Existence and Uniqueness for Random One-Dimensional Lattice Systems

W. R. Schneider

Brown Boveri Research Center, CH-5405 Baden, Switzerland

Abstract

Existence and uniqueness are shown for the fixed point problem pertinent to hopping transport in one-dimension with random transfer rates. Continuity properties of the solution are exhibited. The connection with Dyson's treatment of the linear harmonic chain with random masses is established.

1. Introduction

Diffusion or hopping transport on the one-dimensional lattice \mathbb{Z} is described by the master equation

$$
\begin{equation*}
\dot{P}_{n}=W_{n-1}\left(P_{n-1}-P_{n}\right)+W_{n}\left(P_{n+1}-P_{n}\right), \tag{1.1}
\end{equation*}
$$

where $P_{n}(t)$ is the probability of finding a particle at time t on the lattice site n. Randomness is introduced by assuming the transfer rates $W_{n}, n \in \mathbb{Z}$, to be independent \mathbb{R}_{+}-valued random variables, equally distributed according to a probability measure v. Thus, one is lead to consider expectations

$$
\begin{equation*}
E(f)=\int \prod_{n \in \mathbb{Z}} d v\left(w_{n}\right) f\left(\left\{w_{n}\right\}\right) \tag{1.2}
\end{equation*}
$$

of measurable functions f on $\mathbb{R}_{+}^{\mathbb{Z}}$. In [1] it has been shown (by supplementing (1.1) with the initial condition $P_{n}(0)=\delta_{n 0}$), that

$$
\begin{equation*}
E\left(\widetilde{P}_{0}(s)\right)=\int_{0}^{\infty} d t e^{-s t} E\left(P_{0}(t)\right) \tag{1.3}
\end{equation*}
$$

is given by

$$
\begin{equation*}
E\left(\widetilde{P}_{0}(s)\right)=\iint_{\mathbb{R}_{+}^{2}} d \mu_{s}(x) d \mu_{s}(y)(x+y+s)^{-1} \tag{1.4}
\end{equation*}
$$

for $s \geqq 0$. Here, $\mu_{s}, s \in \mathbb{R}_{+}$, is a probability measure on \mathbb{R}_{+}satisfying the integral equation

$$
\begin{equation*}
\mu_{s}([0, x))=\iint_{A_{s, x}} d v(y) d \mu_{s}(z), \quad x>0 \tag{1.5}
\end{equation*}
$$

with $A_{\mathrm{s}, \mathrm{x}} \subset \mathbb{R}_{+}^{2}$ given by

$$
\begin{equation*}
A_{s, x}=\left\{(y, z) \in \mathbb{R}_{+}^{2} \mid\left[y^{-1}+(z+s)^{-1}\right]^{-1}<x\right\} . \tag{1.6}
\end{equation*}
$$

In Sect. 2 it is shown that (1.5) has at most one solution. Section 3 is devoted to the existence of a solution; the solution is actually "constructed." In Sect. 4 it is shown that the map $s \rightarrow \mu_{s}$ is vaguely continuous. The connection with the work of Dyson [2] on the linear harmonic chain with random masses is established in Sect. 5. More detailed properties of μ_{s} and quantities derived thereof have been treated elsewhere [3], [4]; applications are discussed in [5].

2. Uniqueness

Let \mathscr{P} be the set of (regular Borel) probability measures on \mathbb{R}, and \mathscr{D} the set of distribution functions, i.e. the set of functions $f: \mathbb{R} \rightarrow[0,1]$ which are isotonic, leftcontinuous and $f(x)-f(-x) \rightarrow 1$ as $x \rightarrow \infty$. Denote by J the canonical bijection of \mathscr{P} onto \mathscr{D} :

$$
\begin{equation*}
(J \mu)(x)=\mu((-\infty, x)) \tag{2.1}
\end{equation*}
$$

Let $\mathscr{P}_{+} \subset \mathscr{P}$ be the set of probability measures with support in \mathbb{R}_{+}and $\mathscr{D}{ }_{+} \subset \mathscr{D}$ the set of distribution functions f with $f(x)=0, x \leqq 0$. Obviously, J maps \mathscr{P}_{+} bijectively onto \mathscr{D}_{+}.

Let $v \in \mathscr{P}_{+}$be fixed and $s \in \mathbb{R}_{+} \cup\{\infty\}$. Define the map $T_{s}: \mathscr{P}_{+} \rightarrow \mathscr{P}_{+}$by

$$
\begin{equation*}
\left(J T_{s} \mu\right)(x)=\iint_{A_{s, x}} d v(y) d \mu(z) \tag{2.2}
\end{equation*}
$$

with $A_{s, x} \subset \mathbb{R}_{+}^{2}$ given by (1.6). By definition, each fixed point of T_{s} is a solution of the integral equation (1.5) and vice versa.

As

$$
\begin{equation*}
A_{\infty, x}=[0, x) \times \mathbb{R}_{+} \tag{2.3}
\end{equation*}
$$

(2.2) yields immediately

$$
\begin{equation*}
T_{\infty} \mu=v \tag{2.4}
\end{equation*}
$$

for all $\mu \in \mathscr{P}_{+}$, i.e. T_{∞} has the unique fixed point $\mu_{\infty}=v$. For $s \in \mathbb{R}_{+}$the following decomposition of $A_{s, x}$ into disjoint subsets holds

$$
\begin{equation*}
A_{s, x}=A_{\infty, x} \cup B_{s, x} . \tag{2.5}
\end{equation*}
$$

The set $B_{s, x} \subset \mathbb{R}_{+}^{2}$ is given by

$$
\begin{equation*}
B_{s, x}=\left\{(y, z) \left\lvert\, z<\frac{y x}{y-x}-s\right., \quad x \leqq y<\phi_{s}(x)\right\}, \tag{2.6}
\end{equation*}
$$

where

$$
\phi_{s}(x)=\left\{\begin{array}{cc}
s x /(s-x), & x<s \tag{2.7}\\
\infty & x \geqq s
\end{array}\right.
$$

Obviously,

$$
\begin{equation*}
B_{t, x} \subsetneq B_{s, x}, \quad s<t . \tag{2.8}
\end{equation*}
$$

The decomposition (2.5) may easily be read off from the graph of $\psi_{s}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$ given by

$$
\begin{equation*}
\psi_{s}(y, z)=\left[y^{-1}+(z+s)^{-1}\right]^{-1} . \tag{2.9}
\end{equation*}
$$

From (2.2), (2.5), (2.6) it follows that

$$
\begin{equation*}
J T_{s} \mu=J v+K_{s} J \mu, \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(K_{s} J_{\mu}\right)(x)=\iint_{B_{s, x}} d v(y) d \mu(z), \tag{2.11}
\end{equation*}
$$

or, applying Fubini's theorem,

$$
\begin{equation*}
\left(K_{s} f\right)(x)=\int_{x}^{\phi_{s}(x)} d v(y) f\left(\frac{y x}{y-x}-s\right) \tag{2.12}
\end{equation*}
$$

for $f \in \mathscr{D}_{+}$. Note that K_{s} does not depend on $v(\{0\})$. In view of (2.8), the inequality

$$
\begin{equation*}
K_{t} f \leqq K_{s} f, \quad s<t \tag{2.13}
\end{equation*}
$$

holds. The operator K_{s} has an immediate extension from its "natural" domain \mathscr{D}_{+}to D, the linear span of \mathscr{D}_{+}. A further extension is obtained by introducing the Banach space

$$
\begin{equation*}
\mathscr{B}_{\alpha}=L^{1}\left(\mathbb{R}_{+}, \rho_{\alpha}\right), \quad \frac{d \rho_{\alpha}}{d x}=\alpha(1+x)^{-1-\alpha}, \quad 0<\alpha<1, \tag{2.14}
\end{equation*}
$$

with norm

$$
\begin{equation*}
\|f\|_{\alpha}=\alpha \int_{0}^{\infty} d x(1+x)^{-1-\alpha}|f(x)| . \tag{2.15}
\end{equation*}
$$

Using Fubini's theorem and a change of variable

$$
\begin{equation*}
x \rightarrow z=\frac{y x}{y-x}-s \tag{2.16}
\end{equation*}
$$

yields

$$
\begin{equation*}
\left\|K_{s} f\right\|_{\alpha} \leqq \alpha \int_{0}^{\infty} d v(y) \int_{0}^{\infty} d z k_{s}(y, z)|f(z)| \tag{2.17}
\end{equation*}
$$

with equality holding for $f \geqq 0$, and

$$
\begin{equation*}
k_{s}(y, z)=y^{2}(s+y+z)^{-2}\left(1+\frac{y(s+z)}{s+y+z}\right)^{-1-\alpha} \tag{2.18}
\end{equation*}
$$

The estimates

$$
\begin{equation*}
k_{s}(y, z)<\left(\frac{y}{y+s}\right)^{1-\alpha}(1+z)^{-1-\alpha} \leqq(1+z)^{-1-\alpha} \tag{2.19}
\end{equation*}
$$

which hold for $y>0, z>0$, lead to

$$
\begin{equation*}
\left\|K_{s} f\right\|_{\alpha}<\|f\|_{\alpha} \int_{0}^{\infty} d v(y)\left(\frac{y}{y+s}\right)^{1-\alpha}, \quad f \neq 0 \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|K_{s} f\right\|_{\alpha}<\|f\|_{\alpha}, \quad f \neq 0 \tag{2.21}
\end{equation*}
$$

By Lebesgue's dominated convergence theorem, (2.20) yields

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left\|K_{s} f\right\|_{\alpha}=0 \tag{2.22}
\end{equation*}
$$

i.e. K_{s} is strongly continuous at infinity.

As a consequence of (2.21), the equation

$$
\begin{equation*}
f=g+K_{s} f \tag{2.23}
\end{equation*}
$$

has at most one solution $f \in \mathscr{B}_{\alpha}$ for any $g \in \mathscr{B}_{\alpha}, g \neq 0$. Thus, in view of (2.10), the following uniqueness theorem holds.

Theorem 2.1. The map $T_{s}: \mathscr{P}_{+} \rightarrow \mathscr{P}_{+}$, defined by (2.2), has at most one fixed point.

3. Existence

The functions

$$
\begin{equation*}
f_{s}^{(n)}=\sum_{m=0}^{n} K_{s}^{m} J v, \quad n \geqq 0 \tag{3.1}
\end{equation*}
$$

belong to \mathscr{D}_{+}, by induction, as

$$
\begin{equation*}
f_{s}^{(n)}=J v+K_{s} f_{s}^{(n-1)}, \tag{3.2}
\end{equation*}
$$

and, from (2.10), with $f_{s}^{(n-1)} \in \mathscr{D}+$ also

$$
\begin{equation*}
f_{s}^{(n)}=J T_{s} J^{-1} f_{s}^{(n-1)} \tag{3.3}
\end{equation*}
$$

is in \mathscr{D}_{+}. Furthermore, (3.1) yields

$$
\begin{equation*}
f_{s}^{(n)}=f_{s}^{(n-1)}+K_{s}^{n} J v . \tag{3.4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
0 \leqq f_{s}^{(0)} \leqq f_{s}^{(1)} \leqq \ldots \leqq f_{s}^{(n)} \leqq \ldots \leqq 1 \tag{3.5}
\end{equation*}
$$

as K_{s} is positivity preserving. Consequently,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{s}^{(n)}=f_{s} \tag{3.6}
\end{equation*}
$$

exists pointwise. As each $f_{s}^{(n)}, n \geqq 0$, is isotonic, also f_{s} is isotonic. Thus, the limits

$$
\begin{equation*}
\lim _{y \uparrow x} f_{s}(y)=f_{s}\left(x_{-}\right), \quad \lim _{y \downarrow x} f_{s}(y)=f_{s}\left(x_{+}\right) \tag{3.7}
\end{equation*}
$$

exist. Assume f_{s} not to be left-continuous, i.e.

$$
\begin{equation*}
f_{s}(x)-f_{s}\left(x_{-}\right)=a>0 \tag{3.8}
\end{equation*}
$$

For n sufficiently large (say $n>N$)

$$
\begin{equation*}
0 \leqq f_{s}(x)-f_{s}^{(n)}(x)<a / 2, \quad n>N \tag{3.9}
\end{equation*}
$$

and for $y<x$

$$
\begin{equation*}
0 \leqq f_{s}^{(n)}(y) \leqq f_{s}(y) \leqq f_{s}\left(x_{-}\right) \tag{3.10}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
f_{s}^{(n)}(x)-f_{s}^{(n)}(y)>a / 2, \quad n>N . \tag{3.11}
\end{equation*}
$$

Taking the limit $y \dagger x$ yields

$$
\begin{equation*}
f_{s}^{(n)}(x)-f_{s}^{(n)}\left(x_{-}\right) \geqq a / 2, \quad n>N \tag{3.12}
\end{equation*}
$$

This contradicts the left-continuity of $f_{s}^{(n)}, n \geqq 0$. Finally (3.5) yields

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f_{s}(x)=1 \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{s}^{(n)}=0, \quad x \leqq 0, \quad n \geqq 1 \tag{3.14}
\end{equation*}
$$

yields

$$
\begin{equation*}
f_{s}(x)=0, \quad x \leqq 0 \tag{3.15}
\end{equation*}
$$

Hence, f is in \mathscr{D}_{+}.
Furthermore, by Lebesgue's dominated convergence theorem

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{s}-f_{s}^{(n)}\right\|_{\alpha}=0 \tag{3.16}
\end{equation*}
$$

As K_{s} is bounded, (3.2) combined with (3.16) leads to

$$
\begin{equation*}
f_{s}=J v+K_{s} f_{s} \tag{3.17}
\end{equation*}
$$

or, with (2.10)

$$
\begin{equation*}
f_{s}=J T_{s} J^{-1} f_{s} \tag{3.18}
\end{equation*}
$$

Hence, the following theorem holds.
Theorem 3.1. The sequence

$$
\begin{equation*}
J T_{s}^{n} v=\sum_{m=0}^{n} K_{s}^{m} J v \tag{3.19}
\end{equation*}
$$

is in \mathscr{D}_{+}. It converges pointwise and in \mathscr{B}_{α}-norm. Its limit, f_{s}, defines a probability measure $\mu_{s}=J^{-1} f_{s}$ which is a fixed point of T_{s}.

Remark 1. As $K_{\infty}=0$, (3.1) reduces to $f_{\infty}^{(n)}=J v, n \geqq 1$, i.e. $f_{\infty}=J v$, in accordance with Sect. 2.

Remark 2. Let $f_{0} \in \mathscr{D}_{+}$be given by

$$
f_{0}(x)= \begin{cases}0, & x \leqq 0 \tag{3.20}\\ 1, & x>0\end{cases}
$$

Applying K_{0} to f_{0} yields, according to (2.12) and (2.7),

$$
\begin{equation*}
K_{0} f_{0}=f_{0}-J v \tag{3.21}
\end{equation*}
$$

i.e. $J^{-1} f_{0}=\delta_{0}$ (Dirac measure) is fixed point of T_{0}.

Remark 3. The ordered case of (1.1) is characterized by $W_{n}=w, w \geqq 0, n \in \mathbb{Z}$. This is equivalent to $v=\delta_{w}$. For $w=0$, (2.2) yields

$$
\begin{equation*}
J T_{s} \mu=f_{0} \tag{3.22}
\end{equation*}
$$

for arbitrary $\mu \in \mathscr{P}_{+}$, i.e. δ_{0} is fixed point of $T_{s}, s \in \mathbb{R}_{+} \cup\{\infty\}$. For $w>0$, the point ($w, a(s)$) with

$$
\begin{equation*}
a(s)=\frac{1}{2}\left[\left(4 w s+s^{2}\right)^{1 / 2}-s\right], \quad s \in \mathbb{R}_{+} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
a(\infty)=\lim _{s \rightarrow \infty} a(s)=w \tag{3.24}
\end{equation*}
$$

is mapped onto itself by ψ_{s} defined in (2.8). Hence, $\mu_{s}=\delta_{a(s)}$ is fixed point of T_{s}, $s \in \mathbb{R}_{+} \cup\{\infty\}$.

Remark 4. Replacing $A_{s, x}$ in (2.2) by its closure and taking the limit $x \rightarrow 0$ yields $\left(T_{s} \mu\right)(\{0\})=v(\{0\})$. In particular,

$$
\begin{equation*}
\mu_{s}(\{0\})=v(\{0\}) \tag{3.25}
\end{equation*}
$$

4. Continuity Properties

In this section continuity properties of K_{s} and μ_{s} are discussed. Let $\mathscr{C}\left(\mathscr{B}_{\alpha}\right)$ be the set of bounded operators on \mathscr{B}_{α}.

Theorem 4.1. The map $s \rightarrow K_{s}$ from $\mathbb{R}_{+} \cup\{\infty\}$ to $\mathscr{C}\left(\mathscr{B}_{\alpha}\right)$, defined by (2.10) and (2.7), is strongly continuous.
Proof. As $K_{\infty}=0$, strong continuity at ∞ is equivalent to (2.22). Let $0 \leqq s<t<\infty$ and $f \in \mathscr{B}_{\alpha}, f \geqq 0$. Then

$$
\begin{equation*}
\left\|K_{t} f-K_{s} f\right\|_{\alpha}=\alpha \int_{0}^{\infty} d v(y) \int_{0}^{\infty} d z\left[k_{s}(y, z)-k_{t}(y, z)\right] f(z) \tag{4.1}
\end{equation*}
$$

with k_{s} given by (2.18). In view of the estimates (2.19) Lebesgue's dominated
convergence theorem is applicable yielding

$$
\begin{equation*}
\lim _{s \rightarrow t}\left\|K_{t} f-K_{s} f\right\|_{\alpha}=0 \tag{4.2}
\end{equation*}
$$

The extension to arbitrary $f \in \mathscr{B}_{\alpha}$ is trivial as K_{s} is positivity preserving.
Theorem 4.2. The map

$$
\begin{equation*}
s \rightarrow f_{s}=\sum_{m=0}^{\infty} K_{s}^{m} J v \tag{4.3}
\end{equation*}
$$

from $\mathbb{R}_{+} \cup\{\infty\}$ to \mathscr{B}_{α} is continuous.
Proof. By Theorem 4.1, $K_{s}^{m} J v$ is continuous. Hence, $f_{s}^{(n)}, n \geqq 1$, given by (3.1), is continuous. From

$$
\begin{equation*}
f_{s}^{(n)} \leqq f_{0}^{(n)}, n \geqq 1, \tag{4.4}
\end{equation*}
$$

shown below by induction, it follows that $f_{s}^{(n)}$ converges uniformly to f_{s}. Hence, f_{s} is continuous. For $n=1$, (3.2) and (2.13) yield

$$
\begin{equation*}
f_{s}^{(1)}=J v+K_{s} J v \leqq J v+K_{0} J v=f_{0}^{(1)} . \tag{4.5}
\end{equation*}
$$

Assume $f_{s}^{(n-1)} \leqq f_{0}^{(n-1)}$. Again using (3.2) and (2.13) leads to

$$
\begin{equation*}
f_{s}^{(n)}=J v+K_{s} f_{s}^{(n-1)} \leqq J v+K_{0} f_{s}^{(n-1)} \leqq J v+K_{0} f_{0}^{(n-1)}=f_{0}^{(n)} . \tag{4.6}
\end{equation*}
$$

This completes the proof.
Let $C_{0}(\mathbb{R})$ denote the set of \mathbb{R}-valued continuous functions on \mathbb{R} with compact support, and $C_{0}^{1}(\mathbb{R})$ the subset consisting of the functions in $C_{0}(\mathbb{R})$ having a continuous derivative.

Theorem 4.3. The map $s \rightarrow \mu_{s}=J^{-1} f_{s}$ from $\mathbb{R}_{+} \cup\{\infty\}$ to \mathscr{P}_{+}is vaguely continuous, i.e.

$$
\begin{equation*}
\mu_{s}(g)=\int g(x) d \mu_{s}(x), \quad g \in C_{0}(\mathbb{R}) \tag{4.7}
\end{equation*}
$$

depends continuously on s.
Proof. It is sufficient to prove the latter statement for $h \in C_{0}^{1}(\mathbb{R})$ as $C_{0}^{1}(\mathbb{R})$ is dense in $C_{0}(\mathbb{R})$ with respect to the sup-norm. Partial integration leads to

$$
\begin{equation*}
\mu_{s}(h)=-\int h^{\prime}(x) f_{s}(x) d x \tag{4.8}
\end{equation*}
$$

where h^{\prime} is the derivative of h. Hence,

$$
\begin{equation*}
\left|\mu_{t}(h)-\mu_{s}(h)\right| \leqq \int\left|h^{\prime}(x)\right|\left|f_{t}(x)-f_{s}(x)\right| d x \tag{4.9}
\end{equation*}
$$

Setting

$$
\begin{equation*}
C_{\alpha}(h)=\sup _{x \in \mathbb{R}_{+}}\left|h^{\prime}(x)\right| \rho_{\alpha}(x)^{-1}, \tag{4.10}
\end{equation*}
$$

(4.9) yields the estimate

$$
\begin{equation*}
\left|\mu_{t}(h)-\mu_{s}(h)\right| \leqq C_{\alpha}(h)\left\|f_{t}-f_{s}\right\|_{\alpha}, \tag{4.11}
\end{equation*}
$$

which, together with Theorem 4.2., proves continuity of $\mu_{s}(h)$ in s.

5. The Disordered Harmonic Chain

A fixed point problem similar to the one of Sect. 1 was posed by Dyson [2] in the context of the mass-disordered infinite linear harmonic chain. Results analogous to those of Sects. 2-4 are obtained, and the connection between the two fixed point problems is exhibited.

An infinite linear harmonic chain is described by the equations of motion

$$
\begin{equation*}
M_{n} \ddot{Q}_{n}=W_{n-1}\left(Q_{n-1}-Q_{n}\right)+W_{n}\left(Q_{n+1}-Q_{n}\right), \quad n \in \mathbb{Z} \tag{5.1}
\end{equation*}
$$

Here M_{n} is the mass of the $n^{\text {th }}$ particle, Q_{n} its displacement from its equilibrium position and W_{n} the spring constant of the spring between particle n and $n+1$.

Several variants of disorder may be envisaged, involving randomness of masses and spring constants. The case considered here is case II of Dyson, where $M_{n}, n \in \mathbb{Z}$, are independent equally distributed \mathbb{R}_{+}-valued random variables, whereas the spring constants W_{n} have a common fixed value. Let $\tau \in \mathscr{P}{ }_{+}$denote the probability measure describing the distribution of the masses. It is assumed that

$$
\begin{equation*}
\tau(\{0\})=0, \tag{5.2}
\end{equation*}
$$

i.e. there are no zero-mass particles, or more stringent,

$$
\begin{equation*}
\tau([0, m))=0, \quad m>0, \tag{5.3}
\end{equation*}
$$

i.e. a mass gap.

Dyson's fixed point problem consists in finding a probability measure $\rho_{s} \in \mathscr{P}_{+}$ satisfying

$$
\begin{equation*}
\rho_{s}=R_{s} \rho_{s}, \quad s \in \mathbb{R}_{+} . \tag{5.4}
\end{equation*}
$$

The map $R_{s}: \mathscr{P}_{+} \rightarrow \mathscr{P}_{+}$is given by

$$
\begin{equation*}
\left(J R_{s} \rho\right)(x)=\iint_{C_{s, x}} d \tau(y) d \rho(z) \tag{5.5}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{s, x}=\left\{(y, z) \in \mathbb{R}_{+}^{2} \mid s y+z /(1+z)<x\right\} . \tag{5.6}
\end{equation*}
$$

From (5.6) it follows that (5.5) may be rewritten as

$$
\begin{equation*}
J R_{s} \rho=J \tau_{s}+H_{s} J \rho \tag{5.7}
\end{equation*}
$$

For $s>0$ the two parts of (5.7) are given by

$$
\begin{equation*}
\left(J \tau_{s}\right)(x)=(J \tau)\left(\frac{x-1}{s}\right) \tag{5.8}
\end{equation*}
$$

and, with $f \in \mathscr{D}_{+}$,

$$
\begin{equation*}
\left(H_{s} f\right)(x)=\int_{\beta_{s}(x)}^{x / s} d \tau(y) f\left(\frac{x-s y}{1-x+s y}\right), \tag{5.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{s}(x)=\max \left\{0, \frac{x-1}{s}\right\} . \tag{5.10}
\end{equation*}
$$

The case $s=0$ is obtained either directly from (5.5), (5.6), i.e. from

$$
\left(J R_{0} \rho\right)(x)= \begin{cases}J \rho\left(\frac{x}{1-x}\right), & x<1 \tag{5.11}\\ 1 & x \geqq 1\end{cases}
$$

or as limits from (5.8) and (5.9), yielding

$$
\left(J \tau_{0}\right)(x)= \begin{cases}0, & x \leqq 1 \tag{5.12}\\ 1, & x>1\end{cases}
$$

and

$$
\left(H_{0} f\right)(x)= \begin{cases}f\left(\frac{x}{1-x}\right), & x<1 \tag{5.13}\\ 0 & x>1\end{cases}
$$

supplemented by

$$
\begin{equation*}
\left(H_{0} f\right)(1)=\lim _{x \uparrow 1} f\left(\frac{x}{1-x}\right) \quad\left(=1 \text { for } f \in \mathscr{D}_{+}\right) . \tag{5.14}
\end{equation*}
$$

Extension of (5.9), (5.13) and (5.14) to $f \in D$, the linear span of \mathscr{D}_{+}, is immediate. A further extension of (5.9) and (5.13) to the Banach space \mathscr{B}_{α}, defined in (2.14), leads to the estimate (equality holding for $f \geqq 0$)

$$
\begin{equation*}
\left\|H_{s} f\right\|_{\alpha} \leqq \alpha \int_{0}^{\infty} d \tau(y) \int_{0}^{\infty} d z h_{s}(y, z)|f(z)|, \quad s \in \mathbb{R}_{+} \tag{5.15}
\end{equation*}
$$

with

$$
\begin{equation*}
h_{s}(y, z)=(1+z)^{-2}\left(1+\frac{z}{1+z}+s y\right)^{-1-\alpha} \tag{5.16}
\end{equation*}
$$

The inequalities

$$
\begin{equation*}
h_{s}(y, z)<(1+z)^{-1-\alpha}(1+s y)^{-1-\alpha}<(1+z)^{-1-\alpha}, \tag{5.17}
\end{equation*}
$$

holding for $y>0, z>0$, imply for $f \neq 0$

$$
\begin{equation*}
\left\|H_{s} f\right\|_{\alpha}<\|f\|_{\alpha} \int^{\infty} d \tau(y)(1+s y)^{-1-\alpha}<\|f\|_{\alpha} . \tag{5.18}
\end{equation*}
$$

This yields uniqueness for $f \in \mathscr{B}_{\alpha}$, satisfying $f=g+H_{s} f, g \in \mathscr{B}_{\alpha}, g \neq 0$. In particular, there is at most one solution of (5.4). For $s=0$, there is a solution, namely

$$
\begin{equation*}
\rho_{0}=\delta_{0} \tag{5.19}
\end{equation*}
$$

as may be verified with (5.11).

Existence of a solution for $s>0$ is obtained by introducing the sequence

$$
\begin{equation*}
g_{s}^{(n)}=\sum_{m=0}^{n} H_{s}^{m} J \tau_{s}=J R_{s}^{n} \tau_{s} \tag{5.20}
\end{equation*}
$$

$n=0,1,2, \ldots$ As in Sect. 3 one shows that $g_{s}^{(n)} \rightarrow g_{s} \in \mathscr{D}+$ pointwise, and in \mathscr{B}_{α}, as $n \rightarrow \infty$, with g_{s} satisfying $g_{s}=J R_{s} J^{-1} g_{s}$, i.e. $\rho_{s}=J^{-1} g_{s}$ is fixed point of R_{s}.

For the ordered case $\tau=\delta_{m}$, the solution is given by

$$
\begin{equation*}
\rho_{s}=\delta_{b(s)}, \quad b(s)=\frac{1}{2}\left\{m s+\left(4 m s+m^{2} s^{2}\right)^{1 / 2}\right\} . \tag{5.21}
\end{equation*}
$$

As in Sect. 4 one show that $s \rightarrow g_{s}$ is \mathscr{B}_{α}-continuous and $s \rightarrow \rho_{s}$ is vaguely continuous. There is, however, a difference in behaviour of f_{s} and g_{s} with respect to the limit $s \rightarrow \infty$. The former satisfies

$$
\begin{equation*}
\lim _{s \rightarrow \infty} f_{s}=f_{\infty}=J v \text { in } \mathscr{B}_{\alpha}, \tag{5.22}
\end{equation*}
$$

the latter

$$
\begin{equation*}
\lim _{s \rightarrow \infty} g_{s}=0 \text { in } \mathscr{B}_{\alpha} . \tag{5.23}
\end{equation*}
$$

At a first glance, the two fixed point problems $\mu_{s}=T_{s} \mu_{s}$ and $\rho_{s}=R_{s} \rho_{s}$ of Sects. 1 and 5 , respectively, seem to be similar only with respect to their general structure, but there is a deeper relationship. Actually, ρ_{s} may be obtained from μ_{s} by choosing v appropriately.

Set $f(x)=0$ for $x \leqq 0$ and

$$
\begin{equation*}
f(x)=\tau\left(\left(x^{-1}, \infty\right)\right), \quad x>0 . \tag{5.24}
\end{equation*}
$$

One verifies easily $f \in \mathscr{D}_{+}$, taking (5.2) into account. Hence,

$$
\begin{equation*}
J^{-1} f=v \in \mathscr{P}_{+}, \tag{5.25}
\end{equation*}
$$

and

$$
\begin{equation*}
v(\{0\})=\lim _{x \downarrow 0} f(x)=\lim _{x \downarrow 0}\left\{1-\tau\left(\left[0, x^{-1}\right]\right\}=0 .\right. \tag{5.26}
\end{equation*}
$$

Solving $\mu_{s}=T_{s} \mu_{s}$, with v given by (5.24), (5.25) yields $\mu_{s} \in \mathscr{P}_{+}$, which satisfies $\mu_{s}(\{0\})=0$ in view of (5.26) and (3.25). This implies that g_{s} with $g_{s}(x)=0$ for $x \leqq 0$ and

$$
\begin{equation*}
g_{s}(x)=\mu_{s}\left(\left(s x^{-1}, \infty\right)\right) \tag{5.27}
\end{equation*}
$$

is in \mathscr{D}_{+}. It satisfies $J R_{s} J^{-1} g_{s}=g_{s}$, as shown below, i.e. $\rho_{s}=J^{-1} g_{s} \in \mathscr{P}_{+}$is fixed point of R_{s}. Now,

$$
\begin{align*}
g_{s}(x) & =\mu_{s}\left(\left(s x^{-1}, \infty\right)\right)=\left(T_{s} \mu_{s}\right)\left(\left(s x^{-1}, \infty\right)\right) \\
& =\iint_{\mathbb{R}_{+}^{2} \backslash \int_{s, s x-1}} d v(u) d \mu_{s}(v), \tag{5.28}
\end{align*}
$$

with \bar{A} being the closure of A.
Now, for $u \neq 0$ and $v \neq 0$,

$$
\begin{equation*}
(u, v) \in \mathbb{R}_{+}^{2} \backslash \bar{A}_{s, s x^{-1}} \Leftrightarrow\left(u^{-1}, s v^{-1}\right) \in C_{s, x} . \tag{5.29}
\end{equation*}
$$

Hence, in view of (5.24) and (5.27),

$$
\begin{equation*}
g_{s}(x)=\iint_{C_{s, x}} d \tau(y) d \rho_{s}(z) \tag{5.30}
\end{equation*}
$$

which proves the invariance of $\rho_{s}=J^{-1} g_{s}$.

References

1. Bernasconi, J., Alexander, S., Orbach, R.: Classical diffusion in one-dimensional disordered lattice. Phys. Rev. Lett. 41, 185-187 (1978)
2. Dyson, F. J.: The dynamics of a disordered linear chain. Phys. Rev. 92, 1331-1338 (1953).
3. Bernasconi, J., Schneider, W. R., Wyss, W.: Diffusion and hopping conductivity in disordered onedimensional lattice systems. Z. Phys. B37, 175-184 (1980)
4. Schneider, W. R., Bernasconi, J.: In: Lecture Notes in Physics, Vol. 153, pp. 389-393. Berlin, Heidelberg, New York: Springer 1982.
5. Alexander, S., Bernasconi, J., Schneider, W. R., Orbach, R.: Excitation dynamics in randóm onedimensional systems. Rev. Mod. Phys. 53, 175-198 (1981)

Communicated by Ya. G. Sinai
Received January 10, 1982

