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Abstract. A pathology related to an indefinite metric, which has been pointed
out by Ito in connection with construction of a two dimensional quantum field
model at a finite cutoff, is mathematically analyzed in a simple model. It is
found for a model Hamiltonian with a parameter in an indefinite metric inner
product space that eigenvalues with a complete set of eigenvectors changes
suddenly from positive integers to negative integers as a parameter crosses a
critical value (the Hamiltonian being skew selfadjoint with absolutely continu-
ous spectrum on a pure imaginary axis at the critical value of the parameter), if a
fixed (positive definite Hubert space) topology is used in the completion of the
underlying indefinite metric inner product space. However it is also found that
if the topology is varied with the parameter of the Hamiltonian in the manner
similar to analytic continuation, then the Hamiltonian keeps positive integer
eigenvalues with a complete set of eigenvectors.

1. Introduction

It is a great pleasure to dedicate this article to the 60th birthday of Professor Rudolf
Haag. In one of his pioneering works on algebraic approach in quantum field
theory, Haag gave examples of (bilinear) Hamiltonians whose vacuum vectors give
rise to inequivalent representations of canonical commutation relations [1]. In
this article, we use similar examples on an indefinite metric Hubert space to show
some pathological phenomena in such a space and a possible method of
overcoming such a pathology.

Ito [2] tried to apply the original method of constructive field theory to study
the limit of cut-off quantum electrodynamics in one space and one time dimension.
The model is exactly solvable in principle by Bogoliubov transformations. Ito
works on a Fock space with an indefinite metric and studies what can be
considered the vacuum vector for the cut-off Hamiltonian, by applying an
appropriate Bogoliubov transformation (mathematically unbounded operators)
on the free vacuum vector. It turns out that there is a finite value of the cut-off
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parameter beyond which the Bogoliubov transformation can not be defined as a
closable operator whose domain contains the free vacuum vector, and thus
presents a mathematical barrier in obtaining the vacuum vector for Hamiltonians
with the cut-off parameter larger than a certain finite value.

The main aim of this article is to clarify the exact mathematical nature of the
above mentioned difficulty and to suggest a method to circumvent it, in the case of
a simplified model. We show that the Hamiltonian Hθ in our model has positive
integer eigenvalues with a complete set of eigenvectors for values of the parameter
θ below a critical value, negative integer eigenvalues with a complete set of
eigenvectors for values of the same parameter above the critical value, and is skew
self-adjoint with absolutely continuous spectrum on the pure imaginary axis at the
critical value of the parameter. The critical value of the parameter exactly
corresponds to a point where the Bogoliubov transformation diagonalizing the
Hamiltonian can no longer be defined as a closable operator whose domain
contains the free vacuum vector.

The situation just described sounds like denying the possibility of construction
of the model by taking the limit of infinite cut-off because a difficulty may arise
already at a finite cut-off. Actually there is a subtle point related to the idefinite
metric. Originally the one-parameter family of Hamiltonians in our model is
defined on the set Do of all finite linear combinations of vectors for a finite number
of particles in an indefinite metric inner product space. In order to be able to do an
analysis, we introduce a (positive definite) Hubert space topology τ 0 in Do and
consider its completion as a Hubert space. The above mentioned difficulty occurs
in this completed space.

The indefinite metric on Do is supposed to be relevant to physical in-
terpretation of the model but the positive definite metric and the associated
topology τ 0 which we used in defining the completion of Do is not intrinsic to the
problem. In fact we can introduce a one parameter family of (positive definite)
Hubert space metrics τ0 on Do such that Hθ, has positive integer eigenvalues with a
complete set of eigenvectors in the -^-completion of Do if θ' — θ is small and, in
particular, Hθ is selfadjoint and positive there. In fact, all Hθ, in our model are
mutually related by a Bogoliubov transformation, which can be implemented by a
well-defined closable operator (preserving the indefinite metric) on the
τθ-completion of Do if \θ — θ'\ is below a critical value.

This result shows the importance of the choice of the topology for the indefinite
metric inner product space on which we want to define a Hamiltonian: For one
choice of topology, for example τ 0, we can deal with a Hamiltonian Hθ for a
certain range of the parameter θ, but in order to increase the value of the
parameter θ while retaining some positive character of the spectrum oίHθ, we have
to use another topology, say τθί. The new topology allows us to deal with Hθ for
the value of θ in the neighbourhood of θ1. We may continue this way, like an
analytic continuation, and keep the positive point spectrum of Hθ. In fact, for each
θ, there is a topology τθ which makes Hθ positive selfadjoint in the τθ-completion of
the space. Actually, if we insist on the initial domain Do, we can not introduce the
topology τθ for large values of θ. However we introduce another domain Do in the
τθ-completion of Do such that τQ, are well-defined on Do if \θ' — θ\ is not too large. In
this manner we can continue the above process to an arbitrarily large θ and find
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the same spectrum of Hθ as one would by a naive diagonalization by Bogolubov
transformations.

The model used here is a special example and it is not at all clear whether the
same procedure is applicable in a general situation. However it does suggest a new
viewpoint, which might be overlooked otherwise, and it might be useful in some
case as a heuristic method of finding a model with desirable properties in the limit
of no cut-off.

2. Main Results

The complex vector space Do is the set of all finite linear combinations of linearly
independent vectors Ψ(n,m;0) indexed by n = 0,1,2,... and m = 0,1,2,.... An
indefinite inner product is defined on Do such that

Annihilation and creation operators are defined as follows:

a*Ψo(n9rn;0)=Ψo(n + l9m;0),

b*Ψo(n9m;0)=Ψo{n9rn+l;0),

aΨo(n,m;0) = nΨo(n-Um;0) ( = 0 if n = 0),

bΨo(n9m;0)=-mΨo(n9rn-l;0)( = 0 if m = 0).

(2.2)

They satisfy [α,α*] = [b*,6] = l, aΩo = bΩo = 0 for Ωo = Ψo(0,0 0) and
Ψ(n,rn O) = (a*)n(b*)mΩ0. Relative to the indefinite metric, α* and a are adjoint of
each other on Do and the same holds for b* and b.

We define

Hθ = {a*a-bb*)cos2θ + {a*b* + ab)ύn2θ. (2.3)

If we write

(2 4)
bθ = cosθb-smθa*9\

 V ' ;

then, denoting the adjoint on Do by *, we have

Hβ = a$ae-bβbl (2.5)

A positive definite inner product ( , ) 0 on Do is defined by

(2.6)

(2.7)

The completion of Do with respect to the topology τ 0 given by this inner product
will be denoted J*f0. The closure of Hθ in Jf0 is denoted by H°.

Theorem 1. (1) If \θ\<π/4, then there exists a complete set of vectors Ψ0(n,m;θ) in
J^o such that

n,rn;θ). (2.8)
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(2) // |0| = π/4, HQ is skew self-adjoint with absolutely continuous spectrum on
the pure imaginary axis.

(3) // π/4<θ<3π/4, then there exists a complete set of vectors Ψ0(n, m θ) in Jf0

such that

H°θΨo{n,m;θ)=-(n + m + l)Ψo{n,m;θ). (2.9)

Remark ί. Since Hθ + π = Hθ, Theorem 1 covers all real values of θ. Since
Hθ + (π/2)= —Hθ, Theorem 1 (3) follows from Theorem 1 (1).

Remark 2. Let D0(fc) be the set of all finite linear combinations of Ψo(n,m;0) with

n — m = k and let J4?0(k) be its closure in j ^ 0 . Then D o is the direct sum of D0(k) for
00

all integer values of fc, ηD0{k) = D0(k)9 and hence ^0= £ ® Jfo(fe).
k= - o o

Furthermore, each J"fo(fc) is invariant under H$} Ψ0(n,m;θ)eJt?0(k) if and only if
n — m = k (as is shown in Sect. 3) and the restriction of H® to each J^0(k) has simple
eigenvalues at |fc| + 2w + l, n = 0,1,2,..., with a complete set of eigenvectors.

Remark 3. Let v4f0 denote the adjoint of A relative to the positive definite inner
product (2.6). Then ά*°Da* and b t 0 D - b * . Therefore (a±ib*V°(a±ib*)^O
implies

(a*a-bb*)^±i(a*b* + ab)^-(a*a-bb*) (2.10)

as a sesquilinear form on (Do,( , )0). Hence H® is sectorial (|0|<π/4). Since the
residual spectrum oϊ H®, if any, is limited to positive integers due to Theorem 1 (1)>
H°Q is m-sectorial. (Alternatively, we can obtain the same conclusion from a general
theorem that a sectorial operator with a dense set of analytic vectors (Do for H%) is
m-sectorial.) Since Re/?° = H°0 has a compact resolvent, the same holds for H°θ.
(Theorem VI-3.3 [3].) By Theorem 1 (1), the spectrum of H°θ is positive integers for
|0|<π/4. By Remark 1, it is negative integers for π/4<θ<3π/4.

We now consider a one-parameter family of positive definite inner product on
DQ uniquely determined by the following:

(Ψo(nfm;0\Ψo(n\mf;0))θ = (Ψo(n,m;-θlΨo(n\m';-θ))o, (2.11)

where \θ\<π/4. Since the indefinite metric (2.1) can obviously be extended to a
non-degenerate indefinite inner product on jf0 and the vectors Ψ0(n, m — θ) for a
fixed θ are mutually orthogonal and not isotropic relative to the indefinite metric
(as is shown in Sect. 3), Ψ0(n,m; —θ) are linearly independent and hence (2.11) is
positive definite on Do. Let J^θ be the completion of Do with respect to the
topology τθ given by the inner product (2.11) and Hθ

θ, be the closure of Ho, in J^o.

Theorem 2. (1) If \θ—θ'\<π/4, then there exists a complete set of vectors
Ψθ{n, m 0') in J^θ such that

Hθ

θ,Ψθ(n,m;θ/) = (n + m + l)Ψθ(n,m;θ/). (2.12)

(2) // \θ — θ'\ = π/4, H°θr is skew self-adjoint with absolutely continuous spectrum
on the pure imaginary axis.
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(3) // π/4<0' —0<3π/4, then there exists a complete set of vectors Ψθ(n,m;θf)
in J^θ such that

Hθ

θ,Ψθ(n,m;θ') = -(n + m + l)Ψθ(n,m; 0'). (2.13)

Remark 4. Hθ

θ is selfadjoint with positive spectrum.

After introducing τθ for |0| < π/4 on Z)o, we may define Dθ in Jl?θ to be the set of
all finite linear combinations of Ψθ(n,m 0)(= Ψ0(n,m 0) if |0| <π/4). If \φ\ <π/4,
we can introduce a positive definite inner product on Dθ uniquely defined by

(Ψθ(n,m;θ\Ψθ(n\mf;θ))θ + φ = (Ψθ(n,m;θ-φ\Ψθ(n\m';θ-φ))θ, (2.14)

and define jj?θ, for θ' = θ + φ and Hθ

θ',,. As long as |0'|<π/4, Jfθ, and H%, coincide
with the earlier definition. However this extends the definition of ^CB beyond the
restriction |0| <π/4. By continuing this process we can define 3tfQ recursively for all
0. The operator Hθ

0 is then always positive selfadjoint (with a pure point spectrum
at non-negative integers).

Remark 5. If a sequence in Do converges to 0 relative to τOί and is a Cauchy
sequence relative to τθ2, then it converges to 0 relative to τθ2 (Lemma 6). Thus we
can identify a point in jΊfθι and a point in J^θ2 if they are the limit of the same
sequence in Do relative to τθί and τθ2, respectively, and we can speak of

θ/

3. Computations

Lemma 1. h = (ab — a*b*) is essentially selfadjoint in J4?o and vectors in Do are
analytic vectors of h.
Proof a*, a, — b*, b satisfy the ordinary commutation relations for creation and
annihilation operators, with a and b annihilating Ψo(0,0 0). Since h is a symmetric
quadratic expression in α*, a9 —b*, b, it is well known that vectors in Do (i.e.
vectors with a finite number of particles) are analytic vectors for h and h is
essentially selfadjoint by Nelson's theorem.

Lemma 2. For \θ\ < π/4, Ψo(0,0 0) is in the domain of eθϊϊ (h denotes the closure of h)
and

efl*!Po(0,0;0)= Σ (-lYW cosθΓHtonθγΨofap O). (3.1)
p = 0

Proof Let the right hand side be denoted f(θ). Since || Ψo(p,p;0)\\o=p\, the sum is
absolutely convergent, and the convergence is uniform over 0 in any compact
subset of {0 - π/4 < Re0 < π/4}. Hence f(θ) is analytic for - π/4 < Re0 < π/4. The
same type of estimate shows the convergence of the sum even if each term is
multiplied by a polynomial of a, a*, b and b*. Hence f(θ) is in the domajn of h and
a simple computation shows f(θ) = hf(θ). This implies that (e~θhΨ,f(θ)) is
independent of 0 for any entire vector Ψ and hence (e~θhΨ, f(θ)) = (Ψ,f(0)). Hence
f(θ) is in the domain of e~θjϊ and e~θϊif(θ)=f(0). Therefore /(0) = !P0(0,0;0) is in
the domain of eθh and (3.1) holds.
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Lemma 3. For any polynomial P = P(α, b, a*, b*), PΨo(0,0 0) is an analytic vector of
h and, for \θ\<π/4,

P(aθf bθ9 at b£)eθ~hΨ0(0,0 0) = eθ~hP{a, b, a*, b*) Ψo(0,0 0). (3.2)

Proof. Let F{θ) be the left hand side. As stated in the proof of Lemma 2,
ji θ for

(3.3)

eθjiψ0(0,0;0) is in the domain of P(άθ,bθi a*, bf) and F(θ) is holomorphic in θ for
|0|<π/4. Furthermore,

for A = aθ, a$, bθi b$, which implies

F'(θ) = hF{θ). (3.4)

By the same argument as the proof of Lemma 2, F(0) is in the domain of eθJi and
F(θ) = eθhF(0l i.e. (3.2) holds. Since F(θ) is holomorphic for \θ\<π/4, F(0) is an
analytic vector of h.

Proof of Theorem i (1). Let -π/4<θ<π/4 and

Ψo(n,m;θ) = eΘJiΨo(n,m;0). (3.5)

Due to (3.2) and Ψo(n,m;0) = (a*)n(b*)mΨo(0,0;0l we obtain

li n,m;θ). (3.6)

If |0Ί <min(0 + π/4, (π/4)- θ\ then the analyticity of (3.5) for |0| <π/4 (for complex
θ) implies

Ψ0{n,m;θ-θ')= £ {k^~\-θ'h)kΨ0{n,m\θ), (3.7)

where the sum has to converge. By (3.2), we have

( = 0 if n = 0),

(3.8
bθΨ0{n,m;θ)= -mΨ0(n,m- 1 ;0)( = O if m = 0 ) ,

Since /z can be expressed as a second degree polynomial in aθ, af, b0 and i>|, (3.7)
shows that Ψ0(n,m;θ — θf) is in the closure of the linear span of Ψ0(n,m;θ),
H = 05l,..., m = 0,1,.. . . By repeating the argument starting each time with new
Ψ0{n, m θ — θf), we conclude that Ψ0(n, m 0) is in the closure of the linear span of
Ψ0(n,m;θ) and hence the completeness of Ψ0(n,m;θ).

Remark 6. By a standard formal computation, we obtain

eθh _ e~ (tanθ)a*b*e~ (log cosΘ)Hoe(tanθ)ab

oo min(«,m)

Ψ0(n,m;θ)= Σ Σ ( -
p=0 q=0

) . (3.10)

We do not use this formula in this paper.
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Proof of Theorem 1 (2). We introduce the following canonical variables (for which
J^o is equivalent to the Schrδdinger representation).

-b)), (3.H)

-b)). (3.12)

Note that the adjoint b+ relative to ( , ) 0 satisfies b^D —b*. We then have

Hπ/4 = a*b* + ab=-ί(h1-h2), (3.13)

hr2~\x)-p% 7 = 1,2. (3.14)

It is known that each h is selfadjoint and has an absolutely continuous spectrum
on the whole real line.

Lemma 4. For — π/4 < θ < π/4, the following holds.

(Ψ0{n9m;θ),Ψ0(ri,m';θ)y = n\ml{-l)m if n = n\m = m'

= 0 otherwise. (3.15)

Proof Since ηoh= —hη0, (3.5) implies

(d/dθKΨ0(n,m;θ),Ψ0{n\m';θ)> = (Ψ0(w^^

(3.16)

Hence

(Ψo(n,m;θlΨo(n\m';θ)y = (Ψo(nίm;0lΨo(n\m';0)y. (3.17)

Lemma 5. The inner product ( , )θ defined by (2.11) is positive definite on Do. A linear
map Uθ 0 from J^o onto Jfθ satisfying

Uθ>oΨo(n,m;-θ) = Ψo(n,m;0) (3.18)

exists, is unique and is unitary.

Proof The positive definiteness of (, )0 is immediate from the definition. Since
f/o = l, < , > is nondegenerate in Jf0. Lemma 4 shows linear independence of
Ψ0(n,m; —θ). By (2.11), Uθ is isometric on the linear span of Ψ0(n,m; —θ) and its
image is the entire linear span of Ψo(n,m;0). The linear independence of
Ψ0(n,m; —θ) and the positive definiteness of ( , ) 0 then imply the positive
definiteness of ( , )θ on Do. The completeness of Ψ0(m,n; —θ) then implies the
existence, uniqueness and unitarity of Uθί0.

Proof of Theorem 2. Let |0' |<min(0 + π/4, (π/4)-0). By (3.7) and the unitarity of
l/θj0J we have the τθ-convergence and θ'-analyticity of

Uθt0Ψ0(n,m;(-θ)-{-θ'))= Σ (/c!)"1^ 0(θfh)kΨ0(n,m; ~θ)
k=0

= Σ(kl)-ψhβ)
kUθt0Ψ0(n,m;-θ)

= Σ (k\)-1(θ'h)kΨo(n,m;0) = eθ''hΨo(n,
(3.19)
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where hθ denotes aQbQ — a*b^ which is the same as h. We denote this vector by
Ψθ(n,rn;θ'). By the same method as the proof of (3.6), we obtain

Hθ

θ.Ψθ{n9rn;θ') = {n + m + l)Ψθ{n9m9θ'). (3.20)

The completeness of Ψθ(n,m;θ') in J4?θ follows from the completeness of
Ψ0(n,m;θ'-θ) in Jf0 and the unitarity of Uθ>0.

If |0| < π/4, then Ψθ(n, m;θ)=UΘOΨ0(n, m 0) is a complete orthonormal system
and Hθ

θ is positive selfadjoint.
The system of Ψθ(n9rn;θ), aθ + φ, a$+φ, bθ + φ, b$+φ and Hθ

θ + φ in jfθ is unitarily

equivalent to the system of Ψ0(n,m;0), aφ9 a*, bφ, &* and H°φ in 3tf0 through Uθt0.
Thus we immediately see that Hθ

θ + φ has a complete set of eigenvectors
Ψθ(n, m;θ + φ) = UΘf0 Ψ0{n, m; φ) belonging to eigenvalues n + m + l. Furthermore in
exactly the same manner as before we can construct a unitary map Uψ θ through
which the system of Ψψ(n9rn;ψ + φ)9 aψ + φ, α* + φ, bψ + φ, b* + φ, and Hψ

ψ + φ in 3tfψ is

unitarily equivalent to the system with ψ changed to θ. Furthermore
^Ψ,0^Θ,O = ^ψ,o whenever \ψ\ < π/4. Therefore Theorem 2 follows from Theorem 1.

Lemma 6. The indefinite inner product has a unique continuous extension in J^θ. If
ΦneD0 converges to 0 in τθ topology and Φ = limΦn (εJ4?θ>) in τθ, topology, then
Φ = 0.

Proof. Let ηθΨθ(n,m;θ) = (-l)mΨθ(n,m;θ) and

Since Ψθ(n, m θ) is a complete orthonormal basis in j ^ θ and η$ = 1, it defines a non-
degenerate τθ-continuous indefinite inner product in J^θ. Furthermore, the same
proof as Lemma 4 implies that

<ψθ(n,rn θ + φl Ψθ(n'9m
f θ + φ)\ = <Ψe(n9m θ)9 Ψθ(n\m';θ)}θ

By setting φ = — θ, we see that <*F, Φ}θ = (Ψ,Φ} on Do. This proves the first half.
As a result, we obtain (Ψ9Φn}-+0 for all ΨeDo and hence < ιF?Φ>θ = 0 for all
ΨeD0. This implies Φ = 0.
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