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Boundary Regularity for the Navier-Stokes Equations
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Abstract. Weak solutions to the nonstationary Navier-Stokes equations in a
half-space are locally bounded at the boundary except for a closed set with
finite one-dimensional Hausdorff measure.

1. Introduction

The purpose of this paper is to show that weak solutions u to the nonstationary
Navier-Stokes equations in a half-space satisfy a regularity condition at the
boundary. This regularity condition says that, except for a closed singular set
whose one-dimensional Hausdorff measure is finite, u is locally bounded at the
boundary of the half-space. The precise statement of this result is contained in
Theorem 1.1 below.

In [1] it was proved that, at least in the case of a bounded domain, the interior
singularities of the vorticity of u are concentrated in a locally closed set whose one-
dimensional Hausdorff measure is finite. The vorticity of u can be replaced by u in
the preceding statement. Theorem 1.1 extends that research to the boundary of the
domain. It is interesting to note that the dimension does not jump up when we
reach the boundary.

Our half-space will be U={(x,,x,,x3)€R>:x;>0}, its boundary will be
denoted B(U), and the set of positive times will be R* ={t:t>0}. The weak
solution u is a function which is defined on U x R™. It is convenient to extend u by
zero, so that it becomes a function on R*® x R*. The spatial gradient of u (where we
do not include the partial derivative with respect to time) will be written Du.
Theorem 1.1. If w:R*>R?3 is an L? function, w(x)=0 when x¢ U, and div(#)=0
then there exist u:R*xR*—>R3 and SCB(U)x [0, o) such that the following
conditions hold :

(1) u(x,t)=0 when x¢ U ; Due L>.

(2) u is a weak solution to the nonstationary Navier-Stokes equations of
incompressible fluid flow in U with viscosity =1 and initial condition w.

*  This research was supported in part by the National Science Foundation Grant MCS-81-02737

0010-3616/82/0085/0275/$05.00



276 V. Scheffer

(3) S is a closed set.

(4) The one-dimensional Hausdorff measure of SN(R>x{t}) is a bounded
function of teR™.

(5) If (a,b)e B(U)x R™ and (a, b)¢S then there exists ¢ >0 such that u is bounded
on the set {(x,t):|x—a|*+|t—b|* <&?}.

Condition (2) says that u satisfies properties (2), (3) of Theorem 1.2 of [1] (with
w? replaced by w). Condition (1) implies that u is zero on B(U) (in a weak sense).
This is the adherence condition at the boundary. The proof actually shows that the
one-dimensional Hausdorff measure of SN(R3 x {t}) is at most C||w| 3, where C is
a constant.

Definition 1.2. Most of our notation is taken from [1]. In particular, we will use the
notation I(f, A), M(f, A), B(x,r), K(x,t,r,s), D(t) introduced in Definition 2.1 of
[1]. If BCR, f is a function defined on R®x B, and g is a function defined on R?,

then we set
(f*g)(x,0)= R§3 f,t)gx—y)dy.

2. Solutions to Linearized Equations

Definition 2.1. Let X be the Hilbert space of all L? functions f : R*—R? with the
usual inner product (f,g)= [ fi(x) g:{(x)dx. Let W be the closed linear subspace of
X consisting of all weX such that w(x)=0 for almost every x¢ U and div(w)=0 [so
that (w, grad(g)) =0 for every ge CZ(R?, R)]. The orthogonal projection of X onto
W will be called P. If f:R3>->R? is any function we define the reflection
f":R*>R? by means of the conditions

Ji0eys X5, X3) = filxy, Xp, —x3) if i€ {1,2}; [5x4, X5, X3) = — f3(x 1, X5 — X3).
The function I' : R® x R—R is defined by
[(x,0)=0 if <0, I(x8)=@nt)"¥exp(—|x*/(40) if t>0.

We will also write I(x)=I(x,t). The function J:R>~{0}—>R is given by
J(x)=—(4nlx|)".

Definition 2.2. We fix, once and for all, a smoothing function fe CZ(R3, R) such
that 0(x) =0, 8(x)=0if [x| =1, O(x)=0(—x), and ||0||, =1.Ife>0 then ,: R*—>R is
defined by 0 (x)=¢"*0(c™ 'x).

Lemma 2.3. We have curl(f")= —(curl(f)) and hence curl(curl(f"))
=(curl(curl(f))). If div(f)=0 then div(f")=0.

Proof. This is a straightforward computation.

Lemma 2.4. Suppose ¢>0, 6>0, r>0, fe{l,2,3}, the function f:R*->R> is
defined by
Salx1 X5, %3)=05(x 1, x5, X3 —7), f(x)=0 if i%}p,

g=—curl(curl(f+J)), and F :R®> x [0, c0)—R3 is given by
F(x,00=g(x)+g'(x), F(x,))=((g +¢)+I)(x) if t>0.
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Then F(x,00=P(f+f)(x) for almost every xeU, Fj(x;,x,,0,t)=0,
(D.F —AF)(x,t)=0 if t>0, div(F)=0, and the following inequalities are satisfied :
[F(x 1, X5 X3, | S C(Ix |+ x5 x5 — 7| +Y5) 72 if  x320,
[(F%0,) (X, X5, X3, )| S C(lxy | + x5+ x5 — 1|+ 21273 if  x320,
IDF(x,,X,, X3, )| S C(lx4] + %]+ x5 — 1|+ %)™ if  x3=0.

Proof. Define h: R3—R3 by h(x)=(g+¢') (x) when xe U, h(x)=0 when x¢ U. Since
g is a curl we conclude div(g)=0. Now Lemma 2.3 yields div(g+g')=0.
Combining this with (g5 +¢5) (x;,x,,0)=0 we find

(h,grad(p) = [ (g +¢'),(x) D;p(x) dx =0

U

for any pe CZ(R?, R). This implies he W. If we W then Lemma 2.3 gives us

(hw)= [ (g;+g) () wix)dx=(g+g',w)
U

=(— (curl(curl((f + f)*J)), w)
=(—(curl(curl((f + f")=J))) + grad (div(f + f")=J), w)
=(A((f+ )=, w)=(f+ 1", w).

Hence f + f"— his orthogonal to W. All this implies h= P(f + f’) and hence F(x, 0)
= P(f+ f') (x) for almost every xe U. Since F(x, t)=(gx*I;) (x)+ (g=I;)' (x) we obtain
F(x,x,,0,t)=0. The next two assertions follow from the fact (D,I"— AI') (x,1)=0
when t>0, div(g)=0, and Lemma 2.3. The function g satisfies

(g+13) (15 X, X3 S Cll(x g, x5, x5 =1 +£12) 72,
(g#I0,) (x5 X, X3)| < ClI(x 15 x5, x5 — 1) +112) 72,
ID(gI}) (x4, X5, X3)| S C(I(x 1, X5, x5 =) +£12) 7.
Hence ¢’ satisfies
(g/#L) (%3, %5, X)) S C kg, X0 — x5 — 1| +72) 73,
(g #1%0,) (x5 X, X3 S C(l(xy, x5, — x5 =1 +£12) 72,
ID(g'* L) (x4, %5, X3)| < Cll(x1, X5, — X3 —7)[ +171%) 7%,

The three inequalities in the conclusion of the lemma follow from the above, the
fact that |(x;,x,, —x3—#)|=|(x;, %5, X3 —7) when x;=0, and |x,[+]x,|+|x;—7|
SCl(xy, x5, x5 —7)|.

Lemma 2.5. If 0<d, <d, and (a,,a,)e R* then
[ xy—agl+1x,—ayl+d) 73 (x| + x5l +d,) " dx, dx,
R2
= [ (x,+Ix,0+d) 73 (x; —ay |+ Ix, —ay] +dy) " dx, dx,
R2

SClay| +lagl+dy) " dy !
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Proof. This is straightforward.

Lemma 2.6. Suppose €>0,0>0,r>0, fe{1,2,3} and the function f is defined as in
Lemma 2.4. Then there is a solution

V :closure(U) x [0, c0)—>R3
to the linearized Navier-Stokes equations
div(V)=0,D,V—AV is a spatial gradient, V(x,,x,,0,6)=0 if >0, (2.1)
V(x,00=P(f + f)(x) for almost every xe U
satisfying the inequalities
V(%15 X0 X35 Ol S C(Ix [+ |5, + x5 — 1| +£Y2) 73 i x3>0,t>0,
[(V%0,) (x 1, X, X3, | S C(Ix 1|+ X, + x5 — 1| +£2)73 i x3226,t>0
and
5) g}IDV(x, Hldxdt<Cs'’? if s>0. (2.3)

Proof. We adopt the terminology of Lemma 2.4. Solonnikoff [2, pp. 243, 248]
proved that the system
div(v)=0, D,v— 4v is a spatial gradient,
0(x1,%,,0,8)=F(x,,x,,0,t) when ¢>0,0(x,0)=0
for a function v: closure(U) x [0, 0)—R3 is solved by
v{a,b)= il 5) Rf F(x1,%5,0,1) G (ay — Xy, ay—X,, a3, b—1t)dx, dx, dt, (2.4)
i= 2
where G;;: U x R™ —R satisfies the inequalities
G (%, | S Cat ™2 (3t~ 2 (x| +1¢1%)73, when 0ZAiZ1, (2.5)
DG, (x, )] < Ct ™ M3(|x| 4+ 1/2) 73 (x5 +117%) 7, (2.6)
when i€ {1,2,3} and je{1,2}. Observe that j does not have to take the value 3

because Lemma 2.4 yields F,(x,,x,,0,t)=0. The properties of v and Lemma 2.4
imply that the function V defined by

Vix,t)=F(x,t)—v(x,t) for x,=20,t=0 2.7
satisfies (2.1). Now we fix ae U and b>0. If ¢ satisfies
0<t<b and r+t'?=Za;+(b—1)"?, (2.8)

then Lemma 2.4, (2.5) with A=0, and Lemma 2.5 yield
“ F(x4,%,,0,1) G, @y —X1,a, — X5, a3, b— 1) dx, dx,
RZ
< | CUxql+ ey +r 46123 (0 —1)7 12
R2

(lay — x4 +la, — x,| + a3 +(b—1)*) " 3dx, dx,
SCh—1)" Y2 (ay|+ayl +as+(b—t) ) 3(r+VH7L.
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The assumption (2.8) implies

2la | +layl+as+(bB—0) ) 2|a,| +a,|+as +(b— )2 +r+1t'?
=la|+(b—0)Y2+ 112 4y =|a|+ b2+, (2.9)

Hence condition (2.8) gives us

’jz F(x4,X5,0,8) G f(ay — Xy, a5 — X5, a3, b— 1) dx, dx,
I3

SCh—t)~ Y2~ Y2(|g|+ V2 1) 73, (2.10)
If, on the other hand, ¢ satisfies
0<t<b and r+t'?>a,+((b-1)'?, (2.11)

then the same arguments with A=1/2 yield

2la,| +lay +r+t?)>|a |+ |a,| + 7+t +a;+ (b— 1)
Zla|+ 2+ (b—t)"2 +r=lal + b2 +r, (2.12)
and hence
uz F(x1,%2,0,8) G (ay — x,a,— Xy, a3,b—1) dx, dx,

S [ Cllx | +1xy +r+ 273 (b—1) " 34al?
R2

'('al _x1|+|a2—x2|+a3 +(b—t)1/2)_3 dx1 dx2
SCb—1)"¥*al(la,| +lay| +r+ 11373 (a3 +(b— )12 !
SCb—0"**ay(ay+(b—1)"") 7" (lal+b"2 +7) 7. (2.13)

Breaking up the integral of (2.4) into the cases (2.8), (2.11), and using (2.10), (2.13)
we obtain

b
v(a, b)| < C(la| + b2 +71)73 [ (b—1)" V2t~ 12 dt
0

b
+Cllal+b"24+7)72 [ (b— 1)~ >*a}(az + (b— 1))~ de
0

<C(lal+bY?+7)73.

When a, =2¢, the above implies |(v%0,) (a, b)| £ C(la| +b*/?> +r)~3. Combining this
with the estimate
(lal+b"2+1) 7> < Cllay| +layl + 6> +(as +1) 73
§C(|a1l+|a2|+b”2+la3—rl)‘3
(which is true because a; >0) and using Lemma 2.4 and (2.7) we obtain the two
estimates in (2.2).

Again we fix ae U and b>0. If condition (2.8) holds, then Lemma 2.4, (2.6),
Lemma 2.5, (2.9) [which is a consequence of (2.8)] and

2az+b—0)")zas+b—0"2+r+1"*2ay+b" 2 +r
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yield

‘ j; F(x1,%5,0,) DG {a; — xy,a, — xy,a3,b—1t) dx; dx,

R

SCla,|+la,l+a;+ b=+ Y27 b—0)" Y2 (ay+(b—0)H) 7!
SClal+b"*+1) 2+t M b—1) " V3 (ay + b 4r) 7L

If condition (2.11) holds, then Lemma 2.4, (2.6), Lemma 2.5, and (2.12) [which is a
consequence of (2.11)] yield

‘ jz F{(x1,%5,0,8) DG;(a; — x;,a, — X5, a3, b—t) dx; dx,
R

SCllay+layl+r+ )3 (a3 + (-0 Hb—0) "2 (ay +(b— 1)) !
<Cal+b"*+r) "3 (ay+(b—0)"*)"2(b—1)" V2.

Once again, consideration of the two cases (2.8), (2.11) and use of (2.4) gives us

b
IDu(a, b) < C(lal +b*2+r) " *(ay +b**+1) " [t V2(b—1)" Y2 dt
0

b
+ C(Ial+b”2+r)"3f(a3 +b=0)YH"2(b—t)" Y2 qt
0
<Caz(la|+b"?+7)"3. (2.14)

Using (2.2) we obtain [ |V(x,b)|* dx < Cb~*? for b>0. Therefore the fundamental
U

energy estimate for the Navier-Stokes equations yields

S — 8

[IDV(x, D> dxdt<Cb™¥? for b>0. (2.15)
U

Now we fix b>0 and define

S={(X1,x2,x3)eR3 :O<x3<(|x1|+|x2|+b1/2)—3b2} ,

T={(xy, X5, x3)€R>: (|x;] +|x,| +b*) 3b* <x, <b'?}.
Then (2.14) yields
ile(x, b)| dxéCix;l(llelx2|+b“2)_3dx1 dx, dx,
=C [ log,[(1x, ]+, + 526732 (x| +|x, ] +b1%) 2 dx, dx,
R2

<C [ log,[(I(x, x,)| /2451237321 (((xp. )| /2454273

dx, dx,

=C [ log,[(s+bY*)>b™**](s+b*?) " 3sds<Cb™ /2.
0
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In addition, (2.14) yields

[ Do, b)l dx
U~(TuS)
S Cxg Mgl Ix,) x5 +5Y2) 73 dxy dx, dxg
b1/2 R2
SC | x3 (x3+bY) dx; Ch7 V2.

b1/2
Using the above, we find | [Duv(x,b)|dx<Cb~ /2 Since [|DF(x,b)|dx<Ch™1/2
U~S§ U
is a consequence of Lemma 2.4, we can use (2.7) to conclude

[ IDV(x,b)dx<Cb™ /2. (2.16)

U~S

We also have
JIDV(x,b)] dx < [volume(S)]*/ (f [DV(x,b)? dlx)”2
S

<Ch ( * [ IDV(x, b)lzdx)”z

Combining this with (2.15), (2.16) we find

O t— =~

{IDV(x, b)| dx db < ij 12 gp + §Cb3/4<§ IDV(x, b)lzdx) db
U

21
<Ct'?+ ZC(t2 e | <j|DV(x,b)|2dx)“2db

t2-i=1\U

<Ct'?+ Z C(t27H%4

i=0

t2°1 1/2
( I j IDV(x, b)|? dx db) @2 )2 <cev,
t2°-

This concludes the proof of the lemma.

3. An Approximate Solution
In this section we fix a positive number e.

Definition 3.1. If w is a function from an open subset of R into X and
(W(s+ h)—w(s))/h converges in L? as h approaches zero, then the limit will be
denoted D,w(s). If f is a function with domain R? then f will be given by
Fxp, %, x 3) = f(x, X5, X3 —4e). When the domain of f is a subset of R*> x R then
we will also write f(x,x,, X3, )= f(x{, X,, X3 —4¢,1).

For every >0 we can use a slight modification of the construction in [1,
pp. 20, 21] (with ¥ replaced by 6, and Q replaced by 6,) to find a continuous
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function w* : [0, co)— W (where W has the norm topology) such that, setting u*(x, )
=(w*(1)) (x), we obtain u*(x, 0)=w(x),

[ lutx, t)? dx < w2, (3.1)
R3

[ ] ID*+0,) (x,)* dx de <(1/2) | W[5, (3.2)

0 R3

Dw* is a norm continuous function on R*, and

D w*(s) = P(— ((W}(s)*0,) D (w*(s)x0,))x0, + A(w*(s)%0,%0,)).. (3.3)

Let oy, 05,05, ... be a sequence of positive numbers converging to zero. If a =0,
then u* will be denoted v* for the sake of typographical simplicity. Using (3.1) and
the Cantor diagonal process we can pass to a subsequence and assume that there
exists a measurable function u : R®> x R* —>R? such that v* converges weakly in L?
to u when the domain is restricted to a set of the form R3 x (0, b), 0 <b < co. In view
of (3.2), we can also assume that D(v"*@ak) converges weakly in L2, Taking the inner
product with a test function, we find that this weak limit coincides with the
distribution Du. This proves the next lemma:

Lemma 3.2. The distribution Du is an L? function and D(vk*Gak) converges weakly to
it.

Lemma 3.3. By passing to a subsequence, we may assume lim (v*+0,)(x, t)
k— 0

=(ux0,)(x,t) for almost every (x,t). In addition, one can modify ux0, on a set of
measure zero so that it becomes a continuous function on R® x [0, c0).

Proof. For any a>0, (3.1) yields

I((W5(s)%6,) D (w*(5)%0,)), ] ,
S 1(#(s)%0) W (s)=D 0,15 1011y = W (s)%0, |, W (s)+D0, ||,
SIS 10,01, W), 1 D6,]l, = W3] DOl (34

Let aeR®, fe{1,2,3} and define f:R*-R>? by f(x)=0,(x—a), f(x)=0 if i+p.
Let g=P(f). For any >0 we let g°(x)=(g*0;) (x — (0,0,4)). If 0<s, <s, and a =0,
for some k, then the fact w*(s)e W, (3.1), (3.3), the fact (P(h), g°)=(h,¢°) (which
follows from g°eW), (3.4), the estimate [w*(s)x0,%0,|,=<|w*s)|, 16,]; 16,1,
= Iw*(s)||,, and (3.1) yield

I(v5%0,) (@, 5,)— (Wj=0,) (a5,

=| e (00 fiGadx— [ wits) (9 £

R3

= | L 62 0 PUx) doe— T wils1) ) PN

R3
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<l [ wils) (x) g3(x) dx — I wi(s) () g7(x) dx
+w s )ll, IPf =g+ W s )l [P =¢°ll,

I IDw“(s) (x) g°(x) dx ds

S1

+2[wll, I1Pf=g°l,

= f I I((W(s)%0,) D (wi(s)x0,))%0,) (x) g7(x)| dx ds

SlR

(5)40,40,) (x) g "(X)dx‘ds+2llwn 2P =g,

=4 f 1wll3 1D, 11, g°ll , ds+ f lw*(s)%0,%0, 11, 14°ll , ds+21|wll, | Pf — g°ll

S1 51

S(s,=s) IWIZ D011, 1% 5+ (s =) W1, 14g°1 , + 2111, [Pf = ¢°ll,. (3.5)

If y>0 then 2||w|, |Pf—g¢°||, can be made smaller than y by choosing &
sufficiently small. Then the other two terms at the end of (3.5) can be made less
than y by choosing s, —s, to be small enough. This shows that (v*x8,)(a, s) gives us
a uniformly equicontinuous family of functions of the variable s for every fixed
point a. If {a,,a,} CR? then (3.1) yields

(v*+0,) (a,, 5)— (v*+0,) (a,, 5)|
= ‘ﬁfs v¥(x, s) (0,(a, — x)— 0,(a,— x)) dx’

<|wll, ( Rj 0(a, —x)— Ge(az—x)|2dx)1/z

=1l 0@y =a; +x)=0,69P dx) . (3.6)

Since the last line of (3.6) approaches zero as a, —a, goes to zero, we use the
previous result to conclude that v*+0, is an equicontinuous family of functions
when restricted to K x [0, o0) for every compact set KCR?>. Using (3.1) we get
[0*%0,) (x,s)| < ||W], 0,]l,- Now Ascoli’s theorem implies that, passing to a sub-
sequence, we may assume that v*x6, converges uniformly on compact sets to a
continuous function. Since v*x0, converges weakly to ux0, on every subdomain
R3 x (0, b), the pointwise limit of v*+0, must coincide with ux0, almost everywhere.
The proof of the lemma is now complete.

In view of this lemma, we may assume that u=0, is a continuous function. We
also have [from w*(s)e W]

div(u)=0,u(x,t)=0 if x¢U. 3.7
For the next argument we will need to convolve with respect to the time

variable. If the domain of f is a subset of R® x R and the domain of g is R then
(f*g)(x, )= [ f(x,5)g(t—s)ds when the integral makes sense. We use the same
R

definition when f is defined only on R®x R™ but g(t— s)=0 whenever s 0. Then
the values of f outside R®x R* are irrelevant.
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Lemma 3.4. Suppose ac U, 0<b'<b, 0<d<a;, fe{1,2,3}, YeCZ(R,R), support
(NC[=b,b], Y(©)=Y(—t), and n>0. Then
[(up Y'x0;) (a, b)|
= | Clus) (x, b (x—al+(b—b)"*) "3 dx
R3
+(Cn) max {|(((t;+0,) (ux0,)+Y) (x, 5)| : (x, s)€ K(a, b, n,n), j=1,2,3}

+§ § Cl((@%0,) (D ux0,))xY) (x, )| (Ix — al + (b—5)/* +1) "> dx ds.
b’ R3

Proof. Set r=a,. We let V, f be the functions of Lemma 2.6 corresponding to our
choices of 8, r, . The function ¢ : R® x R—R? is defined by

o, t)=V(x;—a,X,—a,,x3,b—t) if xeU and b'St=Dh,

and ¢(x,t)=0 otherwise. The restriction of uxY to R®>x[b’,b] has these two
properties: It is zero outside U x [, b] and its spatial gradient is in L* [see (3.7)
and Lemma 3.2]. Hence we can say (u*Y)(x;,X,,0,s)=0 for a.e. x,;,x,,s with
b'<s<bh. Lemma 2.6 implies that the restriction of D,¢p+4¢ to Ux(b',b) is a
spatial gradient, and (3.7) yields div(u+Y)=0. All this implies

T e, >

{ D(uY) (x, 5) px, ) dx ds
U

+

S

| Dj(uY)(x,5) D;(x, ) dx ds

U

= | (uxY)(x,b) px,b)dx— j(ui* Y)(x,b) px,b")dx. (3.8)
v

Let k be a positive integer and set o =o,. For each s, the function g(x)=(¢*Y)(x, s)
is an element of W (see Lemma 2.6). Using this fact, (3.3), and div(w*(s)) =0 we find

b
[ | DAoE=Y)(x,5) plx, s) dx ds
b R

3

I Dk(x,s) (¢ Y) (x,s)dx ds

J Dwi(s) (x) (@ix ) (x.5) dx ds

(((()8,) D (wi()%0,))%0,) (x) () (x, 5) dx ds
Awi(s)x0,%0,) (x) (P Y) (x, 5) dx ds

(W5(s)#0,) (x) (wi(s)%0,) (x) (D b, Y+0,) (x, 5) dx ds

D (wi(s)x0,) (x) D (p+ Y*0,) (x,s) dx ds

R3
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(@ kx0,) (x, 5) (v¥%0,) (x, 5)(D;p+Y*0,) (x,s) dx ds

w

O'—s8

R
©

j fD(v %0,,) (x,5) D (¢ Y*0,,) (x,5) dx ds. (3.9)

Parts (2.3), (2.1) of Lemma 2.6 imply that D¢Y6, is an L' function. Hence
Lemma 3.3, the estimate |(v*#0,)(x,s)|<|wll, [6,], [see (3.1)], and the Lebesgue
dominated convergence theorem yield

lim j | (@%0,) (x, 5) (vF%0,) (x, 5) (D0, Y %0,) (x, 5) dx ds

k= o0 o R3

= j j (@1;%0,) (x, 5) (u;0,) (x, 5) (D ¢+ Y*0,) (x, s) dx ds . (3.10)
0 R3

The weak convergence of v*, the fact D(v*+Y)=v*+D,Y, (3.10), Lemma 3.2, and
D¢e L? [see (2.1)] imply that (3.9) yields

E I D (uxY)(x,s) ¢(x,s)dx ds

§ @%0,) (x, 8) (ux0,) (x, 5) (D ;% Y'%0,) (x, 5) dx ds

R3
o0

— [ J Djufx,5) D (¢ Y) (x,5) dx ds.

0 R3

Hence (3.8), the fact ¢(x,1)=0 when x¢ U, and (3.7) yield
f (uxY) (x,b) p,(x, b) dx — j (uxY) (x,b") ¢(x,b")dx
R3

R3

O°—>8

0

=- g IL (((@7%0,) D (ux0,))%Y) (x, 5) (¢40,) (x, ) dx ds . (3.11)

Lemma 2.6 yields
¢(X, b)= V(x1_a1s xz—az,x3,0)=P(f+f')(x1—al, xz—az,x3)
if xe U. In addition, 6 <a,=r and (3.7) imply (see Lemma 2.6)

RL (uxY)(x,b) fi(x;—a;, x,—ay x3)dx= Rj30dx=0.
Hence (3.7) and the symmetry of 0 yield
st (uxY) (x, b) p(x, b) dx
= st (uY) (%, b) (P(f + ), (x, — a1, X, — Ay, X3) dx
= st (uxY) (%, b) (f + 1) (xy — ay, X, — ay, X3) dx
= R§3 (uY)(x,b) fi{x, —ay,x,—ay x;)dx
= st (g X) (x,b) O5(xy — @y, X5 — a5, X3 — a3) dx

=(upxY0;)(a,b). (3.12)
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Also, (2.2) yields
les (uxY) (x,b") p(x,b") dx
= lj} [(uxY) (x, b) | V(x; —ay, X, —a,, x5, b—b") dx

< [ ClluY) (6, B (b, — ay |+ b — agl 4 x; — ag) +(b— )2 P dx.  (3.13)
U

Now (3.11)~(3.13) and the definition of ¢ imply

(g Y'%0,) (@, b)| £ [ ClwY) (x,b)| (x—al+(b—b)"?) "2 dx
R3

+ f [ ((@0,) D u0)+Y) (x,5) (¢;x0,) (x,s)dxds|.  (3.14)

Let g:R3*xR—[0,1] be a function such that g(x,s)=1 when |x—a|<#/2 and
b—n*<s=<bh, ¢g(x,5)=0 when |x—a|l=n and b—y2<s<h, ¢g(x,s)=0 when
s¢[b—n?b], and | Dg|,, <4n"".

Let K=K(a,b,n,n?). Using the first inequality in (2.2) we find

[ (¢=0,) (x,s)l dx ds < Cn*. Property (2.3) yields
K
[1(D$=0,) (x,5)l dx ds < ; | [(D#0,) (x, s)| dx ds
K b-n2 R3
<CH*)'"*116,]l,=Cn.

Using the above and div(ux0,)=0 [see (3.7)] we find

b
15' 1§3 (((ﬁj*es) Dj(ui*ea))* Y) (X, S) (d)z*ee) (xa S) dx dS

b[ st ((@;%0,) D (ux0,)+Y) (x,5) g(x,s) ($0,) (x,s) dx ds

b

+ J st ((@;40,) Dj(u;x0,)*Y) (x,s) (1 —g) (x,5) (¢;%0,) (x,s)dxds
b

|-

R§3 ((G@%0,) (upx0,))+Y) (x,5) Dg(x,s) (¢%0,) (x,s)dx ds

= § T (@%0) (w0 )=Y) (x.5) glx.5) (Dj0,) (x, ) dx ds

+ bf Rf3 ((@%0,) Dj(u0,))+Y) (x,5) (1 —g) (x,5) (d%0,) (x,5)dx ds

= (Cn) max {|(((@;+0,) (u6,)+Y) (x,s)| : (x, )€ K, je{1,2,3}}

b
+ bf RL ((@%0,) D (u0,)«Y) (x,s) (1—g) (x,5) ($%0,) (x,5)|dx ds.
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If x=(x,,x,,x;) and x5 =2¢ then the second inequality of (2.2) yields |(¢*0,) (x, s)|
S C(x—al+(b—s)?)73. If, in addition, (1—g)(x,s)%0 then |x—a|+(b—s)*/?
27/2 and we conclude |(¢*0,)(x,s)| < C(lx—al+(b—s)'2+n)73 If x,<2e¢ then
(@1%0,) (x, t)=0 for each t [see (3.7)] and hence

(((a]*ga) Dj(u*ee))* Y) (x9 S) =0.
All this implies

b
,!, st [(((@E%6,) D (u;%0,))% Y) (x, 5) (1 — g) (x, 5) (¢;+0,) (x, s)| dx ds
= If’ J Cl((@6,) (D ux0))xY) (x,5)| (Ix—al+(b—5)"">+n)">dxds.
b’ R3

This inequality and (3.14), (3.15) yield the conclusion of the lemma.

Lemma 3.5. Suppose ceR?, d>0, 1>h>0, h*<d, 2¢<7, and 0<n=h. Then

lwx0,) (e, < | | Clu(x,s)|(Ix—c|+7)"3h~2dxds
d=~h2 R3

da—h? B(c,7)

+(Cr) max {|(@tx0,) (x, s)| [(ux0,) (x, s)| : (x, ) K(c, d,n,n°)}

+ ]{ C(f |u(x,s)|3dx)”3h_3ds

+ [ | Cl@*8,) (x,s)| |Dw*0,)(x,s)| (|x—c|+(d—s)"*>+5)"3dxds.
4w R

Proof. Suppose first that we have the case e <c, [where c=(c,, ¢,,¢;)]. If we set
0=¢, a=c, b=d then use of Lemmas 3.3 and 3.4, with a sequence of functions Y’
converging to the Dirac delta function, gives us

l(ux0,) (a,b)| < | Clu(x, )| (x—al+(b—b)?) "2 dx
R3
+(Cn) max {|(@+0,) (x, )| [(ux6,) (x, s)| : (x, s)€ K(a, b, 1,n*)}
+ E j CI(&*HG)(x, S), ID(U*QE) (x, S)’ (Ix_a|+(b_s)1/2+77)_3dxds
b’ R3

for almost every b’ such that b—h% <b’<b—(1/2)h®. Averaging the above over all
such b’ and setting b'=s we find

b—h?/2

lws0,) (@, b) < [ | Clu(x,s)|(x—al+h/)/2)"32h" 2 dx ds
b—h2 R3
+(Cr) max {|(@0,) (x, s)| |(ux0,) (x, )| : (x, s)& K(a, b, n,1*)}

b
+ [ [ Cl@*0,) (x, s)| ID(u0,) (x, )| (|x—al+(b—s)*>+n)"3dxds.

b—h2 R3
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Combining this with
[ u(x,s)| (x—al + k)~ 3 dx
R3

< [} [u(x, s)| (!x—al+h)"3dx+C( | |u(x,s)|3dx)”3h“1
R3~B(a,t/2) B(a,t/2)

< Clu(x,s)](lx—al+r)_3dx+C( | lux, )P dx)1/3h_1 (3.16)
R3 B(a,1/2)

we obtain the conclusion of the lemma in case ¢ <cj.

Now we observe what happens in the case ¢ <#/2. Using Lemma 3.4 with a
sequence of numbers J converging to zero, a sequence of functions Y converging to
the Dirac delta, and #/2 in place of # we obtain

lu(a, b)| < | Clu(x,b)l (Ix—al+(b—b)"?)" dx
+(Cn/2) max {|(@0,) (x, s)| [(ux0,) (x, 5)| : (x,5)e K(a, b,n/2,n*/4)}

+ E [ Cl(@=0,) (x, s)| ID(ux0,) (x, s)| (Ix—al+(b—s)""*+n/2)">dxds (3.17)

for almost all a, b, b’ such that ac U, 0<b’ <b. Property (3.7) implies that (3.17) is
still true when a¢U [because then u(a,b)=0]. If we integrate the above over
a€ B(c, ¢) and use the corresponding inequality

3x—al+(b—s)"?+n/2)Z|x—al+n/2+bB—s)"*+7y
Z(x—al+e+(b—s)?+n=|x—al+la—c|+(b—s)**+y
2|x—c[+(b—9"+n,
we find

f lu(a, b)| da

B(c,¢€)

< | f Clux, b)) (x—al+(b—b)?)"2dxda

B(c,e) R3

+ Cne® max {|(@+0,) (x, s)| I(ux0,) (x, )| : (x, s)e K(c, b,n/2+¢,1°/4)}
b

+ | [ C(@x0,) (x, )| ID(ux0,) (x,5)| (Ix—c|+(b—s)*"2+n)"2dxds (3.18)
b R3

for almost all b, b’ such that 0<b’<b. If ae B(c, ¢) then 2¢ <t yields
2x—al+1)Z|x—al+e+r2|x—al+la—c|+T=[x—c|+7.

Property 2e <t also implies B(a,t/2)C B(c, t/2+¢)C B(c, 7). Hence the argument of
(3.16) yields

[ Tux, ) (1x—al +(b— b)) "3 dx

< jClu(x,b/)l(lx—al+r)"3dx+C( [ lu(x, b)) dx)“-" (b—b)" 12
R3

B(a,t/2)

< Clu(x,b')l(lx—c[+r)‘3dx+C( | |14(x,b’)13dx)”3 (b-b)""*. (319
R3

B(c,1)
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If we fix b such that b>h?, average (3.18) over b'e[b— h?, b—h?*/2], use (3.19) and
e<n/2, and substitute later b’ =s, then we find
lux0,)(c,b)| < [ Ce 3lu(a,b) da
B(c,€)
b
< [ [ Clux,9)l(x—cl+7)7*h"2dxds
h2 R3

b—

+ lj? C(f |u(x,s)|3dx>”3h_3ds

b—h2 B(c,T)
+(Cn) max {|(@x0,) (x, )| [(ux0,) (x, s)| : (x, s)€ K(c, b, n,n*)}

b
+ [ J Cl@s6,)(x,9)] IDux6,) (x,5)| (Ix—cl+(b—9)">+n)"*dxds
b—h2 R3

for almost every b > h?. Now the conclusion of the lemma follows in this case from
the contunuity of u#0, (Lemma 3.3) and the substitution b=d.

It remains to examine the case c;<¢, ¢=#/2. If acUnB(c,¢), fe{l,2,3},
0<bd'<b,and §, Y are as in Lemma 3.4 then we conclude (3.14) just as before. The
function ¢ appearing in (3.14) was defined at the start of the proof of Lemma 3.4.
Since (fi*0,) (x, t) =0 whenever x, < 2¢ [see (3.7) and Definition 3.1], property (2.2)
yields

b

j‘ j (((aj*es) Dj(ui*es))* Y) (X, S) (d)z*es) (xa S) dxds
b’ R3
b
< [ [ Cl(@#0) D))+ Y) (x,9)| (x—al+(b—s)"?) 2 dxds.  (3.20)
b’ R3
Since ae B(c,¢) and ¢, <¢ we find a; <2e. If [x—a| e then x; =3¢, and hence (3.7)

and Definition 3.1 yield (@i%6,) (x, t)=0. Hence |x —a| >¢ must hold when x is such
that the integrand on the right hand side of (3.20) is not zero. Since we have

3(x—al+(B—s)Y?)>|x—a|+2e+(b—s)?
>|x—a|+e+n/2+(b—s)?
>|x—a|+|a—c|+n/2+(b—s)'/?
=|x—c|+n/2+(b—s)'?
in such cases, (3.14) and (3.20) imply
(g Y50,) (a,b) < | Cl(uxY) (x,b)] (x—al+(b—b)"?) 7> dx
R

+ ? | Cl(((@;0,) Du0)«Y) (x,9)| (Ix—cl+(b—s)"*>+n/2)"*dx ds.

Using a sequence of functions )" converging to the Dirac delta and a sequence of
numbers ¢ converging to zero, we find

lu(a, b= | Clu(x,b)l (Ix—al+(b—b)"?)"2 dx

b
+ | [ Cl@=0,) (x,s)| [D(ux0,) (x,s)| (Ix—c|+(b—s)"*+n/2)"dxds
b R3
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for almost all g, b, b’ such that ae UnB(c, ¢), 0 <b’ <b. Property (3.7) implies that
the restriction ae U is unnecessary. Integrating the above over ae B(c, €), we obtain
(3.18) without the “max” term. Now the argument that follows after (3.18) gives us
the conclusion of the lemma because the absence of a “max” term makes the earlier
assumption ¢ <#/2 unnecessary.

4. An Estimate for Approximate Solutions

We continue working with the same number ¢ fixed in the previous section. Recall
that the functions u, @ are defined in terms of &. For the remainder of this section,
we fix (a,b)e R3*x R and t>0. If >0, i€ {1,2,3, ...} and seR we set

L) ={(x,t):1—r<|x—a|<t+r,b—1*<t<b}, (4.1)
G(i))=K(a, b, t(1—27%), t3(1—272Y), 4.2)
D(s)={(x,t):t<s}. (4.3)

The following assumptions [(4.4) through (4.8)] will be in effect throughout this
section:

a;=—4¢[where a=(a,,a,,a;)], t>2¢, b>1%; (4.4
M is a positive number such that

[ ID@=6,) (x, 0)|* + |D(@ix0,) (x, t)|* dx dt <M, rif O0<r <t ; 4.5)
L(r)

if0<s=t% t;=b—12 t,=b—1%+s then

t2

| ( [ luG 0P dx)1/3 dt<M,s, (4.6)
t1 \B(a, 27)
tf j [(5%0,) (x, t)] [D(u6,) (x, )| (Ix —a| + 1) "2 dxdt =M ,t " 3s, 4.7)
t; R3
tjz J lulx, Ol (|x—al+1)"*dxdt =Mt 's. (4.8)
t1 R3

Lemma 4.1. Suppose (c,d)eR®* xR, M, >0, and
lw=0,) (x, )| SM,(:27)™ Y if (x,0)eGi)nD(d), ie{1,2,3,...}. (49)
Suppose also that la—c|<t, b—1*<d<b, and n, p are defined by
270D Y —|g—c)S27", n is an integer , (4.10)
2720 D <17 2(d—(b—1%) <27 2P, pisaninteger. 4.11)

Let g=max{n,p}. Then |ux0,)(c,d|SC,M,(:27) " +C,M3(:279)" ! for some
absolute constant C,.
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Proof . Using (4.10), (4.11), t>0, and d<b we find
27 D7 (g~ g—c) St =1,
2720+ D <17 2(d— (b—1Y)) St A b—(b—1?)=1" %1% =1.
Since n, p are integers and g=max {n, p}, we find
nz0,p=0,¢=0. (4.12)
Using (4.4), the resulting inclusion
B(a—(0,0,4¢), t(1—2"9) CB(a, t(1 =27 H)U{(xy, X5 X3) 1 X3 < — 68},
property (4.9), the fact that (ux0,)(x,t)=0 when x; < —¢, (4.2), and (4.3) we find
[@x0,) (x, )ISM,(:27)~ Y if (x,0)eGH)ND(),ie{1,2,3,...}. (4.13)
Using (4.11) and g=p we deduce
d—(b—1Y)>1227 2T D > 27 2@+ 1) 5 29726+ 2) 4 1292+ 2)
The above and d <b yield
b>d>d—1?272@*D>p— 131272472,
If [x—c|£1279*2 then (4.10) and g=n yield
x—aSlx—c|+|c—a £127F D 47270+ D
A R T 7L
The above, (4.12), (4.2), and (4.3) yield
K(c,d,127@* 2 ¢2272@* D) C G(g+2)nD(d).
Combining this with (4.9), (4.13) we find

max {|(@tx0,) (x, )| [(u*0,) (x, )| : (x, )e K(c, d,1271U*?, 7227 2@ )}
§M§(r2_(q+2))_2. (4.14)
We define
n=12"1%2 p=12"0+2, (4.15)

Our strategy is to use Lemma 3.5. Properties (4.11), (4.12) yield
b—t*<d—h* h<t/4. (4.16)

We have 2(|x—c|+1)=|x—c|+1+1>[x—|+|c—a| +t=|x—a|l+ 1. Hence (4.16),
(4.11), (4.12), (4.8) yield

} J lule, 0l (Ix—cl+7)~*h~* dx dt
d—h2 R3

d
< [ [ Clutx, 0l (Ix—al+7)"3h~2dxdt
b—12 R3

SCM it Y d—(b—1)h 2 SCM,;t 1?27 ?h 2 < CM h~'=CM 1~ 12r*2
<CM,t~'2072, 4.17)
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Also, [c—a| <1, (4.16), (4.6), and the argument in (4.17) yield

d
| ( | Iu(x,t)l3dx>”3h_3dt
d—h2\B(c,1)
d
< ( f |u(x,t)|3dx>”3h"3dt
b—12\B(a, 27)
§M1(d—(b——‘52))h~3§M1’Cz2_2ph_ 3
§CM11'_12P+2§CM1‘L'_124+2. (4.18)

Now [c—al<t and (4.16) give us [x—a|+tZ|x—c|+|c—a|+T<|x—c|+ 271
<(2th™Y) (|x—c|+h). Hence (4.16), (4.7) and the argument in (4.17) yield
d
[ J 1@0,) (x, 0 ID(ux0,) (x, )] (1x—c|+(d—1)'">+ k)~ dx dt
a—h R>

QAT ][ w0 (o 0 DGer8) (5,0 (bl + ) ded
R3

b—12
SQth )P Mt 3 d—(b—1?)SCM h™ 3227 %
<CM,h™'<CM,1" 1202, (4.19)

If g=p then h=n [see (4.15)], (4.14)-(4.19), and Lemma 3.5 yield the conclusion of
the lemma. Therefore, we may assume g >p. This implies [see (4.12)]

g=n>p,nz1. (4.20)

We fix an integer k such that p+2=<k=gqg+1. From (4.10) and (4.20) we obtain
T—la—c|=127"=<1/2, and hence |a—c|=7/2. Then (4.12) yields |a—c|=1/2
>127?*2>727k This implies that we can define e, to be the point on the line
segment joining a and ¢ such that

le,—c|=(3/4)127% le,—a|=|a—c|—|e,— c|=]a—c| — (3/4) 12 *.
The above and |a—c| <t yield
Ble,, (1/4)127 " C Bla,t— 12~ ** V), (4.21)
Using (4.11) and p+2=k we find
d—(b—1?)>1227 20 F ) > 297 20" 1) 5 729 = 2k 729 = 2(kF 1)

Hence we conclude d—1227%%>b—13(1—2"2*"Y) Combining this with d<b,
(4.21), (4.2), (4.3) we conclude

K(e, d,(1/4)t27% 12272k
CK(a,b,7(1—=2"%*1) 21 =27 2** V) ~D(d)= G(k+ 1)nD(d). (4.22)

The definition of e, yields Ble,, (1/4)t2~ %) C B(c, t27*). This inclusion and the proof
of Lemma 2.2 of [1] give us

I(ji+0,)*, K(c, d, t2 %, 1227 2k))
< C(1279° (max {|(@+0,) (x, 1) : (x, t)e K(e,, d, (1/4) 127 ¥, 1227 24)})
+C(12792 I([D(ﬁ*@s)lz, K(c,d,127% 72272k, (4.23)
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From (4.10) and k=<q+1=n+1 [see (4.20)] we conclude

Ble, 27" c{x:t— 27 2<|x—a| St +127F 2} (4.24)
From d<b, p+2=<k, (4.12), and (4.11) we conclude
b>d>d—122"%2d—1227 20+ D5 d 122720 U5 g2, (4.25)
Now (4.24), (4.25), (4.1 yield
K(c,d, t27% 12272 c [(127F*?), (4.26)

Using (4.26), (4.5), p+2=k, (4.12) we find
I(|ID(ux0,)|*, K(c,d,t27 ¥, 1227 2%)
SI(ID(ux0,)|*, L(r2 ¥ ) <M, (12757 2). (4.27)
The same argument also yields
I(ID(@%0,)%, K(c,d, 127 %, 1*27 M) S M, (127F+2). (4.28)
Using (4.23), (4.22), (4.13), (4.28) we find

I(1x0,|%, K(c, d,t27 %, 7227 %)

SCR27HP M2~ * )72 4 C(e27 M2 M, (12741 2)

SCM (12793 + CM3(2793. (4.29)
The inequality

[i+0,] | D(u0,)| £(1/2) (x27%) 7 |76, + (1/2) (27 ) [D(ux6,)|?
and (4.27), (4.29) give us
I(|5%0,] [D(ux0,)|, K(c,d, 727 1?27 ) S CM,(:27%*+ CM%(:27%2, (4.30)

when p+2=<k=g+1. Now (4.15), (4.20), the estimate

]1 [ 1@=0,) (x, )| ID(u0,) (x, )| (|x — c| +(d—s)*/* +1) "3 dx ds
d—h2 R3
= ? [ 1@x0,) (x, 5)| ID(u=B,) (x, )| (|x—c|+(d—s)*">+h)~3dxds
d—h2 R3
+ qg C(z27 %73 I(|=0,] |D(ux0,)|, K(c,d, 27 1227 2¥),

k=p+2
properties (4.14)—(4.19), (4.30) and Lemma 3.5 yield the conclusion of the lemma.

Lemma 4.2. There exist absolute constants C,>0, C4 such that the following is
true: If M| <C, then |(ux0,)(x,1)|<2Cyt~* for every (x,t)e K(a,b,t/2, 3t*/4).

Proof. We choose C,>0 so that C,C3=(1/4)C,. Then we choose C,>0 so that
C,C,=(1/4)C,. Let f:interior(K(a,b,,7*))—>R" be a continuous function such
that

C2t7 ' 2 f(x,)2C 20 117 if (x,0)eGH)~G(i—1) (4.31)
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for ie{1,2,3,...}. Here G(0) is the empty set. In particular, we get
O, )SC2c™ i (x,1)eGli). 4.32)
We will prove
[(u=0,) (x, )| < f(x,t) when (x,t)einterior(K(a, b,t,7%). (4.33)

Assume that (4.33) is false. Then the nature of f and the continuity of f and u=6,
(see Lemma 3.3) imply the existence of (c, d)einterior(K(a, b, 7, 7%)) such that

[(ux0,) (c, d)| = f(c, d), (4.34)
[(w=0,) (x, )| < f(x,t) if (x,1)eD(d)ninterior(K(a,b,t,7%)). (4.35)

Then ¢, d satisfy |a—c| <7, b—t><d <b. We define n, p, g as in Lemma 4.1 and set

M, =C,. Then (4.32), (4.35) imply that (4.9) is satisfied. All this implies implies that

the hypotheses of Lemma 4.1 are satisfied and hence we get (using M, =C,)
lw=6,)(c,d)| SC,C,2%t "1+ C,C329c™ 1. (4.36)

The definition of p, n, q yields (c, d)¢interior(G(g)). Hence (4.34), (4.31) yield
[(ux6,) (¢, d)| = C;2%~ 1. Combining this with (4.36) we get C;<C,C,+ C,C3. Now
the definition of C,, C, yields C;=(1/4)C5+(1/4)C;, which is a contradiction.
Hence (4.33) is true. Setting i=1 in (4.32) and using (4.33), (4.2) we obtain the
conclusion of the lemma.

5. Isolating the Singular Set

Once again, we fix >0 and consider the corresponding functions u, &i. Lemma 3.2
and (3.2) yield

o)

[ ] 1Du(x, 0 dx de £(1/2) []3. (5.1)

0 R3

A consequence of (5.1) and [|0,], =1 is
{ [ 1D(u6,) (x,0)|> dx dt < negu%(f | 1Du(x, )] dx dt)
0 R3 0 R3

=(1/2)1wl3. (5.2)
Using (3.1) we find

| [ luCx,e)?dxdt<(s'—s)[|w[|3 when 0=<s<s'<o0. (5.3)
s R3
This also yields

T 1 b, t)lzdxdtélwsﬂf(sf [ utx, t)erxdx)
s s R3

R3

(=9 w3 (5.4)
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Lemma 5.1. There exists an absolute constant C, >0 with the following property:
Suppose (a,b)eR*x R, 6>0, b>g?,

b

o 1D (e, 0+ |DG0) (v, d de £ Cy0, 55)
b
[} ( [ ojulx 1) dx)1/3 dt<C, 02, (5.6)
b—02 \B(a, 20)
b
j f (@0,) (x, 1) [ID(ux0,) (x, 1) (Ix—al| + o) 2 dxdt<C,o7 1, (5.7)
b—a2 R3
and
b
[ Jlux,t)(x—al+0) *dxdt<C,o. (5.8)
b—o2 R3

Then there exists © such that 6/2 <t <o and properties (4.5}(4.8) are satisfied when
M,=¢C,.

Proof. This is a consequence of the Hardy-Littlewood weak-type inequality for L!
and the fact that ¢/2<t<g¢ implies (|x—al+1) 3 <8(x—a|+0) 3.

Lemma 5.2. Suppose (a,b)e R® X R, a;= —4¢ (where a=(a,,a,,a,)), ¢ >4¢, b>a>,
and properties (5.5)~(5.8) are satisfied. Then

w6,) (x, )| =4C50™ 1 if (x,0)€K(a,b,0/4,30%/16).
Proof. This follows from Lemmas 5.1 and 4.2.

Lemma 5.3. If (a,b)e R®X R, a5 <0, and b>c? then

jl: ( [} |u(x,t)|3dx)”3dt
b—02 \B(a, 20)
é(Ca”)( lf ] IDu(x,t)Palxdt)u2

b—o2 B(a,40)

and

E | fulx, Ol (Ix —al+ 0)* dx dt
b—g2 R3

§(C01’2)< f fIu(x,t)!z(lx—al+a)"5/2dxdl)+(1/2)C4a.

b—a2 R3
Proof. From a, <0 and (3.7) we conclude

[ lux,0)* dx = Co? ( [ IDu(x,t)? dx)

B(a, 40) B(a, 40)
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for almost all >0. Hence Lemma 2.6 of [1] yields
b

| ( | |u(x,t)|3dx)”3dt

b—02 \B(a, 20)

b
< | C(2a)_”20( | IDu(x,t)Ide)l/zdt
b—g2

o B(a,40)

+ If C(2a)”2( [ lDu(x,t)lzdx)“zdt
b— 2

2 B(a, 40)

b 1/2
<Cg%? < [ [ |Du(x,0dx dt) .

b—a2 B(a,4a)
In addition,

[ luCx, 0l (x—al+0)~* dx
R3
= f Cylu(x, )*(|x—a]+0)~3%c 2 dx + f Cy~ Yx—d|+0)" 72612 dx
R3 R

< [ Cylulx, 0 (Ix—al+0)~5%¢ 2 dx+ Csy~ 1ot
R3

for almost every t>0 and every y>0. The second inequality of the lemma follows
by substituting y=(C5 (1/2)C,)~! and integrating over t.

Lemma 5.4. There exists an absolute constant Cg with the following property:
Suppose (a,b)eR® X R, a; = —4¢, 0>4¢, b>0?,

; [ IDu(x, 01*+|D(*0,) (x, 1)|> + |D(ux0,) (x, )I* dx dt < C4a,  (5.9)

b—0c2 B(a,40)

lfj [ 1@%0,) (x, )l ID(=0,) (x, )] (x—al+0) *dxdt<Cg0™*, (5.10)

b—a2 R3
and

b
[ ] lux,0)? (Ix—al+0)">?dxdt < Cga/?. (5.11)
b—o2 R3

Then |(u%8,) (x, )| 4C,0~* whenever (x,t)e K(a, b, o/4,305%/16).
Proof. This follows from Lemmas 5.2 and 5.3.

Definition 5.5. For each ¢>0 we choose a countable set Z(¢)CR? such that

R*x{0}c |J interior of B((c;,c,,0),06/4), (5.12)
(c1,c2)eZ(0)
le=c1za/4 if {c,c}CZ(6) and c=*c'. (5.13)

Lemma 5.6. There is an absolute constant C- with the following property: Let ¢ >0,
b>a? and define

S, ={(cy, ¢y —48):(cy,c0)eZ(0) and (5.9) is false when a=(c,,c,, —4¢)},
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S, ={(cy, ¢y, —4€) :(cy ) Z(0)  and (5.10) is false when a=(c,,c,, —4¢)},
S;={(cy, ¢ —48) :(cycr)e Z(0)  and (5.11) is false when a=(c,,c,, —4¢)}.
Then S, US,US, is a set with at most C,||w|3a~" elements.

Proof. Using (5.13), (5.1), (5.2) and Definition 3.1 we find
(Cg0) (cardinality of S,)

<) ; [ IDu(x, 1%+ |D(ux0,) (x, 1) + |D(@ix0,) (x, 1)|* dx dt

- aeSy1 b—a2 B(a,40)
b
<C( § [ 1D 0+ 1D(ws0,) .01+ 10350 (5, 0 i
b—o2 R3
=C|wl3.
Similarly, (5.13), (5.4), (5.2) yield
(C¢0™ 1Y) (cardinality of S,)

b
<Y [ [ 10, (x,0) IDwx0,) (x, 1) (x—a|+0) > dx dt
acS, b—ag2 R3
= lf | Cl(?t*ee)(x, 1) |D(ux0,) (x, 1)l ¢~ dx dt

b—a2 R3
b b
< | [ C@=0)(x, 0P *dxdt+ [ [ CID(u=0,)(x,0)*c~*dxdt
b—o2 R3 b—ao2 R3
SCo ?|w(3+Ca™2|w]|3.
Using (5.13), (5.3) we find
(C40''?) (cardinality of S,)

=X lj [ lutx, 017 (Ix—al+0)~*dx dt

aeS3 b—ad2 R3
b
< | [ Clux,0)Pe™?dxdt<Co™ 2| w]3.
b—a2 R3

Lemma 5.7. Suppose ¢>4¢ and b>c?. Then there exists a set of points {(c;;,¢;5):
i=1,2,...,N}CZ(o) such that NS C,|w|35 ! and the following property holds : If
(c1,¢,)eZ(0) and (cy, c,) is not one of the (c;y,c;,) then

[(ux0,) (x,t)| S4C 0~ 1 whenever (x,t)eK((c,,c,, —4€),b,0/4,30%/16).

Proof. Let {(¢;;,c;,)} be an enumeration of all (c;,c,) such that
(cy,cyy —4e)eS;US,US; (see Lemma 5.6). The conclusion follows from the de-
finition of the S; and Lemma 5.4.

6. The Limit as Epsilon Approaches Zero

We choose a sequence ¢, ¢,, ¢, ... of positive numbers converging to zero, and we
let u',u? u?, ... be the corresponding functions u constructed in Sect. 3 (with e=z¢,).
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Using (5.3) (which is valid for every u=u") and passing to a subsequence, we find
u: R* % [0, 00)— R? such that u"—u weakly in L? when the domain is restricted to a
set of the form R3 x [0, T, T< oo. In addition, (5.1) implies

IDu"|3=(1/2) I1wll3, [1Dul3 =(1/2) W] (6.11)

For any fixed 6 >0, a slight variation of the argument in the proof of Lemma 3.3
shows that the functions u"+0; are equicontinuous and uniformly bounded on
compact subsets of R*x [0, 00). From the inequality |(f*0;)— fIl,<C8|Df],
(used for f=u" and f=u) and (6.1) we conclude (using Ascoli’s theorem and
passing to a subsequence) that u" converges to u in L norm when the functions are
restricted to a compact subset of R? x [0, c0). This implies

lim ]? f (@}%0, ) (x, t) (u; 0, ) (x, 1) (D,g;%0, ) (x, 1) dx dt

n>w 0 R3

= [ Julx,0)ulx,t)Dgx,1)dxdt
0 R3

if ge CT(R® x R, R®) and ¢=¢, is used in the definition of #". Now the construction
at the start of Sect. 3, (3.7), and (6.1) imply that u satisfies properties (1), (2) of
Theorem 1.1.

Lemma 6.1. Suppose 6>0 and b>c>. Then there exists a set Y(a,b)CZ(c) (see
Definition 5.5) such that the cardinality of Y(a,b) is at most C,|w|30™ " and the
following property holds: If (c,,c,)e Z(0) and (cy,c,)¢ Y(0,b) then

[u(x,t)| £4C,0~ 1 whenever (x,t)e K((cy,c,,0),b,0/4,30%/16).

Proof. This follows from Lemma 5.7 (which applies to the functions ") and a
subsequence argument.

Now we construct the (possibly empty) singular set S. For ie {1,2, 3, ...} and for
every integer j we define b(i,j)=i"%j/8 and

S()={(x,,x,, 0, )€ R> x R :0<¢ <h(i, 8)}

o ) U Ky ey 00, bGi,j),i™ /4, 3i2/16).

J=9 (e1,¢2)eY(1/i,b(L, j)

Let S= ﬂ S(i). The set S is a closed subset of B(U) x [0, o0) (see Sect. 1). We will
i=1

show that, for any fixed >0, the one-dimensional Hausdorff measure of
SN(R?x {t}) is at most C,[w|?2.

Let 6>0 and choose an integer i large enough so that i~!/2<§ and i~ 2<¢t.
Then

SAR3 x {t}) CSHN(R3 x {t})

cy v K((cy, ¢4, 0),b(G, /), i /4,31 2/16)N(R® x {t}).

J=9 (e1,e2)eX(1/i,b(, j))
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There exists an integer J such that i~ %(J —1)/8 <t <i~2J/8. The above implies that
we can write
SN(R3®x {t})

J+1

c U U K((c,, ¢, 0),b(, /), i~ /4,3i"2/16)n(R? x {t}).

Jj=J (c1,¢2)eY(1/i,b(, j)

Since Y(1/i, b(i, j)) has at most C,||w| 3i elements (see Lemma 6.1) and the diameter
of K(a, b, i~1/4, 3i"2/16)n(R3 x {t}) is at most i~ !/2<6, we conclude that
SN(R? x {t}) can be covered by sets A,,A,,...,Ay where N<2C,|w|3i and
diameter (4,)<i™'/2<4. Since

N
kZ diameter(4,) < (2C,[|w]31) (i7*/2)=C, [ Wil

is valid in such cases, we conclude that the one-dimensional Hausdorff measure of
SA(R? x {t}) is at most C,|w]|2.

Now we prove the last property in the conclusion of Theorem 1.1. Let
(a,b)e B(U) x R™ such that (a, b)¢S. Then there exists i such that (a, b)¢S(i). This
implies (since the third component of a is zero) b > b(i, 8). There exists an integer j
such that b(i,j)—3i~2/16 <b<b(i,j), and we must have j=9. From (5.12) and
ae B(U) we conclude

acinterior of B((c,,c,,0),i"*/4)
for some (c,,¢,)e Z(i™ ). Hence we get
(a,b)e interior of K((c,,c,,0), b(i,j), i~1/4, 3i~/16).

The facts j=9 and (a, b)¢S(i) imply that (c,,c,) is not an element of Y(1/i, b(i,))).
Now Lemma 6.1 tells us that u is bounded on the open set

interior of K((c,,c,,0), b(i,j), i /4, 3i”%/16),

which contains (a, b).
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