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Abstract. A new class of space-times is introduced which, in a neighbourhood of
spatial infinity, allows an expansion in negative powers of a radial coordinate.
Einstein's vacuum equations give rise to a hierarchy of linear equations for the
coefficients in this expansion. It is demonstrated that this hierarchy can be
completely solved provided the initial data satisfy certain constraints.

1. Introduction and Motivation

Minkowski space, the arena of special relativity, has a much richer structure "at
infinity" than flat Riemannian spaces. One can move to infinity along timelike,
spacelike and null lines, which cannot be mapped into each other by Poincare
transformations. Correspondingly one can investigate the behaviour of fields on
Minkowski space in different asymptotic regions.

Light cones, or more generally null hypersurfaces, are characteristic hyper-
surfaces for hyperbolic equations, constructed geometrically from the Minkowski
metric. (The scalar- wave equation, Maxwell's equations and the Yang- Mills
equations are important examples.) The radiation contained in such fields
propagates to infinity along the bi characteristics of such hypersurfaces, i.e. null lines.
For this reason, Bondi et al. [1] in their studies of radiation considered expansions of
the type

' >

r2

where u = t — r and (r, θ, φ) are standard polar coordinates. If Φ satisfies the scalar-
wave equation ΠΦ = nμvΦ,μv = ®(nμv = diag( — h + +), μ,v = 0,1,2,3), one gets a
recursion relation for the coefficients of the expansion (1.1)

- 2n-^- = {L2 + n(n -!)}"">, n ^ l , (1.2)
on

* Work supported by "Fonds zur Fδrderung der wissenschaftlichen Forschung in Osterreich," Project
no. 4069

0010-3616/82/0087/0065/S03.20



66 R. Beig and B. G. Schmidt

where L2 is the Laplace operator on the unit sphere. Hence specifying °ψ arbitrarily,

all nψ are determined up to quadrature.
Bondi et al. tried very successfully to generalize from linear fields on Minkowski

space to source-free solutions of Einstein's equations. They looked at space times,
whose metric allows an expansion of the type (1.1) along null hypersurfaces of the

metric ! Further work by Penrose [2] and many others led to the concept of future —
and past — null infinity («/ "*",«/") as a definition of asymptotic flatness. Quite

recently Friedrich [3] showed that there exists a large class of solutions having the
properties Bondi et al. assumed.

In Minkowski space J>+ and J>~ "meet at spacelike infinity," which can be

described by a point 7° in the conformal extension of Minkowski space. Static
solutions like the Schwarzschild metric show that the "point /°" loses some essential
properties which it has in the flat case. The physical reason for this is the long range
1/r potential of the gravitational field. Ashtekar and Hansen [4] developed a

framework which assigns a structure to spacelike infinity called AEFANSI. The
essential idea is to represent «/ + , «/ ~ and spacelike infinity in a unified picture. Up to
now, however, it is not clear, whether this picture is compatible with the field
equation when radiation is present and the ADM-mass is non-zero.

Other investigations [5], in which linear fields on a Schwarzschild background
are considered, cast some doubt whether the assumptions one would like to make

near /°, such as the simultaneous existence of both ,/'s, are compatible with the field
equations. Hence there is some interest in the generic behaviour of solutions of the
vacuum field equations near spacelike infinity.

In [12] Ashtekar proposes a definition of spacelike infinity, which contains

essentially no assumptions about existence of and behaviour at «/. Technicalities
aside, Ashtekar's approach is equivalent to our treatment for "the first order in 1/r."

To explain our approach in more detail, let us go back to the wave equation on
Minkowski space. Using 4-dimensional "polar coordinates"

P2=ημvXμx\ ^ = tanχ, (1.3)

(r,$,φ) polar coordinates in t = constant, the metric is (φa) = (χ,θ,φ),

ημvdx»dxv = dp2 + p20habdφadφb = dp2 + p2( - dχ2 + cos2hχdΩ2). (1.4)

The curves φa = const, p -> oo are spacelike geodesies going to spacelike infinity. In

analogy with (1.1) we look for solutions of ΠΦ = 0, which admit an expansion of the
form

P P2

Calculating Π in "polar coordinates" and inserting (1.5), one finds

°habDaDb"Φ + n(n - 2)nΦ = 0, (1.6)

where Da is the covariant derivative associated with °hab. The system decouples
completely ! One finds an invariant wave equation on the hyperboloid described by
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the metric °hab. This is not surprising, because the invariant wave operator always
factorizes in generalized polar coordinates! Consequently, one has solutions to the
wave equation of the form

Ά-,Θ,Φ

because p = r ̂ /1 - (t/r)2 . Here "Φ(χ,θ,φ) is determined by (1.6) on the hyperboloid.
Using standard spherical harmonics on S2 as data at t/r = 0, one gets a unique

collection of fields nΦ. Guided by analogy to the static case, one can consider those
fields as "time dependent multipole moments near spacelike" infinity.

In contrast to the static case, however, one can choose arbitrary data for Π Φ on
t = 0. It is a matter of convenience or simplicity to consider, as we do, fields with data

ar^"'v' r"+1 (L8)

It is straightforward to verify all this also for the Maxwell field or for general rest
mass-zero, spin-s fields. For example, there exist solutions of Maxwell's equations of
the form

n^2, (1.9)
p

where Fμv are the components in a Cartesian frame. It is important to realize that
the following limit describes the radiation field: If we substitute t = u + r,

p=r^/\-(t/r)2, we get

Fμv(r,u,θ,φ) = - / (1.10)

One can establish that lim rFμv exists and describes the radiation field on «/ + . The
r— >• oo

key point is that a certain combined limit t/r -» 1 , p -> oo , extracts information at J + .
All this can be done explicitly for each n, because one has an integral representation
of solutions of spin-s fields in terms of the data. One convenient way would be to
decompose the field equations in spherical harmonics and use the Euler-Poisson-
Darboux equation for the (χ,p)-dependence.

We generalize to Einstein's theory as follows. We consider metrics of the form

Here "σ, nhab are functions on the unit hyperboloid with metric °hab which we shall
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denote by 3tf. The field equations Rμv=0 lead to a hierarchy of linear partial
differential equations on Jf of the following structure.

The linear equations for *σ,1ha h turn out to be equivalent to the ones found by
Geroch [6], and by Ashtekar and Hansen [4] and, in the linear approximation, by
Sommers [7]. Note 2σ and higher can always be transformed away by a coordinate
change. The remaining system for nhab is: (L, M are certain linear differential
operators on Jjf)

nτ ίnu \—nJ ( I f ? 1/7 n~ίh \
^\nab) — Jab\ σ> ncd>" ncd)>

- ^Da"hl - ±Db»h°) = V6( Vλ«.. •"• 'ΛJ. (1.12)

"M(nhΐ)="J(ίσ,1hcd,..."-\d).

This system is overdetermined, but as the main result of this paper shows, it can
always be solved provided the constraints are satisfied. In this paper we do not
analyse the invariant meaning of the ansatz (1.11). This can and will be done in a
further paper, when we will have seen that useful information can be extracted from
Eqs. (1.12).

The system (1.12) has solutions satisfying (1.11). All stationary, asymptotically
flat space-times are in fact analytic in l/ρ[8]. Nonstationary examples are the C-
metric [9] and the analogues of the Einstein-Rosen [10] waves constructed near
spacelike infinity.

It is our hope that investigations of the solutions of the linear equations (1.12)
will lead to further insight into the relation between J+ and «/".

The plan of our paper is as follows. In Sect. 2 we define the space-times
considered and simplify the metric by certain coordinate transformations. In Sect. 3
we derive the hierarchy of the field equations and prove the main theorem about the
solvability. Section 4 contains some conclusions.

After completion of this work we learnt that space-times satisfying similar
requirements but at timelike, rather than spacelike, infinity were considered in
unpublished work by Eardley [11].

2. Space-Times Admitting a Radially Smooth Minkowskian
Spacelike Infinity

In this section we define the class of space-times we are considering.

Definition (2.1). (M,g) is radially smooth of order m at spatial infinity, if the
following holds:

(1) For a part of M, a chart (xμ) exists which is defined for

p 0 < p < o o , p2=ημvx
μx\

(2) The components of the metric in this chart satisfy

m ι / σ

^v = v+ Σ -"U
n— 1 r \ r
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where

(3) "/„, is C- in *•/, and Γ/μJ * ~ I^/J £ , - -I^/J * , in

short m/μv = 03(l/pm). Obvious generalizations of this definition are the cases where
m = oo or gμv is C°° (analytic) in I/ p.
This is essentially the same definition as in [12], however "C > °" is replaced by the
stronger assumption of radial smoothness.

Clearly given (2.1) there is a large freedom of finding coordinates xμ and p such
that (2.1) holds again. For example, define xμ by

x ^+Σ^P. P1"!^?, (2.2)
«=ι P

dxμ s ( n xv 1

5? - « + .Σ { - pr-WiV + p

Choosing s ̂  m — 1, (2.1) is preserved. There are, however, further transformations.
Consider

xμ = xμ + ξμ(xv/p), (2.3)

These are "supertranslations," i.e. direction dependent shifts of the origin. One is
tempted to conjecture that those are all transformations preserving (2.1). However, if
9μv = nμv> we consider

x» = χμ + cμ In p , cμ = const , (2.4)

r)rμ 1 γσ

Because the metric components of ημv are constant, we get a metric of the type (2.1)
by this transformation. Probably those transformations can only be applied to cases
in which one has a Killing vector of gμv, acting like a translation near infinity.
Examples are given by static space-times.

The transformation (2.4) can also be used to produce a counter-example to the
conjecture that the AEFANSI structure is unique [12]. (The possible occurrence of
"logarithmic" transformations at spatial infinity was first pointed out by Bergmann
[13].)

The class of space-times defined above can also be characterized in a coordinate-
independent fashion. We postpone this, however, because we want first to establish
some consequences of the vacuum field equations,

It is convenient to use p for a coordinate, together with coordinates on the
manifold of directions.

Lemma (2.1). Let (φa) (a = 1, 2, 3) be a local chart on the manifold of directions xμ/p.
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Then (2.1) transforms into

(15)

Proof. There exist functions wμ(</>α) such that

— = w»(φa\ dxμ = \vμdp + pwμ

adφa (2.6)
P

Substituting into (2.1) leads to (2.5) with

ημvdx»dx* = dp2 + p2Qhabdφadφ\ (2.7)

"Λ f l f t = %χβwyfr, (2.8)

Later it will be useful to substitute

m "σ\2 / 1 \

which defines nσ uniquely.
The metric °habdφadφb is the metric of the unit hyperbolid Jf, i.e. p2 = 1 in

Minkowski space. The topology of J f is S2 x [R, so we need at least two charts (φa) to
cover ̂  . We now use part of the coordinate freedom to simplify (2.5).

Lemma (2.2). There exists a coordinate transformation such that the metric has the
form (2.5), (2.9) with

(2.10)

Proof. We first show that (2.10) is true for 2σ and lAa. Take

(2.11)

.

Substituting into (2.5) one gets a "mixed" term

a-^GbQhab}. (2.12)
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Hence, choosing

lGb = ̂ Aa°h
ab

9 (2.13)

the leading term oϊdφadp is removed. Denote this metric again as (2.5) with 1Aa = 0.
Now we transform

(2.14)

P P '

The l/p2-term in dp2 becomes ( - 2F + 2Gα) 1/p2. Hence
2F=2σ (2.15)

removes 2σ in the metric and no dpdφa-tQrm of order 1 is introduced. Now one can
use induction to show that if xσ = 3σ = I I~1σ = 0, iAa= ...n~2Aa = Q, a
transformation

</>β = ̂  + ̂ rΓ"-1Gα, (2.16)

removes the terms "σ, "~ lAa. In the last step nAa is removed in a similar way (n ̂  m).
Thanks to this lemma we may confine ourselves to metrics of the form

dφ'>, (2.17)

where N = 1 + 1σ/p 1σ and w/zαb depend only on^0 and the remainder- term in (2.17)
was omitted.

The term 1σ/p could in general only be removed by a transformation of the type
p = p + 0(</>)ln p which would introduce In p-terms in the d0αd(p-coefficients.

The most natural question now is to find all coordinate transformations
preserving the form (2.17). We postpone this for reasons mentioned above. We
conjecture, however, that if g is not stationary, the supertranslations

(2.18)

are all transformations preserving (2.17). Here ω(φα) can be chosen arbitrarily and
characterizes the supertranslation. The further coefficients "F, "G in (2.18) are then
determined by ω, 1σ, n h(ri ^ n) and their derivatives. Substituting (2.18) into (2.17)
one finds for the change of the 1/p-quantities:

^ = V lJιab = ̂ hab + 2DaDbω + 2ωX. (2.19)
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Note that one has to expand °hab(φc + 1/p...) to get (2.19).

3. The Field Equations Up To First Order

We now want to study the restrictions on the line element (2.17) imposed by
Einstein's vacuum equations. The 3 + 1 -splitting which is inherent in (2.17) suggests
a similar decomposition of the field equations Rμv = G^V = Q. We write

H: = - 2pW Gμv = - 2p W - -Rgμ = 0, (3.1)

(3.2)

(3.3)

Here ημ is the unit normal NV μp and qμ

a projects out directions parallel to ημ. The
occurrence of p and N in the definitions of H, Fa and Fab is motivated only by
convenience. Next we express the left sides of (3.1, 2, 3) in terms of N and hab. To this
end we define the, again suitably rescaled, second fundamental form of p = const by

(3.4)

Let Da be the covariant derivative associated with hab and let $Rfl5, 9? denote its Ricci

tensor and Ricci scalar, respectively. (Our conventions are D[aDb]Vc=^$labc

dVd,
<${b

abc = <${ac). By contracting the Gauβ equation (see Schouten [14]), we obtain the
identity

H = K + pabp
ab-p2, (3.5)

and, from Codazzi's equation [14],

Fa = Db(pb-pδb). (3.6)

Furthermore we have the identity

Fab = (PPJ - 2NPacpl + DaDbN - NKab + NPPab, (3.7)

where a prime means d/dp (see e.g. Fischer and Marsden [15, p. 562]). Indices here
are raised and lowered with hab. We also have set p : — habpab. From the definition
(3.4) there follows

2Npab = 2hab + ph'ab. (3.8)

In the case where ημ is timelike, the equations H — 0, Fa = 0 (3.8) and Fab = 0, with
appropriate sign changes, are referred to as the Arnowitt-Deser-Misner equations
[16] in the general relativity literature.

In the next step we insert the expansions (n g m)

lc
N = l+— , (3.9)

hab = °hab +
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into (3.8) and (3.5, 6, 7). As a result we get similar expansions

PΛ = °PΛ + -IP<Λ + , (3-11)

H = °H + -1H + - , (3.12)
P

Fa = °Fa + ̂ Fa + , (3.13)

Fah = °Fab + ̂ Fab + , (3.14)

where quantities with a zero depend only on Qhab. Our aim is to study the field
equations successively in powers of 1/p. We shall use the rule that indices of
quantities with an order symbol are lowered and raised with the "unperturbed"
metric °hab, for example 1F° = °hablFb. Furthermore covariant derivatives acting on
such quantities are also taken with respect to °hab and are denoted with the same
symbol Da. Let us first look at order zero. From (3.8) we see that

°Pab = °hab. (3.15)

Thus °Fa = 0 is identically satisfied. Similarly, from (3.9), °H = 0 is satisfied iff

0K = 0HΛO'Rtlb = 6. (3.16)

Similarly, °Fab = 0 is valid iff

°Kab = 2°hab. (3.17)

Note that (3.17) implies (3.16) and both are, in fact, valid on grounds of our initial
assumption that °hab is the unit hyperboloid metric °hab on 2tf . Conversely, had we left
°hab an unspecified Lorentz metric on the manifold S2 x U from the beginning,
Einstein's equations, using (3.17) and the vanishing of the Weyl tensor in three
dimensions, would have implied

0*.w = XX-XX, (3 18)
and thus that °hab is the unit hyperboloid metric on Jtif. (This is in analogy to the
following result about null infinity: The leading order of the field equations imply
that «/ is a null hypersurface.)

Next we consider the first-order equations which — because of the occurrence of
lσ — are different from the higher ones. From (3.8) we find

1Pβ6 = i1Λβ t-
1«τ°Aβ 6. (3.19)

From the definition of ^l it follows that

H^Xfc + -ifl^-iAA'Λ + fl 'VM + o 1 , <3 2°)

where lh = °hablhab and D2 = D°Da,Da being, as remarked, taken from °hab. For the
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inverse metric hab we have

(3.21)
P \P /

which implies

. 1 ./ 1 \
(3.22)

- "*] + 02 - , (3.23)
P \P

and, using (3.20)

(3.24)
P \P

Inserting into 1H = 0 we obtain

- D21h + DcDdlhcd + 12V = 0 . (3.25)

Thus 1Fα = 0 gives

-ΪDM+ΪDSh + 2^/σ = 0, (3.26)

and 1Fab = 0 yields

- 1* ° - = 0.βft -

(3.27)

Equations (3.25, 26, 27) form a linear second-order system for (lσ,lha^. As it stands,
it is not hyperbolic. We will show, however, that it is equivalent to a pair of
uncoupled hyperbolic equations for two scalars, first found by Geroch [6] by a
completely different procedure.

Using the commutator formula (A.5) of the appendix in the third term of (3.27),
we see that (3.25, 26, 27) are equivalent to

(3.28)

together with (3.26). Note that (3.28) implies

(D2 + 3)1σ = 0. (3.29)

Let us now introduce the following fields

/cαiJ: =
 1/zίlί; + 21σX> (3.30)

tab: = ε;ΛDckdb. (3.31)

(Besides a numerical factor tab is the magnetic part of the four dimensional Weyl
tensor — taken with respect to the unit normal of the p = const foliation — which is
one of the basic objects considered by Ashtekar and Hansen [4].)
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After contracting (3.31) with εe

ab, we easily see that (3.26) is equivalent to

ί[βw = 0. (3.32)

Similarly, (3.28), using (3.26), is equivalent to

D[atb]c = 0. (3.33)

A result due to Ashtekar [4] states that a symmetric tab satisfying (3.33) on tf can be
written as

tab = DaDb^ + °hab^, (3.34)

for some function lβ on ffl. Because of (3.31), tab is tracefree, whence

(D2 + 3) 1/ϊ=0. (3.35)

From the tracelessness of tab and (3.33) we also infer that

Datab = Q. (3.36)

We have thus obtained

Theorem (3.1). Every solution of (3.25, 26, 27) defines a pair of functions on 3tf', 1σ
and lβ, which satisfy

(D2 + 3)^ = 0 (3.37)

(D2 + 3)^=0 (3.38)

If, conversely, any solution (1σ, i β ) to (3.37,38) would define a solution (V, 1hab)
to (3.25, 26, 27), the existence question would be settled. However, this is only true
under some additional assumption which arises as follows:

Let ξa = Daξ be in the 4-parameter class of vector fields on 2tf which satisfy

Daξb=-°habξ. (3.39)

and consider the quantity

Q(ξa) = $tabξ
ad2Sb. (3.40)

c

where C is any section of J f. Using (3.39) and (3.36), it follows (see Geroch [6] or
Ashtekar and Hansen [4] or Sommers [7]) that Q is independent of C. Actually,
from the definition (3.31) of tab, we find that Q constructed from our tab vanishes
identically. Via (3.34) this gives rise to a further restriction on lβ, which can be
described as follows: Take any spherical section S2 of J f. Evaluate Iβ\s2 and the
normal derivative (d/dn)1/?^, and expand in spherical harmonics. Then Q(ξa)
vanishes if and only if the first datum has vanishing / = 0-comρonent and the second
datum has vanishing / = 1-component.

Theorem (3.2). Equations (3.37,38) with ^β such that Q(ξa) = 0 define, via (3.30,31,
34), a solution (^,lhab) to (3.25,26,27).
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Proof. All the steps in the proof of Theorem 3.1 were reversible except for Eq. (3.31),
namely

εa

cdDckdb = tab. (3.41)

We have to show that, given a field tab which is trace-free, divergence-free and such
that Q(ξa) = 0, Eq. (3.41) can be solved for kab. The detailed proof of this [17] falls
outside the scope of this paper. Roughly, one uses a 2 + 1-splitting of (3.41) on Jf7

thus reducing the problem to certain equations on S2 and an ordinary differential
equation along the orthogonal congruence. Some lengthy computations reveal that
all of these can consistently be solved where the vanishing of Q(ξa) is used as an
essential ingredient.

Remark. From Ashtekar's Lemma it follows that kab, whence 1hab, is determined by
V, 1β only modulo addition of terms of the form

^ab^hab + DJ)bω + "halω (3.42)

for ω an arbitrary function on 3?. This is precisely the gauge freedom discussed in
Sect. 2.

That these transformations send solutions to solutions, is, of course, a
manifestation of the tensorial nature of Einstein's equations.

We also point out that this gauge freedom could have been used as an alternative
way of handling Eqs. (3.25, 26, 27). If one imposes the gauge condition 1h = — ό1^,
the system splits into an evolution part for 1hab and *σ, which is hyperbolic, and a
constraint part which is compatible with the first.

4. The w t h Order Equations

In these equations we will meet two types of terms: firstly those which are nonlinear
in n'hab with n' < n and *σ and their derivatives up to second order. Secondly, the
terms linear in nhab and its derivatives. It will be easy to write down the linear terms
explicitly, whereas it is for general n rather cumbersome and, in fact, unnecessary for
our purposes to do so for the nonlinear ones.

From (3.8) we infer (n > 1)

(4.1)

where NT stands for "nonlinear terms." In analogy to (3.20) we have the formula

"«<* = ~ ϊD2nhab ~ ̂ aDb

nh + DcD(a"hb)c 4- NT. (4.2)

(Recall that on the right side of Eq. (4.2) all operations refer to °hab rather than hab.)
Next we have to insert (4. 1, 2) into the definitions oίFab> Fa and H. Note that, in order
to obtain nFab,

 nFa and "H we also have to use the zeroth-order terms of pab and 9ϊαb,
whereas the terms of order 0 < n' < n only contribute to the nonlinear pieces. After
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some algebra and using (A. 5) there results

"Fab = ±D2"hab + \DaΌJh - D(aD
c"hb)c - " h h a b + »hab - "Jab,

(4.3)

"F a = ~ \Db("hb

a - "ho% - "Ja, (4.4)

"H=- D2nh + Όcΐ^nhci - 2(1 - n)"h - "J, (4.5)

where "h: =°habnhab and the nonlinear terms have been given the more prominent
name V(1σ,1/z(lί)>...""1/ιβί>) ("J" for "junk"). Using (4.4) and (4.5), all trace- and
divergence-terms are now eliminated from (4.3). As a result we obtain (1 < n < m)

D2"hab + (n2 -In- 2)"hab = 2"Jab

2
"k:="h- - - -(" J + " Jc

c) = 0, (4.7)
n(n - 1)

"ka: = Db

nhb

a +
 2"Ja - —?—Da(

nJ + nJc

c) = 0. (4.8)
n n(n — i j

Equation (4.6) alone is already a linear hyperbolic equation, hence allows an initial
value formulation. Equations (4.7) and (4.8) on the other hand, constrain the value of
nhab and its normal derivative on some initial slice in J>f . But if we want to solve the
whole set (4.6, 7, 8), we also have to maintain (4.7, 8) during evolution via (4.6). That
this is, in fact, possible is shown by

Theorem (4.1). Assumption:
a) 1σ, 1hab> "hab((l <ri <ri) satisfy the first (respectively rith) order field equations,

and
b) nhab satisfies (4. 6), and, on some initial slice S o/Jf7, Eqs.(4.7, 8)and their normal

derivatives.
Assertion: nhab solves (4.7) and (4.8) for all times.

Remark. The time derivative of Eq. (4.8) contains second time derivatives of nhab,
which is disturbing at first sight. However, using the evolution equation (4.6) these
can be eliminated. Thus the initial conditions used in assumption b) of Theorem (4. 1)
effectively only constrain nhab and its time derivative on S. All this is in complete
analogy to the usual Cauchy problem in general relativity (to be more precise: Eqs.
(4.7, 8), to which we refer as "constraint equations," play formally the same role as
harmonicity condition in the normal Cauchy problem. Together with their time
derivatives (4.7, 8) are, after removing second time derivatives ofnhab, analogous to
the constraints there, written in the harmonic gauge. For all this, see Choquet-
Bruhat [18]).

The proof of Theorem (4.1) follows from two lemmas.
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Lemma. Fab,Fa and H satisfy the following identities, independently of any field
equations

pH' = 2NDaF
a - 2NpH + 4(DaN)Fa - 2pFa

a + 2pabF
ab + 2H , (4.9)

pF'a = - (DaN)H - —DaH - 2NFa - NpFa - DaFb

b + DbF
ab + 3Fa. (4.10)

Proof. These identities are the contracted Bianchi identities Gμv;

v = 0 in 3 + 1-form.
It is, however, easier to obtain them directly from the definition of Fab, Fa and H. The
essential ingredients are the identity

K' = (̂  - DaDb)(haby + D2(hab(habY), (4.11)

which follows from the definition of the Ricci scalar and the following commutator
formula

(D^Y - DbH'"b =i[D,(Λ«Λ J + Dd(hach'cb) - D«h'bd\Hbd

+ \Dd(hbch'bc}H«d, (4.12)

where Hab is an arbitrary family (parametrized by p) of symmetric tensor fields on 3? .
When we now act on Eq. (3.5) for H with p(d/dρ\ use (4.11) and (3.6, 7), Eq. (4.9)
follows after some straightforward algebra. Similarly, differentiating (3.6) and using
(4.12), we obtain (4.10). This proves the lemma.

Remark. The contracted Bianchi identities used in the Cauchy problem differ in
one respect from (4.9, 10). In the former case, on the left side of the analogues to (4.9,
10) there appear the time derivatives d/dt of the quantities playing the role of our H
and Fa. Thus one can conclude that if H = Fa = 0 and the constraints are satisfied at
some initial time, then they are always valid. In our case we have the singular
operator p(d/dρ) on the left side or, if one likes, — ρ'(d/dp'\ where p' = I/ p. From
this we cannot conclude that if 0// = H\p, = 0 and °F = Fa\p, = 0 vanish, they vanish for
all p. Rather we have to expand (4.9) and (4.10) near p' = 0 or p = oo , like we did
before with the field equations.

We need another

Lemma. Assume that the induction hypothesis of Theorem (4.1), namely condition a)
is satisfied. Then the following equations are true

(4 - n)"J = 2DC"JC - 4nJc

Ct (4.13)

(2 - n)n Ja = - ^DanJ - DanJc

c + Dc

nJac (4.14)

Proof. From the induction hypothesis we infer

(4.15)

(4.16)
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Because of our initial assumptions these relations may be differentiated once with
respect to p. Inserting (4.15, 16, 17) into (4.9, 10) and using the zeroth order form of
pab we easily get

(4 - ri)"H = 2Dc

nFc - 4"Fc

Ct (4.18)

(2 - n)"Fa = - ±DanH - DanFc

c + Dc

nFc. (4.19)

Now insert (4.3, 4, 5) into (4.18, 19). Remarkably, all linear terms, i.e. all terms
involving nhab add up to zero. This is easily seen for Eq. (4.18). For (4.19) this involves
some commutator algebra based on the formulae of Appendix A which is tedious
but straightforward. This proves the lemma.

We now have four relations satisfied by the inhomogeneous terms of Eqs.
(4.6,7,8). This is just what we need for the

Proof of Theorem(4Λ). Let us operate on "/c, defined in (4.7) with D2 and use the
trace of Eq. (4.6). Using, again, the definition oP/c, all junk-terms, using (4.18), drop
out leaving us with

D2nk + (n2 -2n- 2)nk = 0. (4.20)

The nka of Eq. (4.8) is treated similarly. We act on it with D2 and compare with what
we get when we take Db of Eq. (4.6). Using our list of commutators and the definitions
of "k and nka there results, using (4.19)

D2nka + (n2 -2n + 2)nka - 2Da

nk = 0. (4.21)

Equations (4.20, 21) are a set of linear, homogeneous, second order hyperbolic
equations for nk and nka. Consequently, iP/c, nka and their time derivatives vanish on
some slice of Jf, they vanish everywhere in ̂  if only nhab satisfies the evolution
equations "Fab = 0, because only these have been used to derive (4.20, 21).

5. Concluding Remarks

In this work we have introduced a class of space-times which possess a certain
expansion near spatial infinity. We were able to show that our ansatz is compatible
with Einstein's vacuum equations to all orders in the radial expansion parameter.
Our viewpoint is different from that of earlier approaches to spacelike infinity (see
Geroch [6], Ashtekar and Hansen [4], Sommers [7]). There more emphasis is laid
on the geometrical framework and (or) a unification with null infinity, rather than
making full use of the field equations. We hope that our approach will make it
possible to investigate whether the geometrical assumptions in the AEFANSI-
framework are dynamically justifiable. Of course, even our ansatz contains some a
priori assumptions about dynamics. As far as the size of our space-time is concerned,
this is justified by the solution to the "boost-problem" in general relativity due to
Christodoulou and o'Murchadha [19].

More important is the possibility of expanding the metric in l/p which leads to
our hierarchy of equations. The fact that this hierarchy can consistently be solved
strongly suggests a theorem along the following lines: Cauchy data which are
radially smooth at spatial infinity of order m develop into a space-time satisfying our
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requirements for order m. Up to now our knowledge about existence of such space-
times is limited to the examples mentioned in Sect. 1.

Appendix A

Here we collect a few facts about hyperboloids which are often used in the text. The
Riemann tensor of the metric °hab on J^ is given by

Oαj _ O L O L _ O L O L / A ] \
^abcd — nac nbd nbc nad \^ L)

Let ί,ίfl and tab = t(ab) be arbitrary fields on 3?. Using the Ricci identities and its
corollaries, we find

[D f l,D2]ί=-2/V, (A.2)

[Dβ,Db]ίc = 2°ήc[Λ], (A 3)

[Dfl,D
2]ί^2°/ια&Dcί

c-4D(Λ), (A.4)

LDMtcd = 2»ha(ctd)b-2\(ctd)a, (A.5)

[Dfl,D
2]ίbc = 4°ha(bD

dtc}d - 6D(atbc). (A.6)
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