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Abstract. In the framework of Mackey’s description of a physical system, the
generalized transition probability, as defined in an earlier paper, is shown to be
non-decreasing while the system evolves, and invariant when the evolution is
reversible. It is also invariant under a natural action of the space-time symmetry
group.

1. Introduction

Asin [1], we shall adopt Mackey’s description of a physical system in terms of a set
& of states, a set (0 of observables, and a structure function 4 representing the
probability distributions associated with the measurements of the observables on
the states [2]. This broad framework is enough to define a generalized transition
probability T(a,f) on & x & (or, equivalently, a distance function (e, ) which
turns & into a metric space). [1, 3-5].

Additional structure must be specified in order to exhibit how the generalized
transition probability is related to the dynamical evolution of the system, and to the
space-time symmetry group in a relativistic theory.

Following Mielnik [6, 7], we shall represent the set of all possible evolutions of
the physical system by a mobility semigroup ./ . Its natural action on .% and @ will
turn out to be such that the generalized transition probability between any pair of
evolving states cannot decrease with time. Under an additional reversibility
assumption, .# becomes a group and T is preserved. Similarly, in a relativistic
theory, the space-time symmetry group ¢ must have a natural action on % and O
such that the function T be preserved.

We shall conclude by remarking that, in this perspective, the purely metric
aspects of the quantum-mechanical formalism, directly related to observation via
the transition probability, acquire a primary significance, while the underlying linear
structure, and all its important consequences, appear in a certain sense as derived
elements—a remark which seems pertinent both to the justification of the
established formalism and to the search for its possible extensions or modifications.
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2. Mackey Systems and Mobility

Recall that, in Mackey’s scheme, the function x(A4,a, E) is interpreted as the
probability that a measurement of the observable Ae(® on the state ac¥ give a
result in the Borel set E of the real line R. Thus to any given pair (4, «) there
corresponds a probability measure o, on R such that |do, = 4(4,0,E). If B is a

E
second state, one can consider the number

T p)y=1§dJoaBal? (1)
R

where ./, f, is the Kakutani product of the measures «, and f5,[ 8], and define the
generalized transition probability T between o and f by setting

T(o, p) = inf T (e, B). 2

A€
The set ¥ becomes a metric space if the distance function ./ is defined by the relation
A, B)= /201 =T p)]. A3)

The knowledge of « is completely equivalent to the knowledge of T.

Each state a represents a class of equivalent “preparations,” and must therefore
correspond to a “reference time” ¢, which can conveniently be thought of as the
instant at which the preparation is completed. An ensemble associated with a is
obtained by repeating the same preparation as many times as one wishes under
identical conditions, at reference times t', t”,.... Similarly, each observable A
represents a class of equivalent measurements, and must therefore correspond to a
“reference time” t, which can now conveniently be thought of as the instant at which
the measurement begins. The measurement of A can be repeated as many times as
one wishes, at reference times ', t’,...; its individual outcomes are in general
variable (even when they follow identical preparations), but the statistical distri-
butions are the same on ensembles associated with the same state.

Now suppose that, having performed a preparation of « at reference time ¢, one
lets the system evolve during a time-interval (t,t + t) under fixed, controlled
environmental conditions, and then performs the measurement of 4 at reference
time t + 7. Such an experiment (which can in principle be repeated as many times as
one wishes) can be interpreted in two ways: as the preparation of the state o (at
reference time ¢) followed by the measurement of a new observable mA (at reference
time t), or as the preparation of a new state ma (at reference time ¢ + 1) followed by
the measurement of A (at reference time ¢ + t). The correspondences m: A —mA and
m:o.— ma are completely determined by ¢ and by the selected external conditions
during the interval (¢, ¢ + 1): mo is prepared by performing the preparation of « and
letting the system evolve under the selected conditions; the observable mA is
measured by applying the selected conditions and measuring A with a delay 7.

By letting 7 and the environmental conditions during the time-interval (¢, t + 1)
vary in all physically realizable ways, one obtains the set .# of all possible movements
of the system. Each movement me.# determines, as we have just seen, a
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correspondence o — ma from & to . as well as a correspondence 4 — mA from O to
¢. If, as we shall assume, any two choices of external conditions (with definite
durations) can be applied in immediate succession, one has a natural composition of
movements which determines a semigroup structure in .#.

The actions of the elements of .# on . and on @ are such that the relation

A, ma, E) = s(mA,a, E) 4)

is identically satisfied, since, for any fixed choice of 4, and m, the two statistical
distributions corresponding to the left and right-hand sides of (4) are determined by
the same set of experiments.

The above considerations suggest the adjunction, to Mackey’s scheme consist-
ing of the triple {,0, 4}, of a mobility semigroup /. In addition to Mackey’s
axioms I and II ([2] p. 62)! an action of the semigroup .# on . and on ( satisfying
the identity (4) should be assumed.

Note that, although we have adopted in part Mielnik’s concepts and termi-
nology, at the present stage we neither make the assumption that the maps by which
M acts on & beinvertible, nor do we require that % be a manifold (compare with [ 6]
and [7]).

3. Dynamical Behaviour of the Generalized Transition
Probability

From the definition (1) and the identity (4), one immediately obtains the relation

TA(mav mﬁ) = T‘mA(aa 16) (5)

Since there is no a priorireason to assume that the maps m: ¢ — O be surjective, one
has m@® < O (every “delayed observable” is an observable) but not necessarily
m@ = O (some observables may not be equivalent to “delayed” ones). By considering
the greatest lower bounds of the left and right-hand sides of (5), one therefore gets,
remembering the definition (2) of T:

T(mo,mp) = inf T,(mo,mf)= inf T, ,(, )

Ael m AemO

= inf T,(p)z ;“}; T, (e p)=T(a,p). (6)

Aem@

Thus each movement me.# must be represented on .’ by amap m: ¥ — % such that
the function T is non-decreasing

T(o, f) < T(mo, mp). (7)
Axiom 1:  f(A,0,¢)=0, f(4,0,R)=1;

MA,0E VE,L...) =} /(Ao E;) whenever
J
the Borel sets E; are disjoint in pairs.

Axiom II: p(A,0,E)= (A0, E) for all e and E=>A = A’;
/(A 0, E) = s(A,a,E) for all A and E=a =a’
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Equivalently, the distance function < must be non-increasing:
(o, B) = o (mo, mp). (8)

If the actual time-evolution of the physical system is represented by a one-
parameter family of movements, the generalized transition probability between any
pair of evolving states corresponding to fixed initial conditions must be a non-
decreasing function of time. Equivalently, the distance function must be a non-
increasing function of time.

4. Reversible Systems

Certain restrictions on the behaviour of the physical system imply that relations (7)
and (8) are always satisfied, for such systems, with the equality sign. This happens, in
particular, if each movement me.# admits an inverse m~' (physically: if any
arrangement of external conditions could be followed by a second arrangement
restoring the initial situation). When this is the case, .# is a group, and we shall say
that the system is reversible.

Thus, with a reversible system there is associated a mobility group which
preserves the generalized transition probability, and therefore acts on & isometri-
cally. Moreover, one can assume that the action of .# on % be transitive, since, when
reversibility holds, the condition that any state should be transformable (by an
adequate choice of external conditions) into any other state can be regarded as a
sound operational criterion to assert that the two states belong to the same physical
system.

5. Space-Time Symmetries

Suppose now that the physical system possesses a space-time symmetry group, in the
sense that the existence of a class of physically equivalent reference frames is
admitted, together with the possibility of transferring every apparatus for the
preparation of the states, the measurement of the observables and the control of the
external conditions from any one to any other frame of the class. Then there is a
natural action of the symmetry group % on ¢ and on &. Each element 4€%
determines the bijections ¢: - %, 0 > ga and ¢: 0 -0, A— 4 A, and the physical
equivalence of the reference frames entails the relation

(A0 E) = 4y A, g, E). ©)

Hence, recalling the definitions (2) and (3), one obtains

TA(“’ ﬁ) = TgA(yaa yﬁ)v

and

T(o, f) = inf T (o, f) = inf@ T, A9, #B)

Ae® gdeg

= inf T,(g0, 2 ) = T(go. 2 P), (10)

Ae®
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where the bijective character of the map ¢:¢ — ¢ has been taken into account.

Thus, the space-time symmetry group ¥ can be brought into Mackey’s scheme
by specifying its actions on % and on . Equation (9) must always be satisfied;
consequently, the action of ¢ on ¥ must preserve the generalized transition
probability (equivalently: it must be isometric).

6. Remarks on the Quantum-Mechanical Formalism

We conclude by a brief sketch of arguments which support the view that the
significant structures involved in the quantum-mechanical model are directly
related to the transition probability function and its symmetry group—the metric
aspects of the theory—while the technically important but perhaps not con-
ceptually indispensable reliance of the formalism on the linear structure of an
underlying Hilbert space appears to be present, in this particular model, owing to
the peculiar structure of the set of pure states as a metric space.

a) Being the projective space associated with a complex separable Hilbert space
A, the set of pure states # of Quantum Mechanics is a manifold modeled on a
separable Hilbert space, with a strong riemannian structure g (the Fubini-Study
metric, [9] p. 160, or its straightforward generalization to the infinite-dimensional
case). The metric tensor g can be derived from the transition probability by the
procedure described in [10].

Besides g, # has a second physically relevant geometric structure: a strong
symplectic form w, whose role in Quantum Mechanics has been made explicit in
[11]. But w is itself completely determined (up to a physically irrelevant change of
sign) by the transition probability via the riemannian structure: in fact, the Riemann
tensor of 3 has the form

RWW,X,Y,Z)=g(W,Z)g(X,Y)—g(W, Y)a(X,Z) + o(W,Z)u (X, Y)
—o(W,Y)u(X,Z) = 20(W, X)w(Y,Z)

(where W, X, Y, Z are vectors tangent to # ), from which one immediately derives the
relation

3a(X, Y)]? =[g(X, ¥)]* — g(X, X)g(Y, ¥) = R(X, ¥, X, Y),

which demonstrates the assertion.

Thus the entire intrinsic geometric structure of # (Kihler manifold with
constant and positive holomorphic sectional curvature) is determined by the
transition probability.

b) In Quantum Mechanics each observable A is represented by a self-adjoint
operator A of #. If A and A’ only differ by a multiple of the identity, the observables
A and A’ describe essentially the same physical quantity.

Equivalently, each physical quantity can be represented by the one-parameter
group of unitary transformations (determined up to a factor of modulus one)
generated by any of its self-adjoint representatives. Thus each physical quantity is
associated with a well-determined one-parameter group of isometries of #
(regarded as a metric space), unaffected by a change of the representative (since
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multiplication by a complex number of modulus 1 in # does not affect the transition
probability).

Such a representation of the physical quantities by means of one-parameter
groups of isometries of the state space makes use of metric concepts only, and
does not rely on the linear structure of . It would make sense in any space . with a
transition probability admitting a nontrivial symmetry group, even if & were not a
projective space.

The same is true for the quantum commutation relations. If two quantities are
represented by the operators A and B and by the one-parameter subgroups U4 and
U® of isometries of J#, their quantum commutator [A4, B] is represented by the
operator i/h (AB-BA), or by the subgroup

d
Uit B = CXP[1<E UlmUm Ut mU" hu) o}
u=

The last relation makes sense with no reference to the linear structure of H, and
therefore lends itself to generalization.

c¢) In this perspective, the irreducible unitary representations “up to a factor” of
the inhomogeneous Lorentz group L, described by Wigner [12] as a basis for the
description of elementary systems, can also be regarded as “metric” representations,
acting isometrically on the space S of pure states, with no reference to the underlying
linear space.

The fact that L should act isometrically on S in a relativistic theory has been
justified in Sect. 5. The recovery of the non-relativistic quantum conditions can then
be achieved by means of a suitable deformation of the Lie algebra of L
(corresponding to the limit ¢— o0), as recently shown by G. Kaiser [13]. This
provides a promising approach to a justification of the quantum-mechanical
formalism, possibly on the basis of requirements of relativistic invariance only.
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