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The Twisting Trick for Double Well Hamiltonians
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Abstract. We show that the use of a twisting trick allows a transparent
geometrical analysis of the spectral properties of double well Hamiltonians. In
particular one can prove norm resolvent convergence of the relevant
Hamiltonians whenever one has two centres of force whose separation R
diverges to infinity.

1. Introduction

Our goal in this paper is to rederive results of Aventini and Seller [1], Combes and
Seiler [2], Morgan and Simon [8], Harrell [5, 6], Harrell and Klaus [7], and
many others concerning the spectral properties of double well Hamiltonians, by a
method which we hope will be easy to understand. Although our method applies
to the whole range of problems above, we spell out all the details only for one
simple case, and make some remarks about further developments in Sect. 4.

We consider the Hamiltonian

on L2(IR3) as R-^co, where e = (0,0,1) and A, B are potentials satisfying
(i) AiHv + iy1 and BiHv + i)'1 are compact for Ho= -A,
(iί) WAXMZRW + WBX^RWUCR-1 for large enough R>0.

The second condition can certainly be weakened, but the form given already
suffices for many problems in quantum chemistry.

It follows from (i) that the essential spectrum of HR (like that of Ho) equals
[0, oo), so that its discrete spectrum consists of isolated negative eigenvalues of
finite multiplicity with 0 as the only possible limit point. Our proposal is that one
should study the discrete spectrum not of HR but of the self-adjoint operator

U*R (1)

0010-3616/82/0085/0471/$01.80

KR=UR[O H0



472

defined on

E. B. Davies

Here UR is a unitary operator on Jf, so that KR has the same discrete spectrum
with the same multiplicities as HR. We shall show that by choosing the UR in much
the same way as in the section on the "twisting trick" in [4], (see also [10, p. 241])
it is possible to arrange that KR converges to

0

0

in the norm resolvent sense. This enables one to apply standard results concerning
the spectral behaviour of KR as R->oo, and to view the whole problem of double
wells as one of regular perturbation theory.

2. The Main Results

We define θ: IR-+ [0, f ] by

if

π 3πs .

4 ~~4

0 if

if -i^s^i

> = 3 '

and the unitary operator FR on ^f by

Γ cosθ(xjR) sinθ(x3/R)
R " [ - sin Θ{x3/R) cos 0(x3/JR).

so that

if >

if x 3 <

If we write

SR(x) = sin Θ(x3/R),

i Λ (x) = ̂ 4(x — i^e),
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where FR and QR are bounded matrix-valued potentials which satisfy

\\FR\\=O(R-1), || QR || =0(R~2)

and have support in the set

(2)

(3)

Also GR = G | is the matrix-valued potential

G =

which satisfies

') (4)

as R-+OO by Hypothesis (ii).
Some geometrical insight into our various unitary transformations may be

obtained from Diagram 1.
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We now put UR= WRVR, where

TR 0

0 T*

and

for all 0 G L 2 ( 1 R 3 ) .

(TRφ)(x) = φ(>

Theorem 1. There is a representation

where FR, QR, G'R are bounded potentials whose norms have magnitudes O(R *) as
R-+oo.

Proof. Since Di all commute with WR, we see that (1) and (2) immediately yield

from which the theorem follows using (3) and (4).

Corollary 2. The operator KR converges in the norm resolvent sense to K^ as R-* oo.

Proof. From the formula

and the uniform boundedness of

as R-κχ>, we deduce that

It is well-known [3, p. 114; p. 289] that norm resolvent convergence implies
continuity of the spectrum as R-^oo, including multiplicities. Thus Corollary 2
allows us to recover Theorem 1.1 of [8] (at least for JV = 1).

3. Asymptotics of the Eigenvalues

In order to examine how the eigenvalues of KR converge to those of K^ we modify
Theorem 1 slightly.

Theorem 3. There is a representation

where

B(x + 2Re)cos2θ

0

(5)

: + Re\

A(x-2RE)sin2θ
x-Re
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is a potential of norm

\\LJ~OiR'1)
as JR->OO. Moreover F'R, QR, ER are bounded potentials with norms of order R'1

which all vanish on the subspace

Proof We rewrite (2) in the form

0vJH*
0 H,

V* = 0
RCI 0
0 ARS2

R

where the matrix-valued potential

ER=~[(AR + BR)CRSR

satisfies

R + BR)CRSR

BRC2

R

as R-^co. The formula (5) now follows as before on observing that

0 ARSi

and the last statement of the theorem may be read off the definitions of the
individual terms.

The following theorem follows closely the method of [7, Theorem 3.5] and
thus avoids the detailed symmetry considerations invoked in [8] to deal with the
possibility of asymptotic degeneracy.

Theorem 4. Let E^ be an n-fold degenerate negative eigenvalue of K^. Let
£1(K), ...,En(R) and E'^R), ...,E'n(R) be the associated eigenvalues of KR and

respectively, both series written in increasing order, so that

lim Ei(R)= lim Ef

i(R) = EOD

for all i. Then there exists α > 0 such that

Ei(R)-Ef

i{R) = O(e~aR)

as R-+GO.

Proof. If PQQ is the spectral projection of K^ corresponding to the eigenvalue E^,
then it follows from the norm resolvent convergence of KR and KR to K^ that for
any small enough β>0, the spectral projections PR and PR of KR and KR
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respectively, for the interval (E^ — β, E^+β), have rank n for large enough R and
converge in norm to P^.

We now compare KR and KR in two stages. We see from (5) that

KR = K"R + (P'RMR + MRP'R - P'RMRP'R),

where

and

= D3F'R-F'RD3

The eigenvalues and eigenvectors of K'R for the interval {E^ — β^E^ + β) are
exactly the same as those of KR provided β>0 is small enough and R > 0 is large
enough, because the relative bound of (1 — PR)MR(l — PR) converges to
zero. The perturbation of this part of the spectrum due to the term
(PRMR +MRP'R —P'RMRP'R) is exponentially small as R-*co because (i) the
eigenvectors of KR decrease exponentially at infinity, uniformly as K->oo, for
reasons spelled out in [8], (ii) the operator MR vanishes on the subspace J ^ , (iii) the
relative bound of MR with respect to KR or K"R converges to zero as R-^QO.

The point of Theorem 5 is that if we neglect exponentially small errors, then the
difficult task of computing the eigenvalues Et(R) of HR may be replaced by the
much easier task of computing the eigenvalues ER(R) of the pair of single well
Hamiltonians

-Δ+ A(x) + B(x + 2Re) cos2 θ fc^), (6)

-Δ+ B(x) + A(x - 2Re) sin2 θ ( ^ — — ) . (7)

It turns out [8] that the eigenvalues have asymptotic expansions in R~ \ obtained
by first replacing A(x — 2Re) and B(x + 2Re) by their multipole expansions.

If the double well is symmetric, that is

then the Hamiltonians (6) and (7) are unitarily equivalent and so have the same
eigenvalues. Therefore the eigenvalues of HR occur in pairs with exponentially
small splittings as JR->OO.

4. Some Further Developments

In this section we describe two further applications of the ideas presented above.
The first is to the double well anharmonic oscillator [5, 6] double well Dirac
Hamiltonians [7] could be treated similarly. Writing the basic Hamiltonian on
L2(IR) in the form
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one is concerned with the asymptotic degeneracy of the spectrum as α-»αo. One
writes down an equation analogous to (1), but with

so that the spectra of Ha and

Ha 0

0 Ho

coincide in the interval [0, α2). One then defines Fα as in Sect. 2 and gets the
approximate identity

α [ θ Ho\
 α [ 0 P2+XL

analogous to (2), where

\Xa(x) if x^
XR{X)- [XM if x<o,

Ύa(x) if x^O

χ(0) if x>0.

Repeating our previous steps and using the symmetry of Xa about the origin, we
rediscover the exponential decay of the eigenvalue gaps of Ha as α-»oo. We do not
however obtain the exact asymptotic expressions for the gaps of [5-7].

We secondly describe the application of our method of a system composed of
N electrons and two nuclei of charges ZA and ZB centred at Re and — Re
respectively, where e = (0,0,1). We take the Hamiltonian on L2(IR3iV) to be

N

r=l

where

m γ \ _ y ι γ _ γ i - i

The idea which led to the work in this paper was the observation in [8] that it is
better to study the spectral behaviour of HR as R^oo not in L2(IR3N) but in

One may also write

aeA

where A is the set of all 2N functions
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We define the Hamiltonian JVR on Ji by

lRfa if a = a1

[Hofa otherwise,

where a1(i) = l for all z, and

H — — Y Λ 4-W

One sees that the negative spectrum of 2tfR is unitarily equivalent to that of HR.
Defining VR as in Sect. 2 we then derive the approximate identity

(® i V ^)^ j? (® i v ^R ! )^ / ^ 7 R> (6)

where

for each aeA, and

That is Lfl is the Hamiltonian for the N electrons when the interelectron repulsion
is preserved but each electron is attracted to only one of the two nuclei, depending
on the values of a.

From this point onwards one deals with each Hamiltonian La separately much
as in the above sections. One difference is that because the electrons in each La are
divided into two groups, but the repulsion between the two groups is still present
in W (unlike the situation in [8]), one can only expect strong resolvent con-
vergence after shifting the two nuclei to the origin. However the fact that the
interaction energy between the two groups of electrons is positive ensures that no
technical problems associated with the possible appearance of unexpected new
bound states can occur.

We finally remark that because the twist in (6) is applied to all electrons
equally, there is no problem in incorporating the Pauli principle into our
treatment.
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