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Abstract. A direct method is employed to minimize the Yang-Mills functional
over a 4-dimensional manifold. The limiting connection is shown to be Yang-
Mills, but in a possibly new bundle. We show that a topological invariant of
the bundle is preserved by the minimizing process. This implies the existence of
an absolute minimum of the Yang-Mills functional in a wide class of bundles.

Introduction

We examine the limiting behavior of a minimizing sequence of connections for the
Yang-Mills functional in a principal bundle over a compact 4-manifold. A limiting
connection is found, but possibly in a new bundle. It is natural to ask for some
invariant of the bundle which is preserved by this procedure. In the minimizing
process, there are a finite number of points where curvature collects. When we take
the limit, we lose control of the bundle at these points. So an invariant which will
survive through the limit should be determined by the bundle with a finite number
of fibers removed. If the invariant is to be in cohomology, we see that we want
classes which are determined by their restriction to the manifold with finitely many
points removed. For 4 manifolds, this is satisfied by 2- and 3-dimensional
cohomology classes. Uhlenbeck makes a conjecture in [17] that the first chern
class of a unitary bundle is preserved under the minimizing process. Our results
show that the conjecture is true, although this case does not seem the most
important application of our results.

In his paper [13] Taubes shows existence of self-dual Yang-Mills fields on
many oriented 4-manifolds. The principle bundles to which his method applies
must have an invariant in dimension 2 cohomology vanishing. This invariant is
the obstruction to lifting the structure group of a principle bundle to the universal
covering group of the structure group. In this paper we show that this obstruction
is preserved by our process, so we obtain Yang-Mills fields in bundles with
nontrivial obstruction.

This obstruction also arises in 'tHooft's [14] construction of bundles over a
4-dimensional torus with structure group SU(n) modulo its center. By explicit

0010-3616/82/0086/0515/$02.60



516 S. Sedlacek

computations he produces Yang-Mills fields in bundles with a nonzero obstruc-
tion to lifting the structure group to SU(n).

In dimension four the Yang-Mills equations are conformally invariant. This
happens in dimension two for the harmonic map problem. There are strong
similarities between the two problems. For details on the harmonic map problem
see Schoen and Yau [12], Lemaire [6], and Sacks and Uhlenbeck [10].

Section 1. Preliminaries

Let P be a principle fiber bundle over a compact 4-dimensional Riemannian
manifold M. The structure group G is assumed to be a compact Lie group with Lie
algebra (S. A will denote a connection on P and FA its curvature. Let a d ^ be the
adjoint bundle of P, DA the exterior covariant derivative induced by A, and d the
exterior derivative which is defined on APM®^. We shall denote the induced
inner product on any ApM®ad& by (,), the norm by | |. Recall the definition of
the Yang-Mills functional

^{A)=l\FA\
2. (1.1)

M

Integration over M is via the density induced by the Riemannian metric.
Suppose σ:UCM-^P is a section. Then σ*A is a ^-valued one form on U, and if
we trivialize ApU®ad$ via σ we have ^-valued p forms. In particular FA over U is
a ^-valued 2 form, and we have FA = dσ*A + [σ*^4, σ*A~]. Here [, ] is induced from
the Lie algebra multiplication in (3. If U is a coordinate chart and ψ is a section of
ApU®&ά(£~ApU®&; we write DAψ = dψ + σ*Aψ, where σ*Aψ involves only
multiplication. For more details see [5].

We assume some knowledge of Sobolev spaces. Let L{ denote the space of
functions with weak derivatives through order k in Lp; |( \\p k denotes the norm in
L{. Let -^ denote weak convergence, -• strong convergence. Recall that -• in Lg
implies pointwise convergence almost everywhere. For more details see [8].

We need to define Lp

k{U, G), where U is a coordinate chart. Since G is compact
it may be viewed as a group of matrices, so sits naturally in some IR". We say
/ : U-+G is in Lζ iff each of its components are. Since the group operations are now
just matrix operations, we see that the usual multiplication theorems in Sobolev
spaces hold. Recall that/eLg iff |/|eLg, where | | means the norm in 1R". If/is C1,
then df is tangent to G c R If we had a Riemannian metric with norm || || on G, we
could compute the Lg norm of df. Of course, one metric comes from 1R" itself.
Using the fact that any 2 Riemannian metrics on a compact manifold are
uniformly equivalent, we see that \df\ is in Lp

0 iff ||d/|| is. In particular we may use
an invariant metric on G to define Lζ(U, G).

An L\ section of P is a section of the form σ g, where σ is a C00 section,
geLζ(U, G). A connection A is L\ means there exists an open cover {Ua} of M by
coordinate charts and C00 sections σa:Ua—>P for which σ*A is L{ (see [5]).

We will often use the following construction. Given a collection Ak of
sequences, we take a subsequence of A1 -hence a map ίγ :N—>N. Next take a
subsequence of A2 °/1? and get a map / 2 . Continuing, we get maps ίv / 2 , . . . . If we
define t by /(0 = Λ °. . °Λ(0> t n e n Λ ° ^ ^s a subsequence of Ak which for



Minimizing the Yang-Mills Functional 517

sufficiently large i is a subsequence of Ak °/x °/2 ... /fc. In particular, if the original
subsequences converged, then Λk °/ converges as well, and to the same limit. The
above process is called diagonalization, and will be used frequently in this paper.
We shall be taking so many subsequences that we will not notationally distinguish
a sequence and a subsequence obtained from it.

Section 2. The Obstruction η(P)

Let G be a Lie group with a homomorphism π\G-+G which is a surjective covering
map. Let e be the identity and set K = π~1(e). Here K is discrete since π is a
covering map. We assume further that K is in the center of G. This is automatic if
G is connected. In particular K is abelian. We say we have a lift of P to a principle
G bundle P if there exists f:P-+P such that f(pg) = f{p)πg a n d / i s the identity on
M.

Following Greub and Petry [3] we define the obstruction η using Cech coho-
mology. Let {UJ be an open cover of M with all finite intersections UΛon ... nUΛn

contractible. Such a cover is called simple. Let σa:Ua-*P be local sections with
gaβ\UaΓ\Uβ-^G defined by σa = σβgβa. Recall that the gaβ satisfy the cocycle
condition gaβgβγgγa = e. Choose any lifts gaβ:UanUβ-+G with gaβgβa =e9 πgaβ=gaβ.

f ' U ^ U n U > K by faβy =

If faβy = e then the gaβ actually define a bundle. In any case, faβyeK since

rfaβy = (πQ

Definition 2.1. η(P) is the element in H2(M,K) defined by {faβγ}.
To justify this definition we need to check a few details. First, by changing the

lifts gaβ to gaβ-yφ where yaβ:UanUβ-+K must satisfy γ;β

ι=yβoι, we see that faβγ

may be varied by y ^ y a / v
This is actually a coboundary in the Cech theory. Recall that the Cech

cohomology theory proceeds as follows [4]. For an open set V let Γ(V) be the
abelian group of continuous functions from Fto K. Let {UJ be any open cover of
M. Define groups Cp{Ua},K) for p^O by CP({UJ,K) = the group of functions /
mapping p + 1 -tuples aoocq... ap to Γ( Όao n ... n l/α ). Let /αo α denote the value of
/ a t α o . . . α p .

Addition is point wise. Define d:Cp-+Cp+1 by

/ α o . . . α p + i Ja\(x.2 . . . α p + i^αoα2 . . . α P ...JOLQ ...otp

We have J 2 = 0, so can form iίp({l7α},K) from this complex. The Cech group
HP(M,K) is defined by taking the limit of HP{{UJ,K) over all covers {UJ. For
{(7α) simple we have

Hp({ Ua},K)* Hp(M, K) - H^(M, K)
(see [4,18]).

It is easy to check that / = {faβγ} satisfies df = 0, and that yβγy~y

1yaβ = (dγ)aβy for
γ = {γaβ}eC1. Finally, it is clear that η(P) = 0 iff there exists a lift P of P.

Lemma 2.2. Lβί P, P r Z?^principle G bundles, {UJ a simple cover with corresponding
transition functions gaβ, haβ. Then η(P) = η(P') iff there exist lifts gaβ, haβ such that
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Proof. Immediate from the preceding discussion.

Remark. On a compact Riemannian manifold there exists r > 0 such that any cover
by geodesic balls of radius < r is simple.

Lemma 2.3. Iff:N->M, then η(f*P) = f*η(P).

Proof. See Greub and Petry [3].
A particular case of the preceding occurs when G is connected and G is the

universal covering group of G. Recall that K~πγG in this case, so we have
η(P)eH2(M,π1G). This is the obstruction Taubes [13] needs to vanish and is the
"twist" appearing in 'tHooft's paper [14].

Theorem 2.4. a) For G = O(n) or SO(n) we have η(P)=W2(P)eH2(M,Έ2). Here W2 is
the second Stίefel-Whίtney class of the vector bundle associated to P by the
representations O(ή)-+GL(ri), SO{ή)-+GL(ri), and we try to lift to pin(n) and spin(n)
respectively.

b) For G= U(ή) we have η(P) = cί(P)eH2(M, TL) where cA is the first chern class
of the vector bundle associated to P by the representation U(ri)->GL(n,(£). Here we
try to lift to

Proof. See Greub and Petry [3].
For G connected, it is well known that bundles over S2 are classified by πxG.

See Atiyah and Bott [1]. As a simple example, if we take a bundle specified by
C:[0,1]—»G, C(0) = e, lifting the structure group to the universal cover G amounts
to lifting C to C: [0,1] ->G with C(0) = e. However, the lifted curve won't be a loop
unless C was 0 in πγG. Indeed, the lifted curve will have C(l)eK. This is the usual
correspondence between πxG and K, and in our case gives η(P)H2(M,π1G)^πιG
for S2. Therefore η classifies such bundles over S2. Of course, we don't have to try
to lift all the way to the universal cover - if we don't we get less information from η.

More generally, the appendix shows that the map P-*η(P) from bundles to
obstructions is onto. Moreover, the obstruction η(P) determines P over the 3-
skeleton of M.

Section 3. Weak Compactness

Remarks. In this section we show that a bound on the curvature of a sequence of
connections implies convergence of a subsequence. However, the limiting object is
some kind of L\ "connection" in an L\ "bundle." Since we are working in
dimension 4 these objects may not even be continuous, so should be treated
cautiously. Theorem 3.1 is really more general than is needed for the sequel. We
state it in this generality in order to make it applicable to coupled Yang-Mills
equations, which we do not treat here. For details on coupled equations see Parker
[8] and Jaffe and Taubes [5].

Theorem 3.1. Let {At} be a sequence ofC™ connections in principal bundles {FJ over
M with ^(A^^B. Then there exists a subsequence, a countable set of arbitrarily
small geodesic balls {Ua} covering M—{xv ...,x^}, C00 sections

and gaβeL\(
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such that:
a) d*AJJ) is 0 for i sufficiently large,
b) d*AΛ = 0,

d) Fa(ϊ)-Fa(L2

0),
e) Aa(ΐ)-Aβ(L\),

Here Aa(ι) = σfflAt, Fa = dAa + ίAa, AJ, Fa(i) = dAa(i) + [Aa(ι), AM and d* is the
adjoint of d in the flat metric on Ua induced by normal coordinates.

The idea of the proof is obvious. Use the bound on curvature to get an L\
bound on the connections, then use weak compactness to get a limiting con-
nection. The difficulty comes from the fact that we can only do this locally and in a
particular gauge. More precisely, we have a theorem of Uhlenbeck [15].

Theorem 3.2. Let D be a geodesic ball There exist constants R, S depending on the
geometry of M such that if j \FA\

2^R, AeL\, then there exists a section σ:D~+P
such that: D

a) d*(σ*A) = 0,
b)
σ is L\ in general; if A is C00 so is σ.

Proof See Uhlenbeck [15]. Here d* is the adjoint of d in the flat metric arising
from normal coordinates.

What we need next are covers {Cj} of M with the following properties:
a) The elements of C are balls of radius r/->0.
b) There exists h independent of j such that any h + 1 balls of C have empty

intersection - in particular Cj is finite.
Such covers certainly exist on compact Riemannian manifolds. We would like

to apply Theorem 3.2 to each element of the cover Cp but the hypothesis needn't
be met on all balls. However, we have an upper bound on the number of balls on
which it feils:

M DeCj D

where Ntj= # of DeCj for which J \FA.\
2^R.

D

Remark. We will call a ball D bad for At if j \FAJ
2^R, otherwise it is called good.

D

Proposition 3.3. There is a subsequence of {At} for which the bad balls in a given Cj
are independent of i for i sufficiently large.

Proof By diagonalization it suffices to find for any fixed Cj a subsequence of {A{}
for which the bad balls are fixed. This is easy. Looking at the centers of the bad
balls we get at most hB/R sequences in M. Compactness gives us convergent
subsequences of the centers, and the finiteness of Cj then implies the centers are
actually fixed.

We now toss out the "eventually bad" balls in each cover Cj and throw what's
left into a set {UJ of balls. Since (J{£/α}:)M-{at most hB/R balls of radius r,.}
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and Tj-^0, we see that [j{Ua}=M— {xί ...x^}5 where/^ — . By construction we

see that any Ua is eventually good - that is, for ί large enough, Ua is good for all At.
Of course "large enough" depends on α.

Lemma 3.4. There is a subsequence of {At} which for every α has C00 sections
σa(i):Ua-*P such that:

a) aJSfA^Aa in L\,
b) d*σa{i)*Aί = 0for sufficiently large I

Proof By using Proposition 3.3, Theorem 3.2 and taking i sufficiently large we get
σji) for which b) is true and for which \Wa{i)*Ai\\2Λ *s bounded. We then apply
weak compactness in L\(JJα) to get a convergent subsequence aJβfA-^A^ in L\ for
each α. Diagonalization over the countable cover {ί7α} then gives us our
subsequence.

Lemma 3.5. The σjj) give rise to transition functions gaβ{i). There is a subsequence of
{AΛ for which / Λ / r 4 Λ

1 M ι)""MLτ)
Proof By diagonalization over the countable collection {α/?} it suffices to produce
a convergent subsequence for fixed aβ. We show Ilό^/OIL, i i s bounded. Recall that

^|(iM/ = 9afi{i)~ V*(i)v4^^(i) + gfα/?(ΐ)"
 ιdgaβ{i).

Taking LQ norms and using the invariant metric on G we get:

Here we used the fact that L\ imbeds continuously into L% in dimension 4 [8].
Finally, since G is compact it is automatic that H^ίOIU.o ^s uniformly bounded.

Lemma3.6. There exists a subsequence such that: Fa(i)-^Fa(Ll).

Proof. We have
Fa(ΐ) = dσfflAt + [σ*(0Λ , σ*(ΐ)AJ .

Since σ*(i)Ai-^Aa in L2

V we get dσ*(i)Ai-^dAa in L2

0.

Using the continuity of the imbedding L\ ^L%, the continuity of multiplication

from LQ®LQ to LQ and the fact that Mα(0ll2,i ^s bounded we see that

||[v4α(0,^4α(0]|l2,o ^s bounded. Since we have pointwise convergence almost

everywhere, we get [4α(0, Λ(0] ^ [4*> 4 J i n L o

Lemma 3.7. d*A0C = 0.

Proof It suffices to notice that d* involves only one derivative, which implies that
d*Aa(ΐ)-^d*Aa(Ll) since Aa{ϊ)-^Aa{L\). To finish, recall that d*AΛ{ΐ) = 0 for i
sufficiently large.

Proof of Theorem 3.ί. This is almost immediate from the preceding discussion.

Remark. We will call the collection {Aa} a connection A^ in the bundle P^ = {gaβ}-
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Section 4. Existence of a Yang-Mills Minimum

Definition. Suppose G and G are given and there exists a G-bundle P over M with
η(P) = ηeH2(M,Ky We set m(η) = inΐ{j/(A)\A is a C00 connection on a G bundle
with obstruction η}.

Take any sequence {At} of connections with £0(A^-+m(r\). Since this implies
that there exists B with stf{A^ ^ #, we can apply Theorem 3.1 to get the existence of
a weak limiting connection A^ in a bundle P^ over M— {x1? ...,Λ^}.

Theorem 4.1. For £αc/z α ,4α z's α weα/c Yang-Mills field. More precisely:

(DAaφ,FAJ = 0 for all φeC%(U^AιUa®<$). (4.1)

#(?re (,) denotes the inner product in L\.

Proof. Suppose (4.1) is false. We construct a sequence of C00 connections At such
that £/(Ά?)-*m<m(η), giving a contradiction. To start, take oc,φ for which
(DAaφ,FAJ<0. Let ί0. be that section of A1M®&d(g(i) which over Ua is trivialized
by σJJ) to be £(/>. Since s u p p l e UΛ we have ί0 ί globally defined on M and C00. Set
4̂̂  = ,4 + tφi by regarding ίφ f as a ^-valued one form on P. Since J = j •+- J

and Aj = Aί over M— [/α, it suffices when comparing stf(A^ and sd(A^ to work over
C/α. Therefore we may trivialize everything using σα(i) and write:

t2

FλM = f α(;, + tDAMφ + - [ψ, φ ] . (4.2)

This implies:

+ j\\ίΦ,Φl\\22,0- (4.3)

We now examine the terms as i—κχ>. Observe that DA^φ-^DA^φ in L\. This
follows immediately from the fact that AJ^ΐ)-*A^ in L\ which is part of
Theorem 3.1. This theorem also gives Fα(i)-^Fα in L\. This immediately implies
that the last 4 terms converge to the obvious limits.

To handle the second term write:

(DAuφ, FJ - (DAΛ(iiφ, FM = (DAΛφ, Fa - FM + (DAκφ - DAβ(i)φ, Fa(ί)). (4.4)

The first term approaches 0 since Fa — FΛ{i)-^0 in L\. The second term
approaches 0 since DAoιφ — DAΰi{i)φ-+0 in L\ and ||jFα(i)||2ϊ0 is bounded. So we see
that:

st?{Ai)^rn{η) + 2t{DAocφ,Fa) + higher order terms. (4.5)

Taking t to be a sufficiently small positive number, we get our contradiction.

Proposition 4.2. Aa is a smooth solution to the Yang-Mills equation. Moreover, the
Qaf are C°°.

Proof By Lemma 3.7 d*Aa = 0. Since Aa also satisfies the Yang-Mills equation on
Ua by Theorem 4.1, it is a smooth solution. See Parker [9], Taubes [13], and
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Uhlenbeck [15]. The proof that gaβ is C00 is similar to the proof of Lemma 3.5, see

[15].

Theorem 4.3. P^ extends to a C00 bundle over M, and A^ extends to a C00 Yang-
Mills Connection in the extended bundle.

Proof. See Parker [9] and Uhlenbeck [16]. From now on A^ and P^ will denote
the extended connection and bundle.

Remark. We have J | F j 2 ^ l i m j |Fα(ί)|2 which implies

Here we used the weak convergence of Fa(i) to Fa and the fact that || || 2 0 is lower
semicontinuous.

Section 5. The Obstruction is Preserved

We first prove a technical lemma on cohomology.

Lemma 5.1. Let d i m M ^ 3 , Q = {xv ...,x^} and J:M — Q^M be the inclusion. If
P,P' are bundles over M with structure group G, then η(J*P) = η(J*P') implies

Proof Since η(J*P) = J*η(P), it suffices to show that J* is injective. This follows
from the exact sequence of the pair (M, M — Q) and excision:

Take small disjoint balls BV...,B^ around the points xv...,x^. Set B={jBt,
i

Excision of M — B gives H*(M,M—Q)~H*(B,B—Q). The exact sequence of the
pair {B,B-Q) is:

...-+H\B-Q)-+H2{B,B-Q)-*H2{B)-^ ....

But since B — Q is homotopy equivalent to { spheres of dimension ^ 2, and B to ί
points, we see that: 0 = H2(Br>B — Q)~H2(M,M—Q) which implies J* is injective.

Proposition 5.2. Assume G is compact and that the hypotheses of Theorem 3.1 are

satisfied. Then there is a subsequence of {At} with lifts gap(i)-*gap in L\ where
πdaβ = Qaβ- H e r e QaβW m ^ b e any lift ofgaβ(ι).

Proof. By Theorem 3.1 we get a subsequence of the {At} and existence of gaβ for
which gaβ{i)-*gaβ{L*). Let gaβ{ί) be any lift of gaβ{ί). The crucial point here is that
II ̂ (0II4 l ^s bounded. However, this follows from the fact that

II dgaβ{ί) II 4, o = \\πdgaβ{i) || 4> 0 = II dgΛβ{ί) || 4> 0

since we can use an invariant metric on G for which π is an isometry. We have
HίLjffCOlU o bounded because G is compact - this is the only point that used
compactness of G.
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The argument finishes by using weak compactness in L\ to pick convergent
subsequences gaβ{i)-^gaβ in L\. Then πgaβ = gaβ follows from the fact that we have
pointwise convergence almost everywhere. Of course, we need to use diagonali-
zation over the pairs aβ to get our subsequence.

Lemma 5.3. Suppose f:Ua-+R has only a finite number of values and has a weak
derivative in L\. Then f is constant.

Proof. It suffices to show the weak derivative of / is 0. Let av ..., an be the values /
assumes, let φi:R-+Rbe C00 functions with φi{a^) = ai near α , i = l, ...,w, and φt = 0

away from at so that φ^a^O for zφj. Then / ^ X ^ 0/ By the weak chain rule
1

(Morrey [7]) we get the weak derivative of /being 0.

aβ is an L\ lift of'gaβLemma 5.4. If G is compact and gaβ is an L\ lift of'gaβeCx\ then

Proof We have gaβeL\ and πgaβ = gaβ. Let gβa be any C00 lift of gΛβ. Then

f = Gaβ
m9βa''U0nUβ->K

is in L\. Indeed, π(gaβgβa) = gaβgβa = ga0i = e so / is K-valued. The multiplication
theorems for Sobolev spaces (Palais [8]) imply / is L\. By Lemma 5.3 we see / is
constant, so gaβ is C00.

Theorem 5.5. Assume G is compact and that we have the bundle P^ from
Theorem 4.3. Then the obstruction is preserved. That is, ?/(P00) = y/.

Proof By Proposition 5.1 it suffices to work over M— {xl5 ...,x^}. By hypothesis
we have η(P^) = η, so we can choose lifts gaβ(ί) for which

say. By Theorem 5.2 we can pick a subsequence of {A^ for which gaβ(i)-^gaβ' The
gaβ are legitimate C00 lifts by Lemma 5.4. So we have: faβy{co) = gaβgβγgya' Since
gaβ(ί) converges to gaβ almost everywhere, we can select xe Uar\UβnUy for which
all 3 terms in faβy(ί) converge:

faβyiί) W = 9aβ® (X) ' 9βy® (*) ' §y

Since faβy(ϊ) = faβyW> a n d both sides are constant functions, we see that η = η(Pί)
= η{PJ on M-{xv...,Xf}.

Corollary 5.6. s^(AO0) = m(η).

Proof We remarked earlier that ^ ( i ^ J ^ m ^ ) . But A^ is a C00 connection in P^.
By Theorem 5.5 we have η(Po0) = η, so we get m(η)S^

Section 6. Relaxing the Compactness of G

In the previous theorems we required G to be compact. It is possible to relax this
assumption.
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Theorem 6.1. The conclusions of Theorems 5.5 and 5.6 hold for any G.

Proof Since K is a quotient group of πxG which is finitely generated by the
compactness of G, we have K = F® T where F is a finitely generated free group and
Γis a finite torsion group. Given ηeH2(M, K) and K' a subgroup of K, we may use
the map K-^K/K' to define classes ηκ,eH2(M, K/Kf). It is easy to see that ηκ, is the
obstruction to lifting a bundle to G/K' if η is the obstruction to lifting to G. See
Greub and Petry [3] for details. We have:

H2(M, K) = H2(M, F® T)~H2(M, F)®H2(M, T),

which give η = tiι+fi2' Theorem 5.5 implies that ηκ is preserved for K' which
satisfy K/Kf finite. In particular we may take K' = F to get ηF = η2eH2(M,T)
preserved. Next take K' = nF®T to conclude that ηnF@τeH2(M,F/nF) is pre-
served for n = 1,2, But clearly ηnF@τ is the image of r\ι in H2(M,F/nF) under
the map induced by F->F/nF. The exact sequence

0^F _^u F - ^ F/nF->0

gives rise to a long exact sequence:

... H2{M, F) -^-> H 2 ( M , F) - ^ H2{M, F/nF)-> . . . .

To show Y\X is preserved the preceding shows that it suffices to show <x.n*{ηί) = 0 for
all n implies η1=0. From the exact sequence we get the existence of xneH2(M,F)
for which ηx = nxn. Since H2(M,F) is finitely generated we see that η1 =0.

Corollary 6.2. The first chern class c1 of a U(n) bundle is preserved.

Proof Recall that cx is the obstruction to lifting the structure group to IRx SU{n)
and apply the theorem.

Section 7. Concluding Remarks

The preceding theorems show that given any ηeH2(m,K) then there exists a
bundle P^ with η(Poo) = η and a Yang-Mills connection A^ in P^ which is an
absolute minimum of the Yang-Mills functional over all bundles with obstruction
η, and which minimizes in P^ in particular. We could have taken a fixed bundle P
and minimized over connections in P in an attempt to realize m(P) = mϊ{s/(A)\Λ a
C00 connection in P}. In carrying out this procedure we get a bundle P^ and
Yang-Mills connection λ^. All we know about P^ is that η(Poo) = η(P). As
remarked earlier, we also have j/(^400)^m(P).

If we try our procedure over a manifold with H2{M, K) = 0 then m(η) = 0, and
A^ is a flat connection; perhaps the trivial connection in a product bundle. If we
minimize in a fixed bundle we still can't really say much, since we know nothing
about the resulting bundle P^. These remarks apply, of course, to S4 in particular.

Recall that η is not affected by removing finitely many points. Of course
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is drastically affected. Removing one point x on S 4 for example, we see that P1 is
completely free since all bundles over S4 — x are trivial.

Another interesting question concerns the "first pontryagin class" pv For this
to be nontrivial we need M oriented. We then have the volume form dv and the *
operator giving rise to the usual decomposition F = F+ H~F~, where * F + = F + ,
*JF~ = - F ~ . Using the fact that FΛF = (\F+\2-\F~\2)dv we may write:

Remark. p1 is not integer in general. If we use the killing form, then pγ is the usual
first pontryagin number which is an integer. The number pγ(P) is an invariant of
the bundle since it is defined in accordance with the Chern-Weil theory of
characteristic classes (see [9]).

The next question to ask is about the relationship of pγ{P^) to that of p^P).
First recall that sί(Λ) = \ | F ^ | 2 + | F ^ | 2 . Letting {A^ be the sequence of con-

M

nections converging to the connection λ^ in P^ as we first observe:

a ^ Γ | jp± 12 <?λ\™ Γ 117+12

M

b ) J \F~λoo
M M

This follows from FAi-^FAx) in L\ and the fact that * is an isometry. So we have:

M M

=ίinι2+ii7ij2-ί
Therefore we have:

4π2(p1(i>)-p1(P00))glim J |Fχi2 + | F ^ | 2 - l i
M

-J2-lim j |F;,
M

F;| 2

M

M

M

Sm(P)-m(PJ.

Switching orientation on M gives:

Theorem 7.1. Let P be a bundle, P^ the bundle constructed when minimizing for
m(P). Then

Remarks. If we fix a bundle P it is possible to realize all other bundles with the
same obstruction by gluing in a trivial bundle over a disc to P. In this process one
uses an element of π3G to do the gluing. Of course, such an element corresponds to
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a bundle over S4. Therefore, we may hope to glue S 4 connections to our
minimizing bundles to get connections which are almost Yang-Mills in other
bundles, and apply an implicit function theorem to get Yang-Mills connections at
least with suitable assumptions on P (see [13]).

Appendix. Classification of Principal Bundles

For G compact it is well known [11] that the universal covering group
G~IRfc x Gx x ... x G x where the Gt are compact simple simply connected groups.
This causes the adjoint bundle to split into a fc-dimensional trivial bundle plus 1
bundles corresponding to the Gt. Therefore we have a "vector pontry agin
number" p1eΈί. The following theorem gives a complete description of principal
bundles.

Theorem. Isomorphism classes of principal bundles are uniquely determined by η and
the vector pontryagin number.

Remarks. All values oΐη are realized, but not all values of pλ occur. The values of
px will differ by arbitrary multiples of a specific meΈ1. Furthermore, for a fixed η,
the values of px define a coset in TLιjmΈ}. This coset is determined by η.

The preceding follows from studying the homotopy classes [M, 1?G] where BG
is the classifying space for G. Standard methods in homotopy theory plus the
paper of Dold and Whitney [2] give the theorem.

Of course, other invariants of the bundle may be of interest. However, those
invariants will be expressible in terms of η and px since they characterize the
bundle. For example, given a bundle with group HJ(n+ 1)1 S1 can we lift the group
to UJ(n+l)? This corresponds to asking if a bundle with fiber (£Pn arises as a
projective bundle of vector bundle with fiber (£n+1. This problem gives rise to the
Brauer obstruction beH3(M,Έ). The exact sequence of groups

gives rise to the Bockstein β\H2{M,Sι)-±H\M,Έ\ Now V(n+ l^S1 ~§U(n)/Zn

so that we have ηeH2(M,Zn). But Z^S1 gives a map i'.^^M.Z^^iM.S1). It
is not hard to show that βi(η) = b.
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