by the equations of motion

MnQn = Wn^(Qn^-Qn)+Wn(Qn + 1-Qn\ neZ. (5.1)

Here Mn is the mass of the n th particle, Qn its displacement from its equilibrium
position and Wn the spring constant of the spring between particle n and n + 1.

Several variants of disorder may be envisaged, involving randomness of masses
and spring constants. The case considered here is case II of Dyson, where Mn, neZ,
are independent equally distributed U+-valued random variables, whereas the
spring constants Wn have a common fixed value. Let τ e ^ + denote the probability
measure describing the distribution of the masses. It is assumed that

0, (5.2)

i.e. there are no zero-mass particles, or more stringent,

τ([0,m)) = 0, m > 0 , (5.3)

i.e. a mass gap.
Dyson's fixed point problem consists in finding a probability measure ρse^ +

satisfying

(5.4)

The map Rs:0
i

 + ->&+ is given by

(JRsp)(x)= \\dτ{y)dp{z\ (5.5)
Cs,X

with

CStX = {(y,z)eU2

+ \sy + z/(l + z) <x}. (5.6)

From (5.6) it follows that (5.5) may be rewritten as

JRsp=Jτs + HsJp. (5.7)

For s > 0 the two parts of (5.7) are given by

and, wi

x/s / v ?v
x s y » (5.9)
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where

ft(x) = max|θ,^ij. (5.10)

The case s = 0 is obtained either directly from (5.5), (5.6), i.e. from

x

(JRop)(x)=\Jp{ί-xJ, .. . . ,
1 x > 1 w 1 1 /

or as limits from (5.8) and (5.9), yielding

(Jτo)(x) = | ' X~ ' (5.12)

and

supplemented by

( ^ ) ( = 1 f o r / 6 ® + ). (5.14)

Extension of (5.9), (5.13) and (5.14) to/eD, the linear span of 9 +, is immediate. A
further extension of (5.9) and (5.13) to the Banach space J^α, defined in (2.14), leads to
the estimate (equality holding for/^O)

oo oo

IIHJ ll.^αfdτί^Jdz/.,(>, z)|/(z) I, s e R + , (5.15)
0 0

with

/ 2 s ( j ; , z ) - ( l + z ) - 2 ( l + T ^ - + 5};) . (5.16)

^ 1+z yj

The inequalities

hs(y,z) < (1 + z)~1~α(l + sy)~i~a < (1 + z)" 1 ~α, (5.17)

holding for y > 0, z > 0, imply for fψ 0

«< 11/11. ίdφ)( i+s>>)- 1 -«< | | / | | β . (5.18)

This yields uniqueness for/e^ α , satisfying/= g + H s /, gs^a, g φθ. In particular,
there is at most one solution of (5.4). For s = 0, there is a solution, namely

P o = * o . (5-19)

as may be verified with (5.11).
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Existence of a solution for s > 0 is obtained by introducing the sequence

0<">= Σ H?Jτs = JR"sτs, (5.20)
m = 0

n = 0,1,2, As in Sect. 3 one shows that g{"] -+gse@ + pointwise, and in 39 a, as
n-> oo, with gs satisfying gs = JRsJ~1gs, i.e. ps = J'1 gs is fixed point of Ks.

For the ordered case τ = <5m, the solution is given by

m (5.21)

As in Sect. 4 one show that s -> gs is ^-continuous and s -• p s is vaguely continuous.
There is, however, a difference in behaviour of/s and gs with respect to the
limit 5-^ oo. The former satisfies

l im/ s = / 0 0 = J v in <8a9 (5.22)
s-»- oo

the latter

lim gs = 0 in ^ α . (5.23)
s - * oo

At a first glance, the two fixed point problems μs = Tsμs and p s = Rsρs of Sects. 1
and 5, respectively, seem to be similar only with respect to their general structure,
but there is a deeper relationship. Actually, ps may be obtained from μs by choosing v
appropriately.

Set/(x) = O forx^O and

x > 0 . (5.24)

One verifies easily fe@ + , taking (5.2) into account. Hence,

j - i / = v e ^ + ? (5.25)

and

([0,χ-1]}=:0. (5.26){} {
xJ,0 x | 0

Solving μs=Tsμs, with v given by (5.24), (5.25) yields μ s e ^ + , which satisfies

μs({0}) = 0 in view of (5.26) and (3.25). This implies that gs with gs(x) = 0 for

x S 0 and

gs(x) = μs((sχ-\oo)) (5.27)

i s i n ^ + . It satisfies JRsJ~λgs = gs, as shown below, i.e. ps = J~1gse0>

+ is fixed point
of Rs. Now,

&(*) = Ms((^"S °o)) = (Tsμs)((sx~\ oo))

= fj dv(u)dμs(v\ (5.28)

with ^ being the closure of A.
Now, for u Φ 0 and vφO,

(5.29)
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Hence, in view of (5.24) and (5.27),

&(*)= \\dτ{y)dpiz\ (5.30)
Cs,X

which proves the invariance of ρs = J~1gs.
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