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Abstract. We consider a random walk on the d-dimensional lattice ΊLά where
the transition probabilities p(x, y) are symmetric, p(x, y) = p(y, x\ different from
zero only if y — x belongs to a finite symmetric set including the origin and are
random. We prove the convergence of the finite-dimensional probability
distributions of normalized random paths to the finite-dimensional probability
distributions of a Wiener process and find our an explicit expression for the
diffusion matrix.

1. Formulation of the Problem and Results

We shall consider Markov chains whose phase space is the cubic d-dimensional
lattice TLd. In the case of discrete time such chains are defined by their transition
probabilities p(x,y\ xeΈd, yeΈd which are replaced by differential transition
probabilities w(x,y\ xeZd, yeΈd in the case of continuous time. We shall discuss
the situation when p(x, y) or w(x, y) are random variables not depending on time.
One says in these cases that one has a random walk in a random environment (see
[1-2]).

There are many physical problems where one encounters similar random
walks. We can mention some problems in crystallography (see [3]), and biophysics
[4]. In this spirit one can discuss kinetic properties of Lorentz gas with random
configurations of scatterers.

The one-dimensional case with possible transitions x - » x ± l is mostly in-
vestigated from the mathematical point of view. The first results are due to Kesten,
M. Kozlov, and Spitzer (see [1]). One can also mention the papers [5-6]. In [6]
the case when p(x, x + ί) and p(x, x — 1) = 1 — p(x, x +1) are identically distributed
was considered. An unexpected result of [6] is that the random walk can be highly
nonuniform and a moving point spends an unusually large part of time in some
regions of Έι. The positions of these regions and the distribution of time depend
on a realization of probabilities p(x,x-\-1).

Quite a different situation arises if one admits the transitions x—»x— 1, x, x+1
and adds the symmetry condition p(x, y) — p{y, x) or w(x,y) = w(y,x). This case is
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discussed in the whole series of papers [7-9] and a review article [10]. The main
result is that if £(w(x, x + 1))~1 < oo and x(t) is a position of the moving particle at
the moment t then Ex2(t)~Dt as £->oo, where D is a constant and the distribution
of x(t)t~112 converges as H o o to a gaussian distributuion with a nonrandom
variance. In [10] it is shown that if the condition E(w(x, x +1))~x <co is violated
then the growth of x(t) can be more slow.

We consider in this paper a symmetric random walk in a random environment
for arbitrary d ̂  1 and for the cases of discrete and continuous time. Let a finite
subset 21+ QΈd be fixed such that

2) 2 ί + n ( - 2 I + ) = 0,
3) (Ά+ generates the whole group TLά.
Denote 2ί = 2 ί + u(— 9I + )u0 and assume that for each pair x,yeZd, y —

a random variable a(x, y) is defined. We put φc, y) = a{y, x) for y — xe — 2X+, α(x, x)
Σ and φc,y) = 0 if y — xφ%.

An operator A=\\a(x,y)\\ is a linear operator with random matrix elements
which is similar in some respects to the Schrόdinger operator with random
potential. If random variables α(x, y) ̂  0 then —A can be considered as a generator
of a Markov semigroup with continuous time. Moreover if £ α(x, x + α) ̂  — \

then P = I — A is a matrix of transition probabilities of a random walk with
discrete time.

Assume that the joint probability distribution of random variables a(x, y) is
translationally invariant and put A=\\ά{x,y)\\ = \\Ea(x9y)\\=EA. Then — A is a
generator of a Markov semigroup with translationally invariant transition
probabilities in the case of continuous time while P = I — Ά is a matrix of transition
probabilities of an homogeneous Markov chain with discrete time. Let us
introduce Q = ||q(x,y)\\=A — A.

Main assumption

I) Random variables q{x,y\ y — xe9I + are mutually independent.
II) ά(x,y)φ0for y-xe9I\0.

III) \q(x,y)\<δ\a(x,y)\, where y-xe%δ<±
In the case of discrete time we need also

IV) 5(x,x)g(l-δ 0 )/(l + δ ) f o r δ 0 > 0 .
The assumption III) means that the random walk defined by the matrix A is a

random perturbation of the random walk defined by A.
Let us fix r > 0 and a sequence of numbers rπ->oo, rn~r ]/n as n->oo. We

denote by Tn the set of rά

n points of the lattice which are contained in the cube
centered at the origin and having the volume rd

n. Tn may be considered either as a
fundamental domain of the subgroup rJLd C 2ζd or as a finite lattice on the torus
Tor^ = JS^/rJR0. For large enough n we replace the sample {a(x,y)} by a new
sample {an(x, y)} which coincides with the original one iϊ xeTn, y — xe9I + and is
symmetric and periodic with the period rn with respect to pairs x, y. New random
variables an(x, y) can be considered as indexed by points of Tn x Tn. Let
An- ||an{x9y)\\9An=\\αB(x,y)\\= EAn, Qn = | |qn(x9y)\\=Άn- An, x,ye Tn. The matrices
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v4n, An determine the random walk on Tn. Trajectories of the random walk are
denoted by {Xn{τ\ Orgτ^n}. We want to emphasize that we consider random
trajectories on Tn only during n steps. Let us make a contraction of Tor?^ with the
scaling coefficient ρn = rjr. In other words we consider the linear transformation
x-^ρ'^x which transforms Tor?n into Tor?. This contraction is equivalent to the
usual renormalization of the random walk, i.e. to the consideration of the
trajectories {Yn(τ) = ρ~ 1Xn(τ\ Orgτrgrc}, where 7n(τ)eTor?, because ρn~ ]/n.

Let /eJ2f2(Tor?,μ) be a probability density on Tor? with respect to the
normalized Lebesgue measure μ. It defines the initial probability distribution /„
for the random walk on Tn, where fn(x) = J f(y)dμ(y\ Δn(x) is a d-dimensional

A nix)

cube in Tor? centered at ρ" 1 *, xεTw with the side ρ" 1 . This initial distribution
together with the matrix An define completely the probability distribution on the
set of trajectories Xn(τ) or 7M(τ), O^τ^n.

Gaussian distribution on the torus Tor? with the covariance matrix a is the
probability distribution whose density has the form

One certainly assumes that a is a nondegenerate positively-defined matrix.
Brownian motion on Tor? with the initial probability density / and covariance
matrix a is the random process {7(ί), 0 ^ ί < o o } on Tor? with independent
increments for which 7(0) is distributed according to / and 7(ί 2)—7(ί x) has
gaussian distribution with the covariance matrix (t2 — tί)a. Now we can formulate
the main result of this paper.

Theorem 1. There exists a nondegenerate positively-definite matrix a not depending
on r such that for almost all A finite-dimensional probability distributions of the
process { Yn(t ή), 0 g t rg 1} (continuous time) or {7n([ί ή]\ 0 ̂  ί ̂  1} (discrete time)
converge weakly as n-+co to the corresponding finite-dimensional probability
distribution of the Brownian motion on Tor? with the initial density f and covariance
matrix a.

In the case of $ί+ consisting of unit coordinate vectors we have a sharper
result. Let {X{τ\ 0 ̂  τ rg n} be a random walk on 7Ld which is defined by the original
random matrix A and the probability density / defines as before the initial
probability distribution on TLd. Let Yn(τ) = n~ll2Xn(τ). We assume also that / is
square-integrable and has a finite support.

Theorem 2. For almost all A finite-dimensional probability distributions of the
process {Yn{t w), 0 ̂  ί ̂  1} (continuous time) or { 7n([ί ή]\ 0 ̂  t ^ 1} (discrete time)
converge weakly to the corresponding probability distributions of the Brownian
motion on lRd with the initial probability density f and the covariances matrix a
which is the same as in Theorem ί.

Proof of Theorem 1 is given in Sect. 3. We show that for eigenvalues of the
transition operator which are sufficiently close to the boundary of the spectrum
the corresponding eigenfunctions are close to exp{2πi(A/r,x)}, AeΈd and thus are
nonlocalized. This result is of a more general interest for the theory of random
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operators. The main part of our arguments concerns the derivation of a more or
less explicit expression for the matrix a (see, in particular, Sect. 6).

Another approach to the whole set of problems was developed by
Papanicolaou and Varadhan (see [11]) and S. Koslov [12] mainly for the case of
solutions of the diffusion equation with random coefficients. In a unpublished
paper by Molchanov this method was applied to the case of random walks on the
lattice where results which are in some respects stronger than ours were obtained.
However, as far as we know this approach does not lead to any explicit formula
for the diffusion matrix.

2. Main Lemma

Let us introduce a probability distribution μn on Tn putting the measure of each
point equal to r~d. Denote Hn = ^2(Tn,μn) and H(°} is the subspace of Hn of
functions with the mean equal to zero. Also # = i?2(Torj!,μ) and H{0) is the
subspace of H of functions whose integral over Tor? with respect to the Lebesgue
measure μ is zero. It follows from the symmetry α(x, y) = α(y, x) that An, An are self-
adjoint operators in Hn leaving invariant if[,0) and the one-dimensional subspace
of constants. We denote by A{®] and Af] the restrictions of Ani An to the subspace
H{®\ One has a natural orthonormal basis of functions e{"\x) = exp {2πί(λ, x)},
λ = Λ/rn, AeTn'mHn. We can assume that A = {AV ...,Λd}9 ~\rn^A.<\rn. In the

same way the set of functions eΛ(x) = exp\—(Λ,x)k AeTLd is an orthonormal
r

basis in H. The functions e{"] are eigenfunctions of Άn and ^πe(

λ

n) = άw(λ)β(

λ

w). For
small λ we have an(λ) = 2π2(aλ9 λ) + o(\λ\2), where a is a nondegenerate positively-
defined matrix (n-d. p-d. m.) which does not depend on n and r. We expect that An

has also eigenvalues of the form an(λ) = 2π2(aλ, λ) + o(|/l|2), where a is a n-d. p-d. m.
In order to extract a quadratic part of an an(λ) and not to deal with the unbounded
spectra, we shall pass to the operator n~ 1 ( ^ 0 ) ) ~ 1 . It will be seen that this passage
has a more deep meaning.

For any n-d. p-d. m. a we introduce the operator A^ acting in H via the
formula

A

^ is its restriction to H{0\ We want to show that there exists a such that for
almost all A the sequence of operators n~ 1(A(^))~1 converges in a proper sense to
(A^y:. Now our goal is to make this argument more exact. Let us put for any
feHn andj/eTor?

(ΠJ)(y) = f(χ)

iϊyeAn(x). Then Πn is an isometric embedding of Hn into H and ΠnH^] C H(0). We
introduce an orthogonal projection Ψn of H onto ΠnHn. Then for any feH and
xeTn

(Π;X/)(x)=-A- f f(y)dμ(y).
μ\Δn\X)) Δn{x)
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In particular for any ΛeZd, λ = Λ/rn, κn(λ)= f ] — r - ^

We denote by Π^] and Ψ[0) the restrictions of Πn and Ψn to H{°\ Hm respectively.

Main Lemma. There exists a n-d. p-d. m. a not depending on r and such that for
almost all A and n-+co

Let us write

( 4 0 ) r 1 = £ ( 4 0 ) r ι + α < o ) r
where Ln = (Ά[°ψ2 ((4 0 )Γ' ~ £(4 0 )Γ ι) (A^ψ\

The proof of the main lemma is based upon the following lemmas.

Lemma 1. The operator E{A{^))~ * is diagonal in the basis of functions e{"\ λ = Λ/rn,
Λe Tn\0 and there exists a n-d. p-d. m. a not depending on r and such that for n-> oo,
λ = Λ/rn, ΛeΈd\Q being fixed,

Lemma 2. For almost every A and fixed AvA2eZd\0

(Lne[nle[%^0, n - α o ,

where λ^AJr^ λ2 = A2/rn.

In both cases the scalar product is taken in the subspace H(

n

0).

Majorizing Lemma. Let A= \\a(x,y)\\, Af= \\a'(x9y)\\ be two matrices satisfying the
conditions on the p. 450 of the paper. If a(x9y)^a'(x9y) for xή=y then A^A'^0
and An^

Corollaries. 1. {l-

2. LetDMATrm^-A^){A^rm^ Then \\Dn\\H^δ.
3. There exists a n-d. p-d. m. b such that if one puts Bne^ = (bA, A)e^\ λ = A/rn,

AeTn then nAn^Bn.

4. In the case of discrete time \\An\\Hn^2(l — δ0).

Majorizing Lemma and its corollaries will be proven in Appendix 1.

Proof of the Main Lemma. Let us introduce for any n-d. p-d. m. a a linear operator

G{

n

0) :H{

n

0)-+H(

n

0\ where G{^)ef^7^Γ{aA,A)e^\ λ = A/rn, AeTn\0. We have

Let us consider the following three statements.
1. «-i(4<°r i / 2£Λ4<0 )Γ1 / 2IW.->0 as π->co.
2. \\n-1E(A?rί-(G[0Y1\\Hίo>-*0 as n-oo.
3. ||Π<n

0>(Gί0>)-1(ΠΪ)))-in))-(4(

(S
))"ΊlH«o,^0 as
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Because the map B-+Πif)B(Πi°))~1Ψi0) is an isometric embedding of the
algebra of linear operators of H{®] into the algebra of bounded linear operators of
i ϊ ( 0 ) the assertion of the main lemma is an immediate consequence of these three
statements.

In view of Corollary 3 one can find b > 0 such that if one puts λ = Λ/rn, Λe Tn\0,
£04 = KΛΛ)ef then

Let ER be an orthogonal projection of f/(

n

0) onto the subspace generated by the
vectors ef, \Λ\g,R and E^ = I-ER. Then

We have \\Ln\\H(θ)^C where C does not depend on n, and

It follows from Lemma 2 that for n

Let us take ε > 0 and large enough Ko such that 2b~1ClRQΛ-b~1C/Rl<&l2. Then
we choose n0 in such a way that εRo(ή) < ε/2 as n > n0. We get for n > n0

Thus Statement 1 is proven. Statement 2 is proven in an analogous way.
Indeed, from Lemma 2 and fixed R

and

Now we proceed to the proof of Statement 3. Let us remark that

m i o n - i ^ V =/>c-We?)» λ = Λ/rn,ΛeTn\0

\ " " Λ \0, λ = Λ/r

where κn(λ)= J | —-,—j-->l for fixed Λ, n->oo and
3=ι πλj

This gives

||£Jι(J7<I

o>(Gίι

o>)-1 ( i l T Γ x Ψ^-

for fixed R and n->co. Moreover
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Another application of the same arguments as in the proof of Statement 1 gives
Statement 3.

3. Proof of Theorem 1

We shall use two general theorems of the perturbation theory of linear operators.

Theorem A. In the Hubert space H, consider a given sequence of bounded self-
adjoint operators Sn and \\Sn— S||->0 as n-»oo, where S is a bounded self-adjoint
operator. Let ω be an isolated eigenvalue of S, $, and E being the corresponding
subspace and the orthogonal projection. Then for all large enough n one can find a
subspace Sn invariant under Sn and the corresponding projection En such that for
n-»oo

1. | |£ π -E| |->0; 2. \\En(Sn-col)EJ^0.

Theorem B. Let ψn be a sequence of measurable functions defined on 1R+, φn(0) = 0
and φn are uniformly continuous at 0. Assume also that φn converge uniformly on any
compact subset of R + to a continuous function φ. If Sn is a sequence of bounded
non-negative self-adjoint operators converging to a non-negative compact self-
adjoint operator S in the topology of norm-convergence, then φn(Sn)-+φ(S) as n—>oo
in the same topology.

Proof of Theorems A and B is given in the Appendices.
Let us take ί > 0 and put Pn(t) = ΠnQxp{-tnAn}Π~1Ψn9 P(

n

0)(t)
= Π(

n

0) exp {- tnA[0)} (Π (

π

0 ))" ' Ψ^
in the case of continuous time and Pn(t) = Πn(I-An)

ίnt]Π~1Ψn, P[0){t)
= Π^il-A^ψ* (il (

n

o ))-1 Ψ[0) in the case of discrete time. The sequence φn, where

[0, ω = 0

in the case of continuous time, while in the case of discrete time

1 -
nωj ' ~2n{l-δ0)

1

2n(l-δ0)

satisfies all conditions of Theorem B with φ(ω) = exp{ — t/ω}. We consider the
operator S = (A(£))~1 and the sequence of the operators S'W = M ~ 1 / 7 (

W

0 ) ( ^ 0 ) ) ~ 1

• ( T J ^ ) " 1 ^ . It follows from the Main Lemma that they also satisfy the
conditions of Theorem B. Also φ(Sn) = P{°\tl φ(S) = e x ρ { - ί ^ ) } which follows
from Corollary 4 in the case of discrete time. Thus we obtain

in the topology of norm-convergence. We have also

Pn(t)-^PO0(t) = exp{-tAJ (1)

in the same topology.
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Let us take a finite set of numbers 0<t1<t2< . < t m and a set of functions
feH, gvg2, . . . ^ e J ^ ^ T o r f ) . We denote by Tg an operator of multiplication on
g. The statement of Theorem 1 means that for rc->oo

lim j (TgmPn(tm-tm^)Tg_1Pn(tm^-tm^)...Tg2Pn(t2-ti)TgiPn(t1)f)(x)dμ(x)
n->oo Tor£

= ί {TβmPa>(tm-tm_1)Tβm_ιPJtιn.1-tm.2)...TβlPa>(t2-t1)
Tor£

-TgiPJt1)f)(x)dμ(x).

But this equality follows immediately from (1).

4. Proof of Lemmas 1 and 2

For the operator Dn = (A^Yll2(Ά[0)-A(

n

0))(A(

n

0)y112 we have from the
Corollary 2 ||DJH<o)^<5< | . The first statement of the lemma is obvious because
the operators (J4(J)))~1/2 commute with the translations and the probability
distribution of Dn is translationally-invariant. Therefore the operator £(/ — D J " 1

also commutes with the translations.
From the estimation | |DJ | H ω)^5<l/2 it follows that ||£Dj||Hίp)^<5*. Thus

WI-EU-DX'W^S Σ ll^ll^o) ̂  (5/(1-^)< land the operator EU-DJ" 1 is
fc=l_

invertible. The operators A^FJ^^ED* commute with translations, and so in the
Fourier representation are multiplications by the functions άn(λ) = (A^e%\ e^)H<$)
and Λn\λ) = (F{

k

n)eij;\eij;))Hkoh where λ = Λ/rn, AeTn\0. Let us put
Cn = (E(I — Dn)~ 1)~1. Then Cn is in the Fourier representation the multiplication to

the function cn(λ)=[ 1 + £ fin)(λ)\ . We shall prove now that for each AeZd\0
\ k=i /

there exist lim cn{λ) = c(A), λ = A/rn and a n-d. p-d. m. α, for which (aA, A) c(A)
n-* oo

= (aA,A) where (άA, A) = r2/(2π2) lim naJλ). We shall start by proving the exis-
W->00

tence of lim cn(λ). Let us write down the explicit expression for f^\λ):

= ? n ( Z , z + α), ΛW(λ) = (e

2πi<λ »>-1) (απ(Λ)Γ1/2,

C f
λ:λ = Λjrn

ΛeTn\0

One can easily check the following properties of the function
1) for each zeΈd there exists

( -2πi(λ,a)_ Ϊ \/ 2ni(λ,β) _ i\

Tor? 4 Σ a{0,y)sm2(π{λ,γ))
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2) for a cons tant C

where dn is the euclidean metric on Tn.
We remark that ΓΛβ(z) is not absolutely integrable and this generates the main

analytical difficulties of the problem.
In view of Eq^\z) = 0 and the independence of different q^\z) the nonzeroth

contribution to (2) is from the terms where each pair (z, α) enters in the sequence of
pairs {{zvθίi\ ...,(zfc,αk)} more then once. It gives in particular /[n)(A) = 0. It is
convenient to imagine each {(z1? α x ),. . . , (zk, αk)} = y as a path. In terms of the paths
we should consider only those paths which pass through each of its points not less

/ oo \ - 1

than twice. We shall consider the limit of cn(λ) = 11 + Σ fln)(λ) ,λ = Λ/rn. Let us
rewrite it as follows: ^ k = 1 '

c,(A)=i+ Σ/rw,
fc=l

where

/r« = Σ (- ir Σ /ίr'w /TO •. jΐ>«
m = l ΐ i + . . . + J m = fc

Let fe = /x +1 2 + ... + lm. We shall use the equality:

"W <

We can rewrite the expression for

fi"\λ) = ( - I f rB-« ΣE(y) h%

m = l
Σ

Assertion I. Lβί α p«ί/z y = {(zί,cc1), ...,(zΛ,αk)} be decomposed onto two paths
y1 = {(z1,a1l...,(zj,aj)},y2 = {{zj+l,aj+1\...,(zk,(xk)} ίnsuchawaythaty =

Proof. We consider sets of n a t u r a l n u m b e r s lvl2,...,lm such that Z1 + / 2 + . . .
+ lm = k. They can be of two types.

1) Zj + Z2 + . . + ls =j for some s, l^s^rn;
2) /1 + Z 2 + . . . + ίs=H/ for all s, l ^ s ^ m .

One can correspond to each set of the second type a set of the first type in the
following way. Let us take s0 for which Z1 + Z 2 + . . . + ZSo</, Z1 + Z 2 + . . . + Z S o + 1 > ;
and construct a set of the first type YγJ2, -"9ΐm+v where ΐs = ls for s^s0, ΐSo + 1=j
- ( / i + / 2 + . . + U» / io+2 = ( Ί + i 2 + + ί s o + i ) - Λ ϊ i = ί s - i for 5 > 5 0 + 2. This cor-
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respondence is one-to-one. We have

IZWocu + ... + ιSo+Mh + ... + lSo + l)'-(docu+ , + ί s o + 1 \Zh + ... + lSo + i))

— P(π(n) ( \ π{n) / \\
M ^ , + .. + ι>0 +Λ/Ί[ + ... + l's0 + l' •"ιian + . +UQ+1 \*l\ +... + lso + ι"

which is equal to the product entering into the sum for E(γ) for the corresponding
set of the second type. Our assertion follows from the fact that the corresponding
terms in E(y) have different signs. Q.E.D.

It is obvious also that E(y) = 0 if the path y passes through a point only once.
We can write now

fί»\λ)=(-ί)kr;dΣa)E(γ)h^(
(3)

where ^Γ(1) means the summation over nondecomposing paths passing through
each of its points at least twice. It turns out that the summation only over these
paths leads to an effective increasing of the power of decay of Γ$. We shall prove
the following assertion.

Assertion II. For each k the series

L~i \t ' <x\\ / ctjζ^ ' <xi&2^ 2' oc2(X3^ 3 2' ' ' ' ock — i<xk^ k k 1/

converges absolutely and uniformly with respect to n.

Proof. We have to estimate

y = {(0,α),(z2,α2),.,, ,(zk-i,αk_i),(zk,j8)}

In view of the finiteness of 21+ and the properties of Γ$(z) it is sufficient to
establish the convergence of the series

where the sum is taken over such paths / = {0,z2, ...,zk}, ZjeΈd that each of its
points is visited not less than twice and the path y' is nondecomposable.

We denote by Vk the set {1,2, ...,/c} and ξ is a partition of Vk such that there
does not exist j , l<j<k, for which {1,2, ...j}, 0 + 1, ...,/c} are unions of elements
of ξ. It is an abstract description of the nondecomposability. $l{ξ) is a set of such /
that zt = Zj iff i and j belong to the same element of ξ, Wd(ξ) is a set of such / that
z{ = Zj if i and j belong to the same element of ξ. Then

^ Σ Σ (i + b2ld)"1

ξ γ's9l(ξ)

SΣ Σ (l+i^ir'

The first step is to show that one can restrict himself by even k and such ξ for
which each element of ξ consists of even number of points. In order to do this we
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shall correspond to any partition ξ of Vk a nondecomposable partition ξr of Vk+k>,
where k' is the number of elements of ξ having an odd number of points. The
partition ξ' arises if one adds to each element of ξ with odd number of points one
extra point which follows exactly after the last point of this element. It is easy to
see that for a constant Ck depending only on k

Σ

The next step is to reduce the whole sum only to the sum over the partitions
where each element contains only two points. In order to do this we construct for
each ξf a new partition ξ" in the following manner. If an element of ξ' consists of
two points then it coincides with an element of ξ". If it consists of an even number
of points then we decompose it on subsets having two elements in such a way that
each subset consists of points which are equally distant of its ends. It is clear that
yίl(ξ')gyίl(ξ"). Now it is sufficient to estimate the sum

γ'em(ξ")

Lemma. For every partition ξ" of V2k one can delete an element of ξ" not containing
1 in such a way that the induced partition of V2k-2 wz"Z/ be nondecomposable.

Proof. If I belongs to the same element as 2fc and there is an element of ξ" between
/ and 2/c then we delete this element. If such an element does not exist then IΦl and
we delete the pair {l,2k}. Q.E.D.

Let us take a partition ξ" of V2k and find in accordance with the lemma the
element {ij} of ξ"'. We assume i<j. There are three possibilities.

II. ΐ + l=j , j

III. i + lφjj = 2k.

Denote z = zt = z and select a part of the product containing z. We shall have in
these three cases:

i. (l+iz-^jr'd+i^i-zirMi+iz-zj-iirMi+i^+i-zir1.

II. (l+lz-v.jVHl + lzj-n-zl")"1.

in. (l+iz-z^jrHi+k-^-zir'd+u-^-iir1.

Let us make the summation over z. In the first case with the help of the Cauchy
inequality
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Thus the summation gives the same product with 2k — 2 factors. It is easy to see
that in the second case

Analogously in the third case

-z^yy1 a+\zi+1-z\dy

Thus the summation over z gives an analogous product of 2k — 2 factors, where

We can apply the same arguments and get a product of 2k—4 factors of the
form

and so on. Finally we shall have a product of four factors of the form

The condition of nondecomposabihty implies that we should consider only two
partitions {(1,4), (2,3)} and {(1,3), (2,4)}. The part of the sum for each of them can
be estimated by the expression

const Σ((ln(2 + |z | )) 2 k " 2 - 1 ) 3 ( l + ( z ^ - 2 < oo.

Thus Assertion II is proven.
Now we can complete the proof of Lemma 1. We have from (3)

where

Let us put

J>ϊί= Σ Γm2(z2)Γα2αi3{z,-z2)
y = {(O,<z),.:,Λz,β)},zjeZd

Assertion II gives for every ΛeZd\0

limD%"(Λ/rn) = Dk

αβ.
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Therefore

lϊmnan(Λ/rn)fΐKΛ/rn)
«->• oo

= ( _ 1)* Σ Urn n( )-i)(e~2πί ) _ i)D k> β

n
i)Dk

a>β

n(Λ/rn)

j,m=l

where (*<*%„ = 2 ( - l ) k " 1 Σ nβm&aβ τ h e estimation | |fl)J| |^3 f c, <5<l/2 gives

oo

the uniform over n convergence of the series cn(λ) = 1 + Σ /ί 1 1^)- Therefore the
fc=2

oo

limit c(/l)= lim cn(Λ/rn) exists and (αyl, A)c(Λ) = (ατl, yl), a = a— X α(/c).

The fact that α is a n-d. p-d.m. follows from the Majorizing Lemma. Q.E.D.

Proof of Lemma 2. We shall assume that d > 1. The case d = 1 is simpler and can be
treated in another way. We shall estimate matrix elements of the operator Ln

= Σ (Dkn-ED*) L e t {DkA\ef) = Dk

n{λ,λ% λ = Λ/rn, λ' = Λ'/rn, and Λ,ΛΈTn\0.
fc=l

oo

Then (Lne[n\^))= Σ (Dk

n(λ,λ')-EDk

n(λ,λ% We shall estimate

" 2 ^ , A ' ) l 2 We have

k

n(λ, x)=(-1) V

Let a variable of the first group be equal to a variable of the second group, for

example, Zj = z'm. We denote the corresponding part of the sum by (E\Dk

n(λ,λ')\2)jm.

From the inequality | ^ } ( z ) | ^const(l +(^(0, z))d)~ \ where const does not depend

on n, we get £ \Γ^\z)\Sconst-Inrn. Making the summation over all variables
zeTn

except Zj = z'm = z we get

\{E\Dk

n{λ,λ'ψ)jm\mkr;2d Σ
2I +

Σ Σ
..,αfce9ί+ zeTn

sup I
αe9ί+,λeTorT\0

Therefore

j , m = 1
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We have

\EDk

n{λ, λ'ψ=r;

1ak-ίak\
Zk~Zk- l) lz\*'2\

Z2 ~~ ZV ' "ia'k-^\Zk Zk- l) e

Let again z. = z'm and the corresponding part of the sum is \EDk

n(λ, λf)\jm. Then as
before

j,m= 1

If none of the variables of the first group coincide with a variable of the second
group then

Therefore

\E\Dk

n(λ,λ')\2-\EDk

n(λ,λ>)\2\^ Σ (\(E\Dk

n(lλT)jm\
j,m=l

+1 \EDk(λ, λ')\jm\) g 2k2c\{\κrn)

We take a sequence of natural numbers Xnt°°- I n γ i e w of Chebyshev's
inequality

Thus

U=i

Assume that Kn increases so slowly that 2K7

ncf"{lnrn)
2K"~2<r^12. Then

p\ Σ ιi>*αA')-

Let us take a sequence n ; such that rΠj = j . We have

oo

For d> 1 the series £ j ~ d + 1 / 2 < oo and with probability 1

Σ l o ^λO-FD /ΛAOI-O as j^o
fc=l
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Moreover

00 00

Σ \Dk

nj{λ,λ')-EDk

nμ,λ')\^2 Σ δk = 2(l-δΓ1δκ"'+1^0 as j ^ o o .
k = Knj+ί k = Knj+l

The sequence Tn contains all the tori of the sequence Tn. Therefore with
probability 1 Ln(λ,λ')-+O as n-+oo, where λ = Λ/rn, λf = Λ'/rn, and Λ,Λ'eZd\0 and
are fixed. The set of pairs (A, A') is countable and one can find an universal set of
full measure for which Ln(λ, λf)->0 for all Λ, Λ'eΈd\0. Q.E.D.

5. Proof of Theorem 2

In order to prove the limit theorem for the random walk on the whole lattice TLά we
need an estimation of the probability of exit of the random trajectory from the
cube with the side equal to r ]/n during the first n steps as n-> oo and r is large but
fixed. We shall consider the random walk with absorbing boundary conditions.
Let us give more exact formulations.

We shall consider the random walk in the cube Mn = {xeZd, - r n ^ x α ^ r n ,
l^oc-^d} with the absorption at the boundary of the cube, rn~r ]/n as n-»oo.
Under conditions of Theorem 2 the moving point either jumps to a neighboring
point or stays at the same place. This means that $X+ consists of unit positive
coordinate vectors. Let feJ£2(J}) be a probability density, Jr = \_ — r, r] d . We
construct an initial probability distribution for our random walk with the help of
the formula fn(x) = j f(y)dy, where Λn(x) is the <i-dimensional cube with the

centrum at xρ~x and the side ρ" 1 , ρn = rn/r.

Theorem Γ. LetX^\t) be a position at the moment t of the randomly moving point
with the absorption at the boundary of Mn. Then for almost all A

P{X^\tn)edMn}-^l- f f(x)φ%x,y)dxdy,
Jr*Jr

where

geG

φa(t9 χ) = (2πίΓ d / 2(detαΓ m Qxp{-(2t)~1(a' xx, x)}

and G is the group generated by reflections of the boundaries of Jr, k(g) is the parity

of g

One can easily check that φr

a(t, x, y) is a fundamental solution of heat equation
with zeroth boundary conditions. In fact a theorem stating the convergence of
finite-dimensional probability distributions of the random processes {Y^Xt)
= ρ~1X(

n

iXtn\ Orgί g l } to the finite-dimensional probability distributions of the
Brownian motion on Jr with zero boundary conditions and initial probability
density / is valid. But we need only the statement of Theorem Γ. We shall prove
Theorem Γ later and now we shall finish the proof of Theorem 2. For concreteness
we shall consider the case of discrete time.
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Let Xn(t) be a position of the randomly moving point on the whole lattice with
the initial distribution /„ constructed in the same way as above with the help of the
density /, Δi9 1 Si UK are arbitrary bounded measurable subsets of IRd. We choose
r in such a manner that ( —r, r)d-contains all A{ and the support of/. By X\^\t) we
denote a position of the randomly moving point on the cube Mn with absorbing
boundary conditions and initial distribution fn(x\ X\?\t) is a position of the
randomly moving point on the torus Tn with the initial distribution /„. Let us put

Then

In view of Theorems 1, Γ for almost all A

lim if>(r) = P<2>(r) = rB-ω f dx J ... J
"~'0° R" 4, ztk

) = l - f | /(x)(^(l,

From the other side for r~* oo

j d χ j ...lf{x)φa{tvyι-x)Φa{t2-t1,y2-yi)...
Rd Ji Jk

Let us take ε > 0 and choose r0 such that |P ( 2 )(r0) — P| rgε, |P ( 1 )(r 0) | ^ε. For chosen r0

take iV such that for n > N

For almost all A and n > N

\Pn - P| g IP, - P(

n

2)(r0)l + \Pί2)(r0) - P ( 2 )(r 0)| + |P ( 2 )(r0) - P\

S \2P«\ro)\ + 2ε ̂  2ε + 2 |P^(r 0 ) - P ( 1 )(r 0) | + 2|P(1>(r0)| ̂  6ε.

This gives Pn-^P as n->oo in view of arbitrary smallness of ε. Q.E.D.
Now we proceed to the proof of Theorem Γ. It goes mainly in the same way as

the proof of Theorem 1. A difference concerns Lemma Γ which is a generalization
of Lemma 1 in the periodic case.

For simplicity we shall consider the cube Wn = {xeΈd: 0<xa<rn, l ^ α ^ J } .
Let us introduce the uniform measure vn on Wn and H'n = J£2(Wn, vn). The matrices
Af

n, A'n are restrictions of A, A to Wnx Wn. One has an orthonormal basis in H'n
d

consisting of functions v("\x) = 2d/2 f | sin(πAαxα), λ = A/rn, AeWn.
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Lemma Γ. For n-*oo, λ = Λ/rn, μ = M/rn, A, M e N d being fixed

where a is the same matrix as in Theorem ί.

Proof. As in the periodic case we put Qn = A'n-An, D'n = (Aχίί2Q'n(Άχll2. The
operator A'n is invertible in H'n and E{Aχι ={Aχ1!2E(I-Dχι(Άχ112. The
operator A'n is diagonal and there exists the limit

n(Ά'/£\ vf) = nan(λ)-^π2/2r2(άA, A), λ = Λ/rn,

We have to show that

, Λ)/{aA, A) δ(Λ -M)9 n-+oo. (5)

As in the periodic case \\Df

n\\H>nSδ<l/2 and therefore the operator E{l — Dχι =1
00

-h £ E{D'Ji exists. However now the boundary conditions spoil some properties
fc=l

of E(D'n)
k. For example, they are not diagonal now. Let us write down the explicit

expression for matrix elements

(E{D'nfυf, <°) = (- 1 ) V Σ ffajzi) -««k(z*))
(zi,αi),...,(zfc,αfc)

• ΦW 2 ( Z l , z2) ΦW 3(z2, z 3 ). . . < > . i α t ( Z j t _ 1 ; zft

where z J .e{xeZ d :0^x α <r n , l ^ α ^ d } , α—1,2, ...,rf,

sinπΛ α z Λ

The kernel Φ^β(zl9 z2) does not depend on differences zγ — z2 now but it satisfies the
uniform estimation

We have

fc=l

where

As in the periodic case

_ l f z,) F <->α Z l ) F i > , z,)



466 V. V. Anshelevich, K. M. Khanin, and Ya. G. Sinai

and the sum is taken over nondecomposable paths. Let us define the functions
F'aβ{λ,z), zeΈd, lrgα, β^d, where for α φ β

Λ - sinπ(Λαzα + Aα/2) sinπ(λβzβ-λβ/2)
Faβ(λ,z)=- Π cosπλ z ^ — ^ ι—

γ

L

=\ γ y cosπλ α z α cosπλβzβ

and for α = β

Now we construct the kernel

d

The functions h^\λ) do not in fact depend on n because a'n(λ)= Σ 4pasin2πλJ2,
α = l

where pa = — a(0, α). It is easy to show that

Φfυf, ^n))->( - If 2(aA, A)'1 δ(A- M)

y

where y = {(0,α),(z2,α2), ...,(z fc_1,α fc_1),(zk,α)}, z-eTLά, l^ocj^d. Also

l,/l)(5(/t-/W), n-^oo.

The matrix a is now diagonal. The weak convergence of (£(/ — D ' J " 1 ) " 1 does not
imply the weak convergence of the inverse £(/ —D^)" 1 . However in our case the
following estimate is valid

MPfυf, Ό™)\ S const n ' d + τ(λ>μ) (In n)c o n s t, (7)

d

where τ(λ,μ)= ^ δ(λΛ —μa) and const depends on k. In view of

7= Σ (-1Γ Σ
m = l

the operator £(D^)fc also satisfies (7). Now (7) and (6) give (5) which leads to the
statement of Lemma Γ.

6. Limit Covariance Matrix

In this section we write down the explicit expression for the limit covariance
matrix. It follows from Lemma 1 that it is equal to

k=2
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where

Σ

E(y)= Σ (-1Γ Σ t

,if 4

Theorem 3. {aΛ,Λ)^(aΛ,Λ) for every AelR0.

The statement of the theorem follows from the Main Lemma and the following
general statement.

General Statement. Let A be a non-negatiυely definite invertible random matrix.
Then

Proof. Let A = EA, Q = Ά — A. We can write

A~1=A~1+A-1QA-1=

Using the first half of the equality and then the second one we get

A~1=Ά~1 + Λ~1QA-i + Ά-1QA-iQA~1.

Using EQ = 0 and A~1QA~1QA~1 ^ 0 we have

EA'1=A-1+E(Ά-1QA~1QA~1)^Ά~1

and thus {EA'1)'1^!. Q.E.D.

Appendix 1

Proof of the Majorizing Lemma and its Corollaries. We shall give the proof for An

and A'n. For A and A' the proof is similar. Let feHn. Then

rn(Anf,f)Hn= Σ an(x,y)f&)f(y)
x,yeTn

= - Σ Σ αΠ(x,

^ - Σ Σ a'n(x,x + a)\f(x + a)~f(x)\2 = rn(A'JJ)Hn^- Q E D.
x e Γ n αeUΪ +

Corollary 1 follows from the condition
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Corollary 3 for An follows from the assumptions that ά(x,y)φθ for y —
and 21+ contains d linear independent vectors. Therefore it is valid for An also.
Corollary 4 follows from the inequalities

Appendix 2

Proof of Theorem A

The method of the proof of Theorem A is taken from [13]. We can assume that
ω = 0. Otherwise we replace S and Sn by S — ωl and Sn — ωl. Let us look for the
subspace Sn and a projection Pn onto Sn not necessarily orthogonal such that Sn is
invariant under Sn and PnE = Pn, EPn = E. In other words we have to solve the
system of equations

SnPn = PnSnPn, (8)

PHE = Pn, EPn = E. (9)

We write Sn = S+ Vn. In view of SE = 0 and PnSPn = PnESPn = PnSEPn = O, (8) can
be rewritten as

S{Pn-E)=-(I-Pn)VnPn.

The spectrum of S on HQS1 is separated from zero. Therefore there exists a
bounded operator X for which XS = SX = I — E. Namely, we can takeX = 0 on $
and X = S~X on HQS. Multiplying from the left to X and taking into account
E{Pn-E) = E-E = 0 we get

Pn-E=-X(I-Pn)VnPn.

Let us denote Pn — E = Qn. Equation (8) takes the form

Qn=-X(I-E-Qn)Vn(E + Qn) (10)

or β = /(Q), where f(Q)=-X(I-E-Q)Vn(E + Q). Let β<°> = 0, Q{k+1] = f(Qik)).
We shall show that Q{k) converges in norm to a solution of (10).

One can find β>0 for which ||X|| Sβ because ω = 0 is an isolated eigenvalue of
S and β~ι is the gap in the spectrum. If \\Q\\^q, then | |/(β)| | ^β{l + q)2 \\VJ. If

We put θ = 2jS(l + q) \\ Vn\\ and fix q such that 0 < q < 1/2. Then we take N so large
that WVJ^qβ'Kί+qV2 for π>iV. Now if \\Q\\ύq then | | / (β) | | ^g and

1 < 1 Therefore lim Q{k) = Qn exists and is a solution of (10). For this

solution | | β j ̂ q. But we can take q arbitrarily small and get | | β J - > 0 for n-^oo.
Equation (9) takes the form

QnE = Qn, EQn=0. (11)
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We see that Q(0) satisfies (11). If Q(k) satisfies (11) too then Qik+ί] = f{Q(k)) also
satisfies (11), because f(Q)E = f(Q)9 Ef{Q) = 0. Therefore Qn= \imQ(k} satisfies
(11). *"°°

Now we have a solution of Eqs. (8) and (9) for large enough n for which
| | P π - £ | | - > 0 as rc->oo. Let £n = PnH and En be the orthogonal projection to δn. We
shall show that | | £ π - £ | | - > 0 as n-^oo.

Let us consider P*PΠ. The subspace S is invariant under P*Pn. Indeed, for ξei
we have

Moreover, for ξeS and large enough n

= (ξ, ξ) + (Qnξ, ξ) + (ξ, Qnξ) + (Qnξ, Qnξ) ^ (1 - ε) \\ ξ | | 2 .

Thus P*Pn is invertible on S and its inverse (P fP,,)"1 is uniformly bounded. We
put En = Pn(P*Pn)~1P*. Then En is an orthogonal projection onto Sn and
| | £ n - £ | | - > 0 because En is hermitean, E^ = En and EnξeSn for every ξeH. At last

\\EnSβn\\ = ||SB£JI ^ \\S(E + (En-E))\\ + \\VnE

as n->oo.

Appendix 3

Proof of Theorem B
00

Let ωv ω 2 , ω 3 , . . . be eigenvalues of S in decreasing order, S = ]jΓ ω7 £ 7 is a spectral

decomposition of S. We put SiN)= f] ω,£., ,§ ( N )-5-S ( Λ°. Then

O. (12)

It follows from Theorem A that for large enough n there exist orthogonal
projections Ejn, j = 1,2, ...,JV commuting with 5Π and such that for n-+co

Let E^= Σ Ejm S™ = EWSΛ»\ S™ = Sn-S™. Then

II S ^ - S ^ H O as n-^oo. (13)

From the uniform convergence on compacts of functions φn to the continuous
function φ we get

\\φn(S[N))-φ(S^)\\^Q, n^cc. (14)
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Let us take ε>0. The sequence φn being uniformly continuous at 0 one can find

ξ>0 such that for 0 ^ ω < ξ we shall have |φ^(ω)| = \φn(ω) — φn(0)\ < - . Assume that

for n>n1(ε)

\\S-Sn\\<ξ/3. (15)

It follows from (12) that there exists N = N(ε) such that

\\S{N)\\<ξβ. (16)

Then from (13) we can find n2{s) for which

\\SίN)-S(N)\\<ξβ (17)

if n>n2(ε). Now from (15)—(17) for «>max(n 1,« 2)

IIS^II ^ IIS-SJI + | |S<N )-S ( i V ) | | + \\Sm\\ <ξ. (18)

The estimations (16) and (18) give

\\φn{S^)\\<φ, | |φ(S ( N ))| |<ε/3. (19)

In view of (14) one can find n3 = n3(ε) for which for n>n3

\\φ(Sw)-φn(SiN))\\<ε/3. (20)

From (19), (20) for n>max(n 1 ) n 2 , n3) we have

+ \\φn(S[m)\\ + \\φ(S{N))\\<ε. Q E.D.
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