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Abstract. We consider a one-dimensional model of a system in contact with a
heat bath: A particle (the system or molecule) of mass M, confined to the unit
interval [0, 1], is surrounded by an infinite ideal gas (the bath of atoms) of
point particles of mass m with which it interacts via elastic collisions. The
atoms are not affected by the walls at 0 and at 1. We obtain "convergence to
equilibrium" for the molecule, from essentially any initial distribution on its
position and velocity. The infinite composite system of molecule and bath has
very good ergodic properties: it is a Bernoulli system.

1. Introduction

A central problem in non-equilibrium statistical mechanics is the time evolution of
a system in contact with its surroundings. To be precise we consider a sub-system
of a large isolated system. We assume that the microscopic state of the large system
- specified by giving the positions and velocities of all the particles - has a well
defined deterministic evolution given by Hamiltonian dynamics. This microscopic
state is however not what is measured. Rather one looks at some smaller set of
variables X which represent some specified part of the system.

The time evolution of X will not be autonomous - it will depend on the state Z
of the rest of the large system. The appropriate description of the time evolution of
X is therefore probabilistic: we specify an initial distribution μx for the "un-
observed" Z-variables and this, together with the deterministic evolution of the
pair (X, Z), determine a stochastic process for the Z-variables. This process will in
general not be Markovian. It will be stationary if, as is appropriate in many cases,
we consider the Z-variables as a "thermal bath" for the "system X" and thus take
for μx the Gibbs measure of the bath conditioned on the system variable X. We are
then left with the problem of finding the properties of the "X-process". In this note
we describe a simple example of such a system-bath complex for which many
properties of the system process can be found explicitly. Generalizations of this
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example to more complex situations - realistic systems confined to a spacial region
Λ, interacting with one or more idealized thermal baths - appear quite feasible.

2. Description of Model and Results

Consider the following dynamical system, describing an infinite number of
particles moving in one dimension. A point particle of mass M (the molecule)
moves on the unit interval [0, 1]. It is in contact with a bath of atoms, an ideal gas
of point particles of mass m, which interacts with the molecule through eleastic
collisions. The molecule also undergoes eleastic reflections from the walls at 0 and
at 1. These walls do not directly affect the motion of the atoms. Between collisions
of the molecule, all the particles move freely (with constant velocity). For
simplicity we consider here the case in which the atoms lie only to the right of the
molecule. Our results and arguments apply without essential modification to the
case where the bath lies on both sides of the molecule.

Suppose that this infinite system is in equilibrium at temperature T = (kβ)~1

and density ρ, i.e., that the particles are distributed (in phase space) according to
the appropriate infinite volume Gibbs state. It follows easily that the distribution
of the position of the molecule in [0, 1] is proportional to the exponential
distribution with parameter ρ, while the distribution of atoms to the right of
the molecule is Poisson.

Let Ω denote the phase space and φt the time evolution of our system. For
ωeΩ, φtω is the phase point (configuration) to which ω evolves in time t.1 We
investigate the ergodic properties of the dynamical system (Ω, μ, φt), which we will
denote by si. Similar systems have been studied by dePazzis [3] (the one
dimensional, semi-infinite ideal gas), Sinai and Volkovysskii [4] (the ideal gas) and
Aizenman et al. [5] (a one dimensional system of identical hard rods). In these
systems the particles are either noninteracting or such interaction as there is (for
hard rods) does not alter the velocities present. Nonetheless, these systems have
been shown to be (isomorphic to) Bernoulli flows [6]. In the system si considered
here a nontrivial interaction is present, though it is restricted to a single particle
confined to an interval. We show that si is also a Bernoulli flow.

Let us denote by Q(t) the position and V(t) the velocity of the molecule at time
ί. ThenX(t) = (Q(t), V(ή) is a random variable on (Ω, μ) and {X(t)}teKis a stochastic
process with state space [0, 1] x IR, the phase space of the molecule. We denote this
process by 36. 3& is a "factor" of the deterministic process sί\\\\% obtained from si
by observing only the molecule. 36 models the evolution of a system (the molecule)

1 There exist configurations ωeΩ such that φtω is not well defined for all t. Our prescription is
rendered ambiguous by the occurrence of an infinite number of collisions in a finite amount of time or
of multiple collisions - the simultaneous collision of the molecule with two or more atoms or with a
wall and an atom. There exists, however, a set Ω C Ω with μ(Ω) = 1 on which these events do not occur.
Thus for ωeΩ, φtω is well defined for all t. (To see this, note that with (μ) probability 1, in a finite
time interval only finitely many atoms can be involved in collisions. For a system with only finitely
many atoms only a finite number of collisions can occur in a finite amount of time - this follows from
the general results of [1] it may also be easily seen directly - and as in the appendix of [2] it may be
shown that the set of (finite) configurations giving rise to multiple collisions has Lebesgue measure
zero)
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in contact with a heat bath on its right. Physically, the heat bath should drive the
system to equilibrium: In the process J>, all the X(ί)'s have the common
distribution v(dQJV)oce-ρQe~a/2)βMV2dQdV (This is the distribution (β, V) in-
herits from μ.) v is thus the equilibrium distribution for the molecule. We prove
that for a.e.2X0 = (β 0 , Vo), the distribution Vχo ofX(ί) given X(0)=X0 converges to
equilibrium in variation norm, ||v^o — v||->0 as ί->oo, where || || is the variation
norm on measures, 6.5 Eq. 2 of [7]. (For any signed measure π on a measurable
spaceΓ, | | π | | = sup f fdπ.)

Note that this result does not follow from the Bernoulliness of 38, which implies
"weak" convergence, i.e., on integrable functions, to equilibrium starting from
absolutely continuous measures. It does follow from the Bernoulliness of si that &
is a Bernoulli process, i.e., the shift (time translation) on trajectories X(t), — oo < t
< oo, defines a Bernoulli flow (when the space of trajectories is equipped with the
process measure.) In fact, si is isomorphic (in the sense of the ergodic theory of
abstract dynamical systems [8]) to the time translations on J*, since the
configuration ωeΩ can be recovered from knowledge of (β(ί), V{t)\ — oo < t < oo.
Thus the Bernoulliness of si is in fact equivalent to the Bernoulliness of J*.

Our results are proven by consideration of a system (process) Jί intermediate
between si and ^ . The point is the following. For Markov processes in which
"sufficient spreading" occurs, convergence to equilibrium can be established. The
process si is Markov, because it is deterministic, but has no spreading, also
because it is deterministic. J* seems to have abundant spreading but it is not
Markov, because of the possibility of recollision. The process Jί is obtained by
observing all particles in [0, 1], not just the molecule. M is the process {7(ί)}ίeIR,
where Y(t) is the configuration of particles in [0, 1] at time t. The state space of Jί
is Ω[0, 1], the set of configurations in [0, 1]. Jί is a Markov process because
knowledge of {Y{t)}, t^t0, is equivalent to knowledge of Ύ{t0) and of the atoms
which have left [0, 1] before ί0, while the atoms entering [0, 1] after ί0 are
independent of this information. Jί has the stationary distribution
σ(dy) = μ(Y(O)edy). The major problem in this paper lies in showing that Jί has
sufficient spreading. Once this is shown, we will have convergence to equilibrium
(σ) for Jί. From this it follows (see Appendix B) that J( is Bernoulli. Since the shift
on Jί is isomorphic to si (for the same reason that the shift on £β is) it will follow
that si and $ are also Bernoulli. Since the stochastic process ^ is a "factor" of Ji,
convergence to equilibrium for J* follows from convergence to equilibrium for Jί.
We now proceed to the details.

3. Mathematical Details

The notion of "sufficient spreading" which is relevant to our purposes is provided
by the concept of an ergodic, aperiodic Harris chain.

By a stationary Markov chain (Γ, π, P) we mean a discrete time Markov process
on the state space Γ, with transition probability P(ξ, dη) and stationary probability
measure π(dξ); πP(dη)= \π(dξ)P{ξ,dη) = π{dη). P acts naturally on functions3 by

2 Almost everywhere, i.e. with the possible exception of a set of Lebesgue measure 0
3 All sets and functions to which we refer are to be understood as appropriately measurable
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f->Pf(ξ) = $P(ξ, dη)f(η). A function/ is called invariant if P / = / ( π a.e.). A set SCΓ
is invariant if its indicator function J s, /s(ξ) = l if ξe5 and = 0 otherwise, is
invariant, i.e. if P(ξ, S) = Is(ξ) (π a.e.). A stationary Markov chain (Γ, π, P) is called
ergodic, if it has no nontrivial invariant sets. It is said to have a cyclically moving
class if there exist nontrivial sets Sv S2,...,Sn, n^2, such that (πa.e.) PISι=ISi,
PISi = IS3,...,PISn = ISl. If there are no cyclically moving classes, the stationary
Markov chain is called aperiodic. Finally, (Γ, π, P) is called a Harris chain if for
π a.e. ξeΓ there exists a positive integer n = n(ξ) such that the n-step transition
probability Pn(ξ,dη) has a component absolutely continuous with respect to π.

Proposition [9, 10]. Let (Γ, π, P) fee an ergodic, aperiodic Harris chain. Then for
πa.e. ξeΓ

UPUO-πll-O as Π->oo,

where || || denotes the variation norm.
Let P^y, dj/) = μ(l{r)edj/1 T(O) = j/) be the transition probability for the process

Jί. (It is easy to see how to define P\y, •) for all y) For each τ>0, let Jiτ be the
Markov chain obtained by observing 7only at times which are integer multiples of
τ. Jίτ = (Ω[0,1], σ, P) is a stationary Markov chain with P = Pτ. We will show that
Mτ is an ergodic, aperiodic Harris chain.

Until the remark following Theorem 1, we will assume that M>m, though
Theorem 1 is also valid for M^m.

Let 0* denote the measure on path space for the Jί process (the process
measure for Jί) and for any j/e£2[0,1] let &y denote the process measure for Jίy,
the Jί process starting from state y: For any set B of paths

where Y={Y(t)}, ί^O, denotes the path for the process.
Let t1 be the time at which the molecule first hits the wall at 1 and let t2 be the

next such time. Let ^ = 17(^)1 and F2 = |F(ί2)| be the molecular speed at these
times. It is shown in Appendix A that tγ and t2 are finite μ a.e., so that t1 < oo &y

almost surely (a.s.) for σ a.e. y.
A key observation (Lemma 1 below) is that 0>{dV2,dt1), the distribution of

{V2,t2) for the ^-process, and the distributions 0>y(dV2,dt2) for the My processes
are "overlapping". Two measures μ1 and μ2 on the same measure space are
overlapping if μγ and μ2 are not mutually singular, i.e., if μί(A) = l and μ2{B) = 1
then Ac\B^φ. Note that μ1 has a component absolutely continuous with respect
to μ2 if and only if μx and μ2 are overlapping. A family of measures will be called
overlapping if every pair of measures from the family consists of overlapping
measures.

Lemma 1. There exists a set ΩcΩ[0,1], σ{Ω) = 1, such that the family of measures
{0>JdV2Jt2l yeΩ; 0>(dV2,dt2)} is overlapping4

4 Since 0>=\σ{άy)Θi

y, that 0>y(dV2,dt2) overlaps 0>(dV2,dt2) in fact follows from the fact that

0>y(dV2,dt2) overlaps ^y,(dV2,dt2) for a.e. y'
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Proof. Let Ω= {y\t1 < oo, 3Py a.s.}. Since the entrance of atoms into [0, 1] may be
described by a pure jump Markov process, and hence by a strong Markov process
[11], the Jt process begins anew after the stopping time tγ:

where ^ 0 is any one of the measures &>, @>y9 yeΩ. Consider the event $ that the
molecule collides with exactly one atom between the times tγ and ί2, the collision
occurring after time tί-\-l/Vί and producing a positive molecular velocity.
Suppose V1 and t1 are given. Then F2 and t2 are determined by the time t of this
collision and the (pre-collision) velocity v of the atom involved:

V2 = ((M - m)/(M + m)) Vi + (2m/(M + m))v, (1)

F 1 ( F - ί 1 ) + F 2 ( ί 2 - F ) = 2. (2)

The occurrence of S corresponds to

(3)

(4)

where

(By (1), (3) corresponds to a positive post-collision molecular velocity.) Eqs. (1) and
(2) define a 1 - 1 map from the region (3), (4) onto the (F2,ί2)-set

N 0 < F 2 < ( ( M - m ) / ( M + m))F1? t 1 + 2 / 7 1 < ί 2 < ί 1 + l/71

Let ^ ό b e t n e restriction of ^ 0 to i.
Since

ίlF2dί2 = d(V29 t2)/d(v, ήdvdt

where

5(K2, t2)/d(v, F) = (2m/(M + m))((F1 - F2)/F2)>0

for the relevant values of the variables, and since the distribution of (v, t) is
equivalent to Lebesgue measure (i.e., is given by a positive density), it follows that
0>f

o(dV2,dt2\Vvtί\ the &r

Q distribution of (F2,t2) given Vx and tv is equivalent to
Lebesgue measure on SiV^t^). Since the sets SiV^t^, Vί>0, ί 1 > 0 , are non-
disjoint, Lemma 1 follows.

Lemma 2. (i) For any y, yΈΩ, P\y, •) and P\y\ •) are overlapping for t sufficiently
large.

(ii) For any yeΩ, P\y, •) and σ( ) are overlapping for t sufficiently large.

Proof Applying the strong Markov property to the stopping time ί2, we obtain
from Lemma 1 that the family of measures {^,Γ#> ί 2, yeΩ; ^ Γ # > t 2 } , where
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ί 2 2 ; Y(t + t2), ί^O}) is the σ-algebra describing the process after ί2, is
o v e r l a p p i n g . 5 L e m m a 2 follows easily.

Theorem 1. For any τ > 0 , Mx is an ergodic aperiodic Harris chain.

Proof. It follows immedia te ly from L e m m a 2 (ii) t h a t Jtτ is a H a r r i s chain. S u p p o s e
it has a nontrivial invariant set A. Then for a.e. ye A and y'eAc (the complement of
A) Pnτ{y, -) does not overlap Pm(y\ ) for any n = 1,2,3,..., contradicting Lemma 2
(i). Thus J(τ is ergodic. Finally, since Jίnτ is ergodic for all n=l,2,3, . . . ,^# τ is
aperiodic.

Remark. In case M <m, we may obtain a version of Lemma 1 - involving, in
addition to tv ί2, F l 5 and F2, the times ί3, ί4,..., of subsequent arrival of the
molecule at the wall at 1, its speeds F3, F 4 , . . . , at these times, and the distributions
of (Vk, tk + nτ) for appropriate k and n - whose proof employs many incoming
atoms. We may then obtain, in place of Lemma 2 (i), that for any y, j/eΩ, there
exists an integer n such that P\y, •) and Pt + nτ{y\ •) are overlapping for t sufficiently
large. Theorem 1 follows as before, with the contradiction for the proof of
ergodicity being that Pnτ(y, ) cannot overlap Pmτ(y\ ) if A is invariant. The details
for the case M<m are left to the reader. (The case M = m, which must also be
treated separately, is fairly easy.)

Corollary 1. (Convergence to equilibrium for Jί)

(i) \\P\y, )-σ( )H->0 as t^oo for σ a.e. yeΩ [0, 1]. (5)

(ii) More generally, there exists a set ΩcΩ[0, 1], with σ(Ω) = l, such that
* — cr|| ->0 as t-+co, for any probability measure γ on Ω[0, 1] with y(Ω)= 1. Here

) = $y(dy)Pt(y, •) is the distribution at time t starting from y.

Proof It follows from Theorem 1 that

||PB(y, )-σ( )IH0 as n-+oo (6)

for σ a.e. yeΩ[0, 1]. Let Ω be the set on which (6) holds. Then σ(Ω)= 1 and for yeΩ
(5) follows from the stationarity of σ and the fact that λ-^λP* is a contraction for
all ί^O: Let t = n + t9 0 ^ ί < l . Then

where δy is the unit (point) measure at y. Using dominated convergence, (ii) follows
from (i):

From Corollary 1 we obtain (see Appendix B)

Corollary 2. Jί, and hence srf and M, are Bernoulli.

Theorem 2. (Convergence to equilibrium for ^)

HQO,VO)- V H ° a s ί - 0 0 f°r v a e (2o> Vo)e[0,1] x R

5 "Γ" indicates restriction
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Proof. Let y( •) = <τ( I β = β 0 , V= Vo). Then

so that y(Ω) = l for v a.e. (Qo, F0)e[0, l ] x R Since vJQo F o ) —v is the restriction of
yP* — σ to the (β, F) sub-σ-algebra, and since restriction to a sub-σ-algebra is
variation norm decreasing, Theorem 2 follows from Corollary 1 (ii).

Appendix A

Let H C Ω be the set of configurations for which the molecule hits the wall at 1
infinitely often.

Theorem A. μ(H) = l.

Proof. We assume first that M φ m. Let ΩN v C Ω be the set of configurations in
which there are no more than N atoms in [0, 1] and all the particles in [0, 1] have
speed smaller than t/>0. Since ΩNU^Ω, it will suffice to show that
μ(HnΩN υ) — μ(ΩN υ\ i.e., that μN V(H)=1, where μNU is the conditional measure
given ΩNU.

It follows from Poincare recurrence that for μN v a.e. xeΩ, φn(x)eΩN v

infinitely often (i.e., for infinitely many values of n = 1,2,3,...). Let τί < τ2 < τ 3 < ...,
be the successive integer return times to ΩN υ. τk<oo, μN v a.e..

The key observation is that there exists a set ΛN} VCΩ, depending only upon
atoms first entering [0,1] at a time 0 ^ ί < 1, such that on ΛNίUnΩN)U the molecule
hits the wall at 1 at a time between 0 and 1. If M>m, we could take A to be the
event that a sufficiently fast atom enters [0,1] between ί = 0 and £=1/2 and no
other atom enters between £ = 0 and £= 1. (This fast atom will impart a great deal
of energy to the molecule, which will then quickly push out the atoms in [0, 1].) If
M < m, it may be necessary to send in many atoms in order to push out all atoms in
[0, 1].

Let fk be the indicator function of the event φk(x)eANiU and let gk(x)=fXk{x)(x).
gk is the indicator function of the event "A occurs at time τfc." The gks form a
sequence of independent identically distributed random variables, with

Therefore gk=l infinitely often, μNV a.e.. Since gk=l implies that the molecule
hits the wall at 1 between times τk and τ f e +l, we obtain that μNU(H)=l. This
completes the proof for the case Mφm.

If M = m, the theorem follows easily from the fact that if the wall at 1 is
removed we obtain an ergodic, in fact, Bernoulli system [3].

Appendix B

By a stationary Markov process (Γ, π, Pι) we mean a Markov process on the state
space Γ, with transition probability P\ξ, dη) and stationary probability measure π,
πPι = π. We show that a stationary Markov process with convergence to equilib-
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rium defines a Bernoulli system (5-flow for continuous time, B-shift for discrete
time).

We assume that Γ is a Polish space, i.e., a separable topological space whose
topology is compatible with a metric with respect to which it is complete, and, in
the case of continuous time, that the process has (a version with) sample paths
which are right continuous and have left limits.

Theorem B. A stationary Markov process (Γ, π, Px) satisfying

\\P\ξ, )-π||->0 as ί->oo, π a.e.

defines a Bernoulli system.

Proof. We first prove the theorem for discrete time, i.e. for a stationary Markov
chain (Γ, π, P). Let (Γ^, π f f l, S) be the corresponding dynamical system:

i i

S = the shift, (Sξ)ί = ξi+1 where ξ = (ξ^eΓ^. Denote by & the σ-algebra on which π
is defined. Then π^ is a measure on the product σ-algebra #" = x # \ Let 3Fn be the
sub-σ-algebra of #" generated by ξw and let Ĵ ™ be the sub-σ-algebra generated by
ξk, n^k^m For any finite partition Q = {QJ\ of Γ, let β n be the partition into

m

atoms Qnj={ξneQj}, and let ζ T = \J Qk. We identify β^1 with the obvious σ-
algebra. k=n

To establish that (Γ^, π^, 5) is isomorphic to a Bernoulli shift, it is sufficient to
show <20 is a weak Bernoulli partition [6,12] for every finite partition Q of Γ.

For Λ J f CJ^let

where π j | J f (ξ)) is the conditional probability given the "fiber of the σ-algebra
Jf containing ξ." The weak Bernoulli property for Q is equivalent to the condition
that

as

It is easy to see that ρ is increasing in both arguments: / C / implies
ρ(Λ^)^ρ(./ ' ,=?f) and ρ(3e,J)<Zρ(jP,S'). Therefore

= lπidξ)\\P"(ξ, )-π(-)\\-+O as n oo,

where the equality (*) follows from the Markov property. This completes the proof
for discrete time.

Let (Γ^, n^, St) be the dynamical system for the continuous time case: For
ξeΓ^, ξ = (ξt) is a right continuous sample path with left limits, π^ is the product
measure, and St the shift (translation) by time t. To say that (Γ^, π^, St) is Bernoulli
is to say that (Γ^, π^, 5X) is Bernoulli. But (Γ^, π^, SJ is isomorphic to the system
corresponding to the stationary Markov chain, with state space D[0, 1] of paths
ξ = (ζt\ O^frgl, which are right continuous with left limits, induced by the map
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£ £ L Ή>ί"">/ = | r tθ? 1]. (This is the Markov chain/ 0 ,£, / 2 , . . . , / „ . . . , where
/̂c = (^λJ)) Since this Markov chain satisfies the convergence condition of

Theorem B (by the Markov property for the continuous time process) and D[0, 1]
is a Polish space6 [13], Theorem B for continuous time follows from Theorem B
for discrete time.

We remark that the condition on the state space Γ was necessary for (Γ^, πM) to
be a Lebesgue space - the usual starting point in abstract ergodic theory. If
(Γ^, π j were not a Lebesgue space, (Γ^, π^, S) clearly could not be isomorphic to a
Bernoulli shift, which acts on a Lebesgue space.
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