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Abstract. We extent the prodistribution definition of path integrals to include
Lagrangians with velocity-dependent potentials. We use Cameron-Martin
transformations to evaluate a large part of a path integral exactly and give
techniques for evaluating the remaining terms of the semi-classical expansion
of the path integral. The Fredholm determinants, associated with these
transformations, are evaluated explicitly in terms of Jacobi matrices defined by
the classical system.

Introduction

We develop a method for computing the semi-classical expansion of path integrals
for systems having velocity-dependent potentials. Our starting point is the
definition of path integrals in terms of prodistributions that was introduced by
DeWitt-Morette [1-3]. We extend her methods to include velocity-dependent
potentials.

In the semi-classical expansion, the terms in the path integral for a wave
function are expanded in a Taylor series around an appropriate classical path. The
terms involving the second variation of the action can be combined with the
Wiener prodistribution, that defines the path integral, to give a new Gaussian
prodistribution that is adapted to integrating the higher order terms of the semi-
classical expansion. The use of the new Gaussian prodistribution - or equivalently,
the expansion around a classical trajectory instead of a straight line - has the
advantage that a larger part of the path integral is evaluated exactly and hence the
semi-classical expansion seems to converge faster than the Born expansion. The
semi-classical expansion also brings out the connection between the quantum
wave function and the family of classical trajectories.

The basic theory of Gaussian prodistributions and their semi-classical expan-
sion is presented in [4]. We extend the results presented there to systems having
velocity-dependent potentials. This paper is self-contained however, many of the
results that are derived in [4] are stated here without proof.
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1. Classical Mechanics

Electrodynamics is the classical example of a system that contains a velocity-
dependent potential. Because the potential is linear in the velocity, the quanti-
zation of the system using path integrals is straightforward. We define these path
integrals in terms of projective systems of distributions introduced by DeWitt-
Morette. This definition lends itself immediately to the semi-classical expansion of
the quantum propagator K, in which K can be computed to any desired order of h
in terms of ordinary integrals on Rn. The Green's functions of the classical small
disturbance operator will determine the prodistributions that are used in comput-
ing K. For this reason we first give a discussion of the Jacobi fields of the classical
system and discuss some of their properties that will be important for computing
and interpreting the path integrals.

A non-relativistic particle in an external electromagnetic field can be described
by the Lagrangian

L(q,q,t)=™q2 + eA'q-eV (1)

(we take units such that c=l). The action of the path q (defined for the time
interval T=\ta,tζ\) is

Slq]=\L{q{t\q{t\t)dt.
T

In order to compute the first and second variations of S, consider a one-parameter
family of paths, q(u, t). For each w, q(u9 ) is a path. In flat space in Cartesian
coordinates, for example, a convenient family is

where Q is the classical path and x is a vector field along Q, representing the
departure of q from Q. In general, if

_ dq

then the first variation of S is a linear function(al) of the field x:

and the second variation is a bi-linear function of x:

S"(x,x)=4

If a two parameter family q(u, v t) is considered, then S" can be defined more
generally as

δudv,
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where x is as before and

y dυ'

S" is then a symmetric, bi-linear form on the space of vector fields (with square
integrable derivatives) along the path Q = q( , u = 0, υ = 0). In general, we take Q to
be a classical path.

For the Lagrangian given by (1)

dA

(We use juxtaposition with a dot to indicate contraction. Thus, for example, x-VA
'q~xaVaAβq

β. In terms such as q-x, a factor of g is often left out: qagaβx
β.) The

boundary terms arise from integrations by parts performed to eliminate the x
terms. They are often neglected, but in fact will be important in the definition of
the prodistributions used later. Use has also been made of the fact that

dA{ dA . Γ7Λ

S' can be written in terms of the magnetic field tensor F. Let

(FΛ)aβ = VpAa9

and define F by

F=VA-VA.
Then

dA \
-e- eVVjdt. (2)

The classical path Q is then given by S'[Q~] (x) = 0, for all x such that x(ta) = x(tb) — 0
and satisfies the Euler-Lagrange equations

dA
-mg'Q + eF'Q-e-—-eVV=0. (3)

The second variation of S is

y) = mx y\\h

a + ex-VA> y\?a (4)

tb I ——- d
y-ex'—-VA-y-e

ut

where all functions are to be evaluated along the classical path Q. The integral can
be written

mjx'{/t-y)dt
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where βt is the Jacobi operator:

e^-~VΛ-e-VVV. (5)

mot m
The operator S"[Q] is a symmetric, bi-linear form on the space of vector fields

along Q i.e.

S"(x,y) = S"(y,x)
and

This property of S" will be important for defining a generalized Gaussian
prodistribution that "incorporates" the quadratic terms in the semi-classical
expansion of the Lagrangian.

The covariance of the new Gaussian prodistribution will be an elementary
kernel of the Jacobi operator. It can be constructed from the Jacobi matrices of βv

Further, these Jacobi matrices will appear as weight factors in the path integrals
for the propagator and for a general wave function. These weight factors can be
interpreted in terms of families of classical paths. For these reasons we discuss
some of the properties of these Jacobi fields.

Let Q be a classical path. A vector field h along Q is a Jacobi field if fth(t) — 0. If
h is such that h(ta) = O, then it can be written in terms of a two point tensor - a
Jacobi matrix - J as

where J is defined by

ta,ta) = g-\ta). (6)

Similarly any Jacobi field k along Q with k(ta) = 0 can be written in terms of Jacobi
matrix K as

where K is defined by

ta,ta) = 0. (7)

Any Jacobi field can be written in terms of J and K. For later work, it is
convenient to define a third Jacobi matrix K, which is linear combination of J and
K:

g%)(a>g-Hta). (8)
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(This Jacobi matrix should not be confused with the propagator, also denoted by
K)

If N is the inverse of K defined by

K(ί,ίfl)ΛΓ(ίβ,t)=l,

then the skew tensor

ωβ j ί(t)Ξ0α μ(ί)^(ί, ta)Nδβ(ta, ή~gβμ(t)Kμ% tJNJt^ t) (9)

represents the vorticity, or rate of rotation, of a family of classical paths whose
initial orientation (at ta) are determined by the boundary conditions on K (see [5,
p. 83]). For the particular K defined here,

ωΛβ(t)=—Faβ(Q(t)). (10)

(We prove this result in the appendix.) This equation relates the spiraling of a
family of classical paths directly to the magnetic field.

Another interesting function of K is its determinant σ:

σ(ή= dQtKaβ(t,ta).

It represents the ratio of the infinitesimal volume V swept out by a tube of classical
paths at t to the volume at ta:

Fig. 1.

Alternately, if the classical flow is looked at as a map of the configuration space
onto itself (for each t) then K will be the derivative of this transformation and σ
will be the Jacobian of the transformation.

The Green's function G+ of ft with boundary conditions

t = ta,s)=-eg-\ta)'(VA)(ta)'G(ta,s) (11)

[these boundary conditions will guarantee that G is symmetric:

G;(t,S) = G+(s,ί)]

satisfying

can be written in terms of J, K, and N as

G + {t,s) = θ[t- s) K(r, ta) • N(ta, tb) • J(tb, s) - θ(s -1) J(ί, tb) N(tb, ta) • K(ta, s), (12)
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where Kaβ(t,s)~Kβa(s,t). This G+ will be used in defining the prodistribution for
the semi-classical expansion for the wave function of the quantum system defined
by the Lagrangian of Eq. (1). The fact that G+ can be written explicitly in terms of
the step function and products of Jacobi matrices is very useful for simplifying
certain path integrals.

These results can be expressed conveniently in terms of Poisson brackets. If the
/ dL\

classical path q is given in terms of q(t ) and p(t ) where p = —- then
\ Hi

dq^dq^_ dq\t) dqβ(s)
m W ' < ¥ ( 0 mdq\ta)dVy(tay

Similarly, q can be defined in terms of q(tb) and p(tb). Then J is given by the same
expression with ta replaced by tb. K can likewise be written in terms of Poisson
brackets. For q = q(t,q(ta),p(tj)

a ( s ) Λ )

~ < W < W [S> dPμ(ta)dq»{ta)
g (S)-

Again, if q is given in terms of q(tb) and p(tb\ then K will be given by the same
expression with ta replaced by tb.

The inverses M and N of J and K take a particularly convenient form. For
example, if q = q(t, q(ta\ p(ta)\ then

-^"-" m dcftt)

and

The proofs of these results and a discussion of their consequences are given in
[6].

2. The Path Integral and its Semi-Classical Expansion

In the Schrodinger description of quantum mechanics, a classical system with a
Hamiltonian H is quantized by defining a wave function ψ as a solution to the
Schrodinger equation (formed from H) with a particular set of boundary
conditions. In the path integral description, a wave function ψ(b, th) is defined in
terms of its value φ(a) at some initial time and a path integral that involves the
classical Lagrangian. We define ψ by the generalized Feynman-Kac formula:

ψ(b,tb)= ί dwΐ(x)expfeί(^(ί),ή(0,ί)-Lo)dί)φ(b + ̂ (ία)). (13)
\n I
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HereX + is the space of all continuous paths, parametrized by the time interval
T = [ ί Λ , ί J , that end at the origin (of the configuration space Rn) at tb. L is the
Lagrangίan of the system to be quantized. In terms of the integration variable x, L
is to be evaluated at

q(t) = b + μx{t),

where μ = j/ft/m. L o is the free particle part of L:

The path integral is defined in terms of the Wiener prodistribution
Our path integral can be related to the one defined by Feynman in the

following way. First, since we choose as the domain of integration the space X + of
paths that end at zero, it is necessary to shift all arguments by an amount b. The
Wiener prodistribution can be thought of as representing the exponential of the
free particle part of the Lagrangian plus the "measure" <3(x):

We choose the correspondence of dw+(x) to be for the kinetic energy of a system
with "mass" h/m. In order to recover the general case, it is necessary to scale the
integration variable by ]/h/m9 hence the appearance of the factor μ. It must be
emphasized that this correspondence is strictly formal; it is offered here only to
make the Feynman-Kac formula plausible. We take it as a definition of ψ. The
actual relationship between the prodistribution path integral and Feynman's is
discussed below. (The Feynman-Kac formula has been derived from first
principles for the case of velocity-independent potentials [4, Sect. 2.3].) Here ψ,
defined by the generalized Feynman-Kac formula, satisfies the expected
Schrόdinger equation.

If L corresponds to a system with a velocity dependent potential q-A, then the
path integral will contain the expression

\xΆάt.
T

This is a purely formal expression. The reason is that as we have defined the path
integral, x is a stochastic variable and it does not have a derivative x at any point
(for almost all x). For this reason, we define any expression involving x in this way
as

\dx{t) A.
T

The differential dx(t) is a stochastic differential. Giving meaning to expressions
involving dx is the subject of stochastic calculus.

In order to compute the path integral (13) we will expand all functions around
a suitable classical path Q. This will correspond to a Taylor expansion in μ. Using

h = mμ2,
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the expansion will have terms beginning at order μ~2. The terms of this order will
be independent of x and can be taken out of the integral. The terms of order μ~1

will cancel as a consequence of Q satisfying the Euler-Lagrange equations. The
terms of order μ° will be quadratic in x and can be combined with dw"l(x) to give a
new Gaussian prodistribution dw+(x). The remaining terms can be combined in
groups of the same power of μ and can be explicitly integrated using dw + (x).
Stopping with the μ° terms constitutes the WKB approximation. The calculation
of the higher order terms constitutes the semi-classical expansion.

In order that the path integral can be represented by a semi-classical
expansion, it is necessary to choose a particular classical path about which to
expand. There are several cases in which there is a natural classical path Q. First, if
φ is a (5-function, say δ(q(ta) — a), then ψ will be the propagator K(b, th\ α, ta) and Q
will be the classical path between a at ta and b at tb. (We will assume for the present
that Q is unique. When it is not, the analysis presented here can be immediately
generalized, using the techniques presented in [4, p. 313].) Second, iϊφ is defined in
terms of some momentum p, as for example in an initial plane wave state, there Q
will be the classical path which has momentum equal to p at ta and which passes
through b at tb. We will consider the first case in detail here and afterwards will
present the results for the case when φ is a generalized plane wave.

The propagator K is then given by

K(bjb;a,ta)= J dw
x+

δ(b + μx(ta)-a). (14)

Let now Q be the classical path passing through a at ta and through b at tb:

dt

The steps in the semi-classical expansion are essentially the same as those
described on in Sect. 3.4 of [4], We outline the procedure here and present the
results. First the integration variable is changed from x to y, where y represents the
departure of an arbitrary path q from the classical path. Thus

Under this change of variables, the Wiener prodistribution dw+(x) is mapped into
the Wiener prodistribution of y with a phase factor:

dww

+ (x) = dwi(y) exp (~ J -2 Q2(t)dt + i J - Q(ή• dx(ή).

The stochastic integral can be simplified by an integration by parts. Then dw+ is

J j Q 2 d t - -Q xiO- γ\Qd
z μ μ
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The terms in the exponent in the path integral for K (14) are now functions of
Q + μy, and can be expanded in powers of μ, i.e. they can be expanded in a Taylor
series about the classical path. The expansion for A needs to be done carefully,
since it involves stochastic integrals. The result is

K{b9 tb a, ta) = exp ft S(B9 A)) J dww

+ (y) exp ft J H(y9 dy, Q)

S is the classical action along Q from (b, tb) to (α, ta):

S(B9A)= U--Q2 + eA Q-eV)dt.
ta V^ /

It comes from the terms in the path integral that are not functions of y. H
represents the terms linear and quadratic in y that come from the measure change
and from the Taylor expansion:

\(yFdy + yVFl2 ydt-y' —
2rnτ\ ot

where use has been made of the fact that - = — I . The — term is zero since Q
\ h μm) μ
satisfies the Euler-Lagrange equations and

J dW™(y)eFMt°»S(y{ta)) = e° = l.

[For the more general initial wave function discussed below, the 1/μ terms will
again cancel. The quadratic boundary term will not be zero. We choose, therefore,
to retain the (y VA y) (ta) term here in order to make the generalization from the
^-function more direct.]

The Ω term contains all the terms cubic and higher in the Taylor expansions of
A - q and of V. Note that each term in Ω is at most linear in dy, so that the
expression makes sense that is, there are no terms that contain j dydy or, even
worse, J y3dt. The propagator is then

ί d"

• exp (i j Ω(y, dy, β, & dt)\ δ(μy(ta)). (15)
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Notice that if dy(t) is formally written as y(t)dt, then the quadratic term is
essentially S"(y, y\ aside from a y term:

1 y(t)' (ft' y{ή) dt- j ( - y(t) ίζ2 y(ή dt).
Γ T

This suggests that the quadratic exponential can be combined with the Wiener
measure to give a "larger" Gaussian measure.

3. The Cameron-Martin Transformation (see [4] and [7])

We now describe how the quadratic part of the semi-classical expansion is
combined with the Wiener prodistribution to give a larger Gaussian pro-
distribution, which can then be used to integrate the terms in a power expansion of
the remaining terms in the semi-classical expansion. The advantage of this
procedure is that all of the information about the classical system is incorporated
into the measure and the quantum corrections come then in the natural powers of
h. This corresponds to doing an expansion around the classical system rather than
around the free system. In general, such expansions converge faster at any rate
they offer the conceptual advantage of showing how the quantum effects can be
sewn onto the classical framework.

In order to motivate the use of Fourier transforms to describe Gaussian
prodistributions in the infinite-dimensional path spaces, we mention a few
properties, familiar from the finite dimensional case. A normalized Gaussian
measure can be written in terms of some square matrix A as

dy(x) = dx1..Jxn\άetA\112Qxpί~xΆ x .

Its Fourier transform takes the much simpler form

i χ

2

where A'x is the inverse of A. Notice that $Fy does not contain the volume factor
dxι...dxn or the normalization factor |yl|1/2. This fact makes J^y the natural object
to use in extending Gaussian measures to infinite-dimensional spaces. Also, even
in the finite-dimensional case, the fact that SFy does not contain the volume factor
makes its transformation under coordinate transformations much simpler to study

than that of y. Next, if dy is multiplied by a Gaussian factor e2 , the
combination can be written as a new Gaussian measure dy:

(16)

where the covariance of y will be just A + B. However, if y is taken to be a
normalized measure, the connection in (16) will not be equality, only pro-
portionality, since the normalization factor in dy is just \A\112 and not \A + B\112.
Thus

ί ^ \ =Ddy{x). (17)
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where D is some determinant, determined by A and B. This is the result that we
want to use in the semi-classical expansion.

The Wiener prodistribution dw+(x) is like Feynman's

In order to keep the analogy with the finite-dimensional case clear, we can extend
the summation convention to include integration over repeated time variables.
Then

dw+(x) ~ ^ x exp - x x .

The fact that x, instead of x, appears is a little troubling. The appearance of the
finite-dimensional case can be recovered if we perform an integration by parts:

dw+(x) ~ 9x exp ί ̂  (x / x + x(0) x(0))).

Now instead of the matrix A multiplying x, we have the operator

on x. The boundary terms assure that the exponent is symmetric. The Fourier
transform of w + will be just the exponential of the inverse of β, The inverse of an
operator is a Green's function G. Again we choose the boundary conditions on G
so that it is symmetric.

In the semi-classical expandion dw + is multiplied by the exponential of a
quadratic expression. These two can be combined to give a new prodistribution
dw+. There will in general be a normalization factor D that appears. In particular,
we have

where H is the operator

m\ dt

(and the dots represent not only index summation but also integration). Now, H
plus β from dw+ is just the Jacobi operator β for a particle in an electromagnetic
field [given by (5)]. Thus, the covariance G o(w+ is just the Green's function given
by (11) or (12). As noted, the boundary conditions assume that G is symmetric.
Thus we can write

(^( ('fr-^vΛ^ (18)

where w+ is the Gaussian prodistribution defined by the covariance G. This is the
result we wanted.
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At this point, one might worry that since the factor D is an infinite-dimensional
determinant, it might well be infinite. However we have shown in [8] that not only
is D finite, but it can be written as the finite-dimensional determinant of a Jacobi
field:

OΓ 1 / 2 , (19)

where K is the Jacobi matrix defined by (8).
To compute the higher order terms in the semi-classical expansion, one

expands the factor eiίΩ in a power series. (The expression Ω is itself a power series
in h) Terms of the same order in h are combined and evaluated using the
prodistribution dw+. A complete discussion of the semi-classical expansion along
with many examples of the explicit evaluation of path integrals can be found in
[4].

We note here that a derivative term in an integral, such as

can be defined by

$ ^ i t . (20)

This formal result can be justified by using the symmetry properties of the original
Wiener prodistribution coupled with those of the Cameron-Martin transfor-
mation that is associated with the change of prodistributions dww-+dw+.

4. The Path Integral for a Wave Function with a "Momentum" Initial Value

The propagator K lends itself to a semi-classical expansion because in general
there will be a well-defined classical path between the two endpoints. Another path
integral that has a natural semi-classical expansion is the Feynman-Kac formula
when the initial wave function is a generalized momentum state.

If at some time ta a function So is given on the configuration space M, then its
gradient VS0 will define a vector field. This vector field will define at each point a
classical trajector (passing through the point at ta with velocity VS0). For each time
after ία, this family of trajectories will define a map of M into itself. For how long
this map remains surjective depends on the geometry of M, on the strength and
nature of the potentials defining the classical system, and on how "flat" the
equipotential surfaces of So are (or equivalently, how "parallel" the initial velocity
vectors VS0 are).

For an initial wave function φ defined in terms of So by

) = T(x)eiSQ{x)lh

(where the only h dependence is that explicitly shown) there will be a natural semi-
classical expansion for the wave function ψ(b, tb) at a later time tb. For the case of a
particle in an external electromagnetic field (on Rn) the Feynman-Kac formula for
ψ is

ψ(b,tb)= j dWl(x)exp(j](eA{q(t))-q(t)-eV(q(ή))dt)φ(q(ta)), (21)
X+ \nta I
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where q is to be written in terms of x as

q(t) = b + μx{t).

For a short enough time after ta, the path integral can be expanded around the
classical path Q defined by

Q(ta)=~VS0(a).

The point a = Q(ta) is defined to be that point through which the classical path Q

passes at ta having velocity — VS0{a) and passing through b at tb. We assume that

such a point a exists and that it is unique. For the semi-classical expansion, the
integral in the exponential, T, and So are expanded around Q. Terms up to μ°
(quadratic in the path integral variable) will define the WKB approximation and
the enlarged Gaussian prodistribution with respect to which the remaining terms
in the semi-classical expansion can be integrated. The result is that

ψ(bjb) = \detK(tbJa)Γ1/2 j dw + (y)exp(iΩ(Q9y9dy9t9μ))

2 2

T(a) + μyVT(a) + ^~- V2 T(a) +

where K is a Jacobi matrix, similar to the one defined in the previous section,
except that its boundary conditions are

t = ta, ta) = eΓ(ti (Vμ Pv50(α) - e VvAμ(aW%)

and dw+ has as its covariance

G+(t, s) = θ(s- t)K(t,ta)N(ta, tb)J(tb, s) - θ(t - s)J{t, tb)N(tb, ta)K(ta, s).

(J is defined the same as before.) G+ is an elementary kernel of the Jacobi operator
with the boundary conditions

VtG^{ΐa,5) = < Γ ( g ( I VxVβS0(a)- ^ VβAx(a)) GβΛta,s).

The presence of |detK|~ 1 / 2 in the solution for ψ shows the strong dependence
of the WKB approximation on the behavior of classical paths. If the paths are
diverging

Fig. 2
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from a, then the effect of a second-order neighborhood of classical paths around a
are spread out. Their effect at b is lessened. This is shown by deti£> 1. Since detK
represents the relative volumes of the paths at b compared to a, it is greater than
one. However ψ contains |deti£|~ 1 / 2. As the paths spread out, the influence from a
is weakened. Similarly, if the paths converge, |detX |<l , and |de tX |~ 1 / 2 >l . The
effects of the paths from a is concentrated at b.

If the paths actually cross, a and b are conjugate, |detK|~ 1 / 2 = oo, and the
WKB approximation is no longer valid. It might appear that the whole semi-
classical expansion breaks down at conjugate points. However, a careful analysis
[4, p. 313] shows that as long as the path Q can be defined, a calculation of the
higher order terms in the semi-classical expansion show it to be valid on and
beyond conjugate points.

It is worth noting that a change of gauge A—>A = A + Vφ does not affect the
Euler-Lagrange or Jacobi equations but does change the boundary conditons on
K, and more importantly, on Q itself. Thus in the Feynman-Kac formula (21) it is
obvious that a gauge transformation introduces only a phase factor. However,
once the semi-classical expansion is done, the particular gauge choice is intimately
involved in the results. It is possible to define path integrals in the U1 principle
fibre bundle over the configuration space and thus be able to quantize an
electrodynamic system in a gauge invariant way. This approach is presented in
[9].

Appendix

We would like to establish the relationship between the vorticity of a particular
family of classical paths and the magnetic field (10). In particular, if Q is a classical
path and K is a Jacobi matrix along Q satisfying the initial conditions given by (8),
then the vorticity, defined by (9) is given simply by

Thus, for

~

and

where

and

e e e d e

m x m m dt m
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it is true that ω, defined by

(A.2)

e
is equal to — F.

m

It is simpler to prove that

Ω = K ω K=-K'F'K.
m

The result for ω follows then, since K has an inverse. To prove that

Ω=-k F-K9

m
we show that both sides of the equality satisfy the same first-order differential
equation in t with the same boundary conditions at ta. We use the facts that K
satisfies the Jacobi equation and that hence K satisfies the transpose equation.
Now

Then first,

Ω(ta) = K(ta) g(ta) K(ta) - K(ta) g(ta) K(ta)

g g (

as desired. Next (with dot denoting Vt)

= k-g-K-K-g K.

The fact that K is a Jacobi matrix gives

The facts that

DF dF .
F

όt όt ~

and that

give

VF'Q,
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so that

Ω=-(K'

m

= -(K'

m

as desired.
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