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Absence of Discrete Spectrum in Highly Negative Ions

II. Extension to Fermions

Mary Beth Ruskai

Department of Mathematics, University of Lowell, Lowell, MA01854, USA

Abstract. We extend the results of [1] to fermions, i.e., we show that if HN is the
Hamiltonian for N electrons in the field of a fixed point charge Z, then there is
a constant c such that HN has no discrete spectrum for N^N0 = cZ615.

In a recent paper [1], we showed that the JV-particle Coulomb Hamiltonian

r Σ z o x+ Σ w ϊu1

j=l 7 = 1 j<k

has no discrete spectrum for sufficiently large N if we make no permutational
symmetry restrictions on the domain @(HN). However, we were unable to extend
these results to fermions and our extension to bosons was indirect. Sigal [2, 3] has
recently proved this result for fermions. In this note, we show how to extend our
proof to fermions. Despite SigaΓs independent proof, we feel that the discussion
which follows is valuable for several reasons. The modifications needed to extend
our earlier proof to fermions are very minor. Furthermore, these changes lead to a
simplification of the proof given in [1] and also allow us to give a direct proof in
the boson case by restricting Ψ to the symmetric domain. In addition, our bound
N0ScZ6/5 for the point at which additional electrons will not bind is better than
Sigal's1.

In what follows we use the notation, equation numbers, etc., of [1] unless
otherwise stated. We can summarize the content of this note as: All results of [1]
remain valid if @(HN\ sN are replaced by either @ + (HN\ ε^ or by Θ~(HN\ ε#.
Furthermore, in the case of fermions there are constants No and c such that HN has
no discrete spectrum when N^N0 and N0^cZ615. The physical interpretation of
this result is that a nucleus with infinite mass and charge Z cannot bind more than
No electrons2.

1 Although Sigal does not explicitly give an estimate for No, the arguments in Sect. III. A and E of
[1] can be used to show that his condition ρ ~ N 2 / 3 implies N0~Z2

2 We have not excluded the possibility of bound states corresponding to eigenvalues embedded in
the continuous spectrum
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As we discussed in Sect. III.E, to extend the results of [1] to fermions one need
only extend the proof of Lemma 5 to fermions. Lemma 5 did not preserve
permutational symmetry because it used the asymmetric partition of unity

N-lk-l N-l

fc=l7=1 j=ί

Following Sigal [3], we define a symmetric partition of unity as follows. Let Gk be
as before and define

1 / 2

, (fc=l,...,2V)

N

Clearly Σ ^l = ί. The argument following (23) can be modified to show that if
fc=l

N

B = 2Nlίp, then the regions {Ωh(B/2):k=ί, ..., JV} cover ]R3iV so that Σ Gf^l.
1=1

Therefore, the smoothing functions, Fk9 are well-defined and satisfy 0^Fk^ Gk^ 1.
Furthermore, suppFfc = suppGfc so that both Fk and Gk vanish outside Ωk(B).

To estimate the error in the kinetic energy introduced by these smoothing
functions, we again follow Sigal [3] and instead of Lemma 3 use the formula:

\vtψ\2= Σ nFkn
2-m2 Σ I W (38)

fc=l fc=l

This can be proven by modifying (7), summing over all Fk, and noting that
N

Σ FkVtFk = Q. It will be useful to bound the last term in (38) by using
fc=l

N I N \ / N \ - l / N \2 / N \ - 2

Σ \KFk\
2= Σ I^AI2 Σ Gl) - Σ Gt7fik) Σ ύ

k=l U=l /\fc=l / U=l / U=l

^ Σ \W- (39)
k=ί

Finally we note that the estimates obtained from (39) will involve M1 = sup|#'(i)|
t

rather than the M used3 in [1]. We can now replace Lemmas 4 and 5 by the
following slightly modified version of Lemma 5 which we call

Lemma 4 1/2. Fix p^2 and let B = 2Nllp. Then for all Ψ in 2,

^ ( ^ ) ^ ε N _ J | ^ | | 2 + J | ^ | 2 μ | r | p - 2 1 + 2 ^ M ^ 2 ] | r | ; 2 ^ , (40)

where A = ω(ΛΓ-l)(JB+l)" 1-l.

3 Condition (v) in the definition of g(t) can now be eliminated provided a suitable modification is
also made in the smoothing by Go in the proof of Lemma 6
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Proof. Proceeding as in the proof of Lemma 4 and using (38) and (39), we find

EN(Ψ)= Σ EN(FkΨ)- Σ Σ
k=ί i=lk=ί

k=ί k=ί

-ΣΣ
ί = 1 fc = 1

- Σ Σ
fc=l i=1

To estimate the last term on the right in (41) we use a slight modification of (19),

fc=l

Substituting this in (41) and summing over k merely introduces a factor of N so
that we conclude

which is the desired result.
With the understanding that Lemmas 4 and 5 are to be replaced by the above

Lemma 4 1/2, we now claim that all results in [1] remain valid if 2, εN are replaced
by ^ + , 8χ or 3)~, e#. In fact, it is easy to see, as we discussed in Sect. III.E, that all
steps in the proofs of Lemma 4 1/2 and [1] remain valid if Ψ is restricted to either
the symmetric or antisymmetric domain and εN is replaced by ε# or ε#. The only
change in the proofs of Lemma 6 and the main theorem come from slightly
changing the definition of R from (29) to

R = 4N{MίB21/p)2λ-1

with B = 2Nllp. Since this change does affect the dependence of R on AT, i.e.
R~N3/P, the arguments given in [1] remain valid.

The proof that N0ScZ6/5 in the fermion case, was already given at the end of
Sect. III.E.
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