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Abstract. A pathology related to an indefinite metric, which has been pointed
out by Ito in connection with construction of a two dimensional quantum field
model at a finite cutoff, is mathematically analyzed in a simple model. It is
found for a model Hamiltonian with a parameter in an indefinite metric inner
product space that eigenvalues with a complete set of eigenvectors changes
suddenly from positive integers to negative integers as a parameter crosses a
critical value (the Hamiltonian being skew selfadjoint with absolutely continu-
ous spectrum on a pure imaginary axis at the critical value of the parameter), if a
fixed (positive definite Hilbert space) topology is used in the completion of the
underlying indefinite metric inner product space. However it is also found that
if the topology is varied with the parameter of the Hamiltonian in the manner
similar to analytic continuation, then the Hamiltonian keeps positive integer
eigenvalues with a complete set of eigenvectors.

1. Introduction

Itis a great pleasure to dedicate this article to the 60" birthday of Professor Rudolf
Haag. In one of his pioneering works on algebraic approach in quantum field
theory, Haag gave examples of (bilinear) Hamiltonians whose vacuum vectors give
rise to inequivalent representations of canonical commutation relations [1]. In
this article, we use similar examples on an indefinite metric Hilbert space to show
some pathological phenomena in such a space and a possible method of
overcoming such a pathology.

Ito [2] tried to apply the original method of constructive field theory to study
the limit of cut-off quantum electrodynamics in one space and one time dimension.
The model is exactly solvable in principle by Bogoliubov transformations. Ito
works on a Fock space with an indefinite metric and studies what can be
congsidered the vacuum vector for the cut-off Hamiltonian, by applying an
appropriate Bogoliubov transformation (mathematically unbounded operators)
on the free vacuum vector. It turns out that there is a finite value of the cut-off
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parameter beyond which the Bogoliubov transformation can not be defined as a
closable operator whose domain contains the free vacuum vector, and thus
presents a mathematical barrier in obtaining the vacuum vector for Hamiltonians
with the cut-off parameter larger than a certain finite value.

The main aim of this article is to clarify the exact mathematical nature of the
above mentioned difficulty and to suggest a method to circumvent it, in the case of
a simplified model. We show that the Hamiltonian H, in our model has positive
integer eigenvalues with a complete set of eigenvectors for values of the parameter
0 below a critical value, negative integer eigenvalues with a complete set of
eigenvectors for values of the same parameter above the critical value, and is skew
self-adjoint with absolutely continuous spectrum on the pure imaginary axis at the
critical value of the parameter. The critical value of the parameter exactly
corresponds to a point where the Bogoliubov transformation diagonalizing the
Hamiltonian can no longer be defined as a closable operator whose domain
contains the free vacuum vector.

The situation just described sounds like denying the possibility of construction
of the model by taking the limit of infinite cut-off because a difficulty may arise
already at a finite cut-off. Actually there is a subtle point related to the idefinite
metric. Originally the one-parameter family of Hamiltonians in our model is
defined on the set D, of all finite linear combinations of vectors for a finite number
of particles in an indefinite metric inner product space. In order to be able to do an
analysis, we introduce a (positive definite) Hilbert space topology 7, in D, and
consider its completion as a Hilbert space. The above mentioned difficulty occurs
in this completed space.

The indefinite metric on D, is supposed to be relevant to physical in-
terpretation of the model but the positive definite metric and the associated
topology 7, which we used in defining the completion of D is not intrinsic to the
problem. In fact we can introduce a one parameter family of (positive definite)
Hilbert space metrics t, on D, such that H,, has positive integer eigenvalues with a
complete set of eigenvectors in the t,-completion of D, if §'—0 is small and, in
particular, H, is selfadjoint and positive there. In fact, all H, in our model are
mutually related by a Bogoliubov transformation, which can be implemented by a
well-defined closable operator (preserving the indefinite metric) on the
to-completion of D, if |0— 0] is below a critical value.

This result shows the importance of the choice of the topology for the indefinite
metric inner product space on which we want to define a Hamiltonian: For one
choice of topology, for example 7, we can deal with a Hamiltonian H, for a
certain range of the parameter 6, but in order to increase the value of the
parameter 6 while retaining some positive character of the spectrum of H,, we have
to use another topology, say 7, . The new topology allows us to deal with H, for
the value of 0 in the neighbourhood of §,. We may continue this way, like an
analytic continuation, and keep the positive point spectrum of H,,. In fact, for each
0, there is a topology t, which makes H, positive selfadjoint in the z,-completion of
the space. Actually, if we insist on the initial domain D, we can not introduce the
topology 7, for large values of . However we introduce another domain D, in the
to-completion of D, such that 7, are well-defined on D, if |0 — 0] is not too large. In
this manner we can continue the above process to an arbitrarily large 6 and find
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the same spectrum of H, as one would by a naive diagonalization by Bogolubov
transformations.

The model used here is a special example and it is not at all clear whether the
same procedure is applicable in a general situation. However it does suggest a new
viewpoint, which might be overlooked otherwise, and it might be useful in some
case as a heuristic method of finding a model with desirable properties in the limit
of no cut-off.

2. Main Results

The complex vector space Dy, is the set of all finite linear combinations of linearly
independent vectors ¥(n,m;0) indexed by n=0,1,2,... and m=0,1,2,.... An
indefinite inner product is defined on D such that

_ e nlml(=1)" if n=n,m=m,
(1,30}, W0 50)) = {0 oo, XY
Annihilation and creation operators are defined as follows:
a*¥o(n,m;0)=¥yn+1,m;0),
b*¥ . (n,m;0)=¥,(n,m+1:0),
ol )=l ) 22)

a¥on,m;0)=n¥y(n—1,m;0) (=0 if n=0),
b¥o(n,m;0)=—m¥,(n,m—1;0)(=0 if m=0).

They satisfy [a,a*]=[b*b]=1, aQ,=bQ,=0 for Q,=¥,0,0;0) and
¥(n,m;0)=(a*)"(b*)"Q,. Relative to the indefinite metric, ¢* and a are adjoint of
each other on D, and the same holds for b* and b.

We define
H,=(a*a—bb*)cos20+(a*b* +ab)sin20. (2.3)
If we write
a9=cos0a+s%n0b*,} (2.4)
by=cosfb—sinfa*,
then, denoting the adjoint on D, by *, we have
H,=afa,—byb}. (2.5)
A positive definite inner product ( , ), on D, is defined by
(D1, D,)o=<P, 1P, (2.6)
HoP o, m;0)=(—1)"¥(n,m;0). 2.7

The completion of D, with respect to the topology 7, given by this inner product
will be denoted #,. The closure of H, in #, is denoted by HY.

Theorem 1. (1) If |0] <7/4, then there exists a complete set of vectors ¥ o(n,m;0) in
Hy such that

HYW o(n,m;0)=(n+m-+1)¥on,m; 0). (2.8)
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(2) If |0|=m/4, HY is skew self-adjoint with absolutely continuous spectrum on
the pure imaginary axis.

(3) If /4 <0<3n/4, then there exists a complete set of vectors ¥ o(n,m;0) in H#,
such that

H7¥ o(n,m;0)= —(n+m+1)¥o(n, m; 0). (2.9

Remark 1. Since H,,,=H, Theorem 1 covers all real values of 0. Since
Hy (zj2y= — Hy, Theorem 1 (3) follows from Theorem 1 (1).

Remark 2. Let Dy(k) be the set of all finite linear combinations of ¥ (n,m;0) with
n—m=k and let #,(k) be its closure in . Then D is the direct sum of D(k) for

all integer values of k, #D,(k)=Dy(k), and hence Hy= ) @ H#yk).

k=—o0
Furthermore, each #,(k) is invariant under HY, ?’O(nim;G)e H#,(k) if and only if
n—m=k (as is shown in Sect. 3) and the restriction of HJ to each #,(k) has simple
eigenvalues at |k|+2n+1,n=0,1,2, ..., with a complete set of eigenvectors.

Remark 3. Let A™ denote the adjoint of A relative to the positive definite inner
product (2.6). Then af®>a* and b'°> —b* Therefore (a+ib*)°(a+ib*)=0
implies

(a*a—bb*) = ti(a*b* +ab)= —(a*a— bb¥) (2.10)

as a sesquilinear form on (D,,( , ),). Hence H is sectorial (/0| <mr/4). Since the
residual spectrum of HY, if any, is limited to positive integers due to Theorem 1 (1),
HY is m-sectorial. (Alternatively, we can obtain the same conclusion from a general
theorem that a sectorial operator with a dense set of analytic vectors (D, for HY) is
m-sectorial.) Since Re HJ=HY has a compact resolvent, the same holds for Hj.
(Theorem VI-3.3 [3].) By Theorem 1 (1), the spectrum of H{ is positive integers for
|0] <m/4. By Remark 1, it is negative integers for n/4 <6 <3n/4.

We now consider a one-parameter family of positive definite inner product on
D, uniquely determined by the following:

(Wo(n,m;0), ¥o(n',m';0)y=(¥o(n,m; —0), ¥o(n',m'; —0)),, (2.11)

where |0] <n/4. Since the indefinite metric (2.1) can obviously be extended to a
non-degenerate indefinite inner product on J#, and the vectors ¥,(n,m; —0) for a
fixed 0 are mutually orthogonal and not isotropic relative to the indefinite metric
(as is shown in Sect. 3), ¥ (n,m; — 0) are linearly independent and hence (2.11) is
positive definite on D,. Let #, be the completion of D, with respect to the
topology 1, given by the inner product (2.11) and HY be the closure of H,, in 7,

Theorem 2. (1) If |0—0'|<n/4, then there exists a complete set of vectors
VYo(n,m;0) in H#, such that

Ho W (n,m;0)=n+m+1)¥Pyn,m;0). (2.12)

() If |0—0|=n/4, HY is skew self-adjoint with absolutely continuous spectrum
on the pure imaginary axis.
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() If n/4<0 —0<3m/4, then there exists a complete set of vectors ¥ o(n,m;0")
in A, such that

AW (n,m;0)= —(n+m+1)®,(n, m; 0) . (2.13)

Remark 4. HY is selfadjoint with positive spectrum.

After introducing 7, for |8| <n/4 on D,, we may define D, in 4%, to be the set of
all finite linear combinations of ¥,(n,m;0)(=Y¥,(n,m;0) if |6| <n/4). If |p| < /4,
we can introduce a positive definite inner product on D, uniquely defined by

(Woln,m;0), Wy(n',m';0))gs = (Py(n,m;0— @), ¥o(n',m' ;60— )y, (2.14)

and define 5, for ' =0+ ¢ and HY.. As long as |0|<n/4, #, and HY, coincide
with the earlier definition. However this extends the definition of #; beyond the
restriction |6| <n/4. By continuing this process we can define J#, recursively for all
0. The operator HY is then always positive selfadjoint (with a pure point spectrum
at non-negative integers).

Remark 5. If a sequence in D, converges to 0 relative to 7, and is a Cauchy
sequence relative to 74, then it converges to O relative to 7, (Lemma 6). Thus we
can identify a point in 7, and a point in %, if they are the limit of the same
sequence in D, relative to 7, and t,, respectively, and we can speak of
Aoy, o (16, 10, <7/4).

3. Computations ~

Lemma 1. h=(ab—a*b*) is essentially selfadjoint in H#;, and vectors in D, are
analytic vectors of h.

Proof. a*, a, —b*, b satisfy the ordinary commutation relations for creation and
annihilation operators, with a and b annihilating ¥,(0,0;0). Since h is a symmetric
quadratic expression in a*, a, —b*, b, it is well known that vectors in D, (i.e.
vectors with a finite number of particles) are analytic vectors for h and h is
essentially selfadjoint by Nelson’s theorem.

Lemma 2. For |0] <n/4, ¥,(0,0;0) is in the domain of " (i denotes the closure of h)
and

P (0,0;0)= i (= 1)?(p! cosB)~ (tanO)"¥,(p, p;0). (3.1)
p=0

Proof. Let the right hand side be denoted f(6). Since | ¥,(p,p;0)||, =p!, the sum is
absolutely convergent, and the convergence is uniform over 6 in any compact
subset of {f; — n/4 <Ref<n/4}. Hence f(0) is analytic for — /4 <Ref <n/4. The
same type of estimate shows the convergence of the sum even if each term is
multiplied by a polynomial of a, a*, b and b*. Hence f(6) is in the domain of 7 and
a simple computation shows f'(6)=hf(f). This implies that (e~ ¥, f(6)) is
independent of 0 for any entire vector ¥ and hence (e” ", £(0))=(P, f(0)). Hence
£(0) is in the domain of e % and e~ f(0) = £(0). Therefore f(0)=¥,(0,0;0) is in
the domain of e” and (3.1) holds.
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Lemma 3. For any polynomial P = P(a, b, a*,b*), P¥,(0,0;0) is an analytic vector of
h and, for |0]<m/4,
P(@y, by, @5, )€™ ¥ (0, 050) =" P(a, b, a*, b¥) ¥(0,0;0). (3.2)
Proof. Let F(6) be the left hand side. As stated in the proof of Lemma 2,
™ (0,0;0) is in the domain of P(dy, b,, aj, by) and F(6) is holomorphic in 6 for
|0l <m/4. Furthermore,
[A,h]=—(d/dO)A (3.3)
for A=ay, af, by, bj, which implies
F'(0)=hF(6). (3.4)
By the same argument as the proof of Lemma 2, F(0) is in the domain of ¢ and

F(0)=¢"F(0), i.e. (3.2) holds. Since F(0) is holomorphic for || <z/4, F(0) is an
analytic vector of /.

Proof of Theorem I (1). Let —n/4<6<n/4 and

W (n,m;0) =" (n,m;0). (3.5
Due to (3.2) and ¥ (n,m;0)=(a*)"(b*)"¥,(0,0;0), we obtain
HYW o(n,m;0)=e"H W o (n,m;0) = (n+m+1)¥o(n, m; 0). (3.6)

If |0'| <min(0 + /4, (n/4) — 6), then the analyticity of (3.5) for |0) < /4 (for complex
) implies

Wom:0—0)= 3 (k)= R, (n,m:0), (3.7)

where the sum has to converge. By (3.2), we have
agVon,m;)=n¥,(n—1,m;0) (=0 if n=0),
ag ¥ o(n,m;0)="o(n+1,m;0),
be¥o(n,m;0)= —m¥y(n,m—1;0)(=0 if m=0),
bW o(nm;0)=¥y(n,m+1;0).

Since i can be expressed as a second degree polynomial in a,, ag, b, and b, (3.7)
shows that ¥ (n,m;0—¢) is in the closure of the linear span of ¥,(n,m;0),
n=0,1,..., m=0,1,.... By repeating the argument starting each time with new
¥, (n,m;0—@), we conclude that ¥,(n,m;0) is in the closure of the linear span of
Y o(n,m;0) and hence the completeness of ¥ (n,m;0).

(3.8)

Remark 6. By a standard formal computation, we obtain

eGh —e” (tanﬂ)a*b*e — (logcos®) Hoe(tan 0)ab , (3 9)

© min(n,m)

¥o(n,m;0)= ;O ZO (—1°[q'(n—q)'(m—g)!p1~"

-n!m!(tanf)P*YcosO)~ " M2 VY (n—g+p,m—q+p,0).  (3.10)

We do not use this formula in this paper.
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Proof of Theorem 1 (2). We introduce the following canonical variables (for which
M, is equivalent to the Schrodinger representation).

x,=2"Ya+a*+ilb+b*),p, =2"i(a*— a)— (b*— b)), (3.11)
x,=2"Ya+a*—ib+b*),p,=2"(i(a*—a)+(b*—b)). (3.12)

Note that the adjoint b™ relative to ( , ), satisfies b*> —b*. We then have
H, ,=a*b*+ab=—i(h,—h,), (3.13)
h=2""xj—p}). j=12. (3.14)

It is known that each h; is selfadjoint and has an absolutely continuous spectrum
on the whole real line.

Lemma 4. For —n/4<0<m/4, the following holds.
(Wonm;0), P (m,m';0)y=n!m!(—1)" if n=n,m=m
=0 otherwise . (3.15)
Proof. Since n,h= — hn,, (3.5) implies

(d/d0) P o(n,m;0), Po(n',m';0)> =(¥,(n,m;0), (l_zno + 7701_1-) Yo', m';0),=0.
(3.16)

Hence
<lIJO(n> m7 9)9 lII()(nI’ ml 7 9)> = <T0(n5 m 7 O)a IIIO(;1" ml ’0)> . (317)

Lemma 5. The inner product ( , ), defined by (2.11) is positive definite on D,. A linear
map U, from #, onto Ay satisfying

Ug,o¥o(n,m; —0)=",(n,m;0) (3.18)
exists, is unique and is unitary.

Proof. The positive definiteness of ( , ), is immediate from the definition. Since
né¢=1, <, ) is nondegenerate in #, Lemma4 shows linear independence of
¥,(n,m; —0). By (2.11), U, is isometric on the linear span of ¥,(n,m; —0) and its
image is the entire linear span of ¥,(n,m;0). The linear independence of
¥Y,(n,m; —0) and the positive definiteness of (,), then imply the positive
definiteness of (, ), on D,. The completeness of ¥ (m,n; —0) then implies the
existence, uniqueness and unitarity of Uy ,.

Proof of Theorem 2. Let |0'| <min (0 + /4, (n/4)— 6). By (3.7) and the unitarity of
Uy, o, We have the t,-convergence and ¢'-analyticity of

M8

UpoPolnm:(—0)—(—8)= Y (k)" U, (0B} ¥y (n,m; —6)

e
1
(=}

DMs T8

(k)10 Ry Uy o o, m; — 0)

(k)™ YO hY P y(n,m;0)= Ty (n,m;0),
0
(3.19)

=
Il
o
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where h, denotes azb,— afbjf which is the same as h. We denote this vector by
Y,(n,m;0). By the same method as the proof of (3.6), we obtain

H W (n,m;0)=n+m+1)¥P,n,m;0). (3.20)

The completeness of Wy(n,m;0) in #, follows from the completeness of

¥o(n,m;0'—0) in #, and the unitarity of U, .

If |8] < /4, then 'P,,(n m;0)=U, ,¥y(n,m;0)is a complete orthonormal system
and HY is positive selfadjoint.

The system of ¥o(n,m;0), ag, 5 a5+ b9+¢, b+, and H0+tp in £, is unitarily
equivalent to the system of ¥ (n,m; 0) a,, a¥, b,, b¥ and Hy in J#, through U, .
Thus we immediately see that HY +p has a complete set of eigenvectors
Wy, m; 0+ @)= U, o Poln, m; @) belonglng to eigenvalues n+m+1. Furthermore in
exactly the same manner as before we can construct a unitary map U, , through
which the system of ¥, (n,m; v+ ), a,4p a5+ 4 by by and H:ﬁw in %, is
unitarily equivalent to the system with @ changed to 6. F urthermore
U,.sUgo=U, , whenever |p| <n/4. Therefore Theorem 2 follows from Theorem 1.

Lemma 6. The indefinite inner product has a unique continuous extension in ;. If
®,eD, converges to 0 in t, topology and ®=1im®, (€ #,) in 1, topology, then
& =0.
Proof. Let n,¥y(n,m;0)=(—1)"¥y(n,m;0) and

Y, D =(,1yP)y.
Since ¥ ,(n, m;0) is a complete orthonormal basis in #, and nj = 1, it defines a non-

degenerate t,-continuous indefinite inner product in 5. Furthermore, the same
proof as Lemma 4 implies that

<ql9(n> m 7 9 + (p)9 We(nly m, 9 0 + §0)>9 = < q]e(n’ m 9 0)9 'pe(n,, nl/ 5 9)>0
={¥o(n,m;0), ¥o(n',m’;0)).
By setting ¢ = — 6, we see that (¥, ®),=<(¥,®P) on D,. This proves the first half.

As a result, we obtain {¥,®,>—0 for all YeD, and hence (¥, P),=0 for all
¥eD,. This implies ¢=0.
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