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Abstract. General solutions for the system of nonlinear equations in the second
order partial derivatives with two independent variables are obtained. They
determine the basic differential forms of the two-dimensional minimal surface
embedded into n-dimensional pseudo-Euclidean space.

1. Introduction

In recent years a good deal of attention has been paid to the derivation of exact
solutions for the nonlinear equations in partial derivatives. In elementary particle
theory this interest stems from attempts to go outside the limits of perturbation
theory in the quantum field approach (solitons, instantons, strings, etc. [1-4]).
For the two-dimensional field models the inverse scattering method turned out to
be effective for these investigations [5].

A series of papers [6-11] gives geometric interpretation of the nonlinear
equations solved by the inverse scattering method. It has been shown that these
equations are tightly related with the intrinsic geometry of surfaces in the Euclidean,
pseudo-Euclidean and affine spaces (pseudo-spheres, minimal surfaces, surfaces of
a constant mean curvature, etc.). Moreover, the linear equations describing the
change of the moving basis during the motion of its origin along the surface can
be considered as the Lax operators for the relevant nonlinear equation.

In this paper we shall deal with the nonlinear equations describing in differential
geometry the minimal surfaces in the pseudo-Euclidean space. The geometric
nature of these equations allows one to obtain explicitly their general solutions.

We shall consider two different parametrizations of the minimal surfaces, and
as a consequence, we shall obtain two series of the systems of nonlinear equations.
The general solutions of these equations will be found exactly. The first series
starts with the nonlinear Liouville equation (3.8), then we have the system of two
equations (3.16), the new system of three nonlinear equations (3.28), and so on.
The other parametrization of the minimal surfaces (the so-called t — τ gauge) leads
to the different series of systems beginning with the D'Alambert equation (4.8).
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The next system here is a modified version of the Lund-Regge equations (4.13).
The general solutions of equations of the first series are given by Eqs. (3.9), (3.17),
(3.19) and (3.29) and of the second series by Eqs. (4.12), (4.16) and (4.17).

The theory of minimal surfaces has a long history originating from the papers
of Lagrange (1760) and the famous Plateau problem. In recent years the minimal
surfaces have appeared also in the theoretical apparatus of elementary particle
physics. First of all, this is the relativistic string model dealing with a one-
dimensional relativistic object, whose world surface is a minimal surface in
Minkowski space [2, 4]. The notion of minimal surface is used to formulate the
Wilson criterion of quark confinement in gauge models of strong interactions [12].

2. Relativistic String Model. Equations of Motion for the
String Coordinates and Their Solutions

This model is the one-dimensional object with the action proportional to the area
of its world surface in Minkowski space [4]. If xμ(τ, σ) are the coordinates of the
world surface of the string, then the action of the string is defined by

S = - y f dτ f dσj{xx')2 - x2x'2 = - y ^ u j - g{u\ (2.1)

dxμ dx
where xμ = dxμ/dτ, x'μ = dxμ/dσ, g = det Wg.. ||, gtj =—^-—-j is the metric tensor

on the string world surface, uι = τ and u2 = σ. For the proper dimension in (2.1)
the constant y with the dimension of inverse squared length is introduced. In
Minkowski space we use the metric in which a2 =aμaμ = (a0)2 —a2. In the string
theory it is assumed that xμ is the time-like vector (g11 =x2 >0), and x'μ is the
space-like vector (g22 = χf2 <0) and g(u)<0. The principle of least action, as
applied to the functional (2.1), requires that the world surface of the string is the
minimal surface.

In the isometric coordinate system

Gn =χ2= -g22= -χl2> gi2 = χχ' = 0, ( 2 2)

the Euler equations for the action (2.1)

(2.3)

are reduced to the D'Alambert equation for the string coordinates

with the boundary conditions

(2.5)

The indices with comma in these formulae denote the partial derivatives with
respect to the parameters u\ i = 1,2. In what follows we shall not take into account
the boundary conditions (2.5). For simplicity we assume the string to be infinite:
— oo < uι < + oo, i = 1,2.
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The equations of motion (2.4) and conditions (2.2) are invariant with respect
to the conformal transformations of the parameters u1,u2:ΰ± =f±(u±\
u± =u

x ±u2. Therefore, without loss of generality, we may consider that the
following condition

is fulfilled, where q2 is an arbitrary positive constant.
The general solution of the equations of motion (2.4) and additional conditions

(2.2) has the form

xμ(uι,u2) = φμ

+(u + ) + \j/μ_(u~\ (2.7)

ψ'μ and ψ'μ being the isotropic vectors

(ψ'±)2 = 0. (2.8)

The prime implies the differentiation with respect to the function argument.
Substituting (2.7) into (2.6), we obtain one more condition on \j/μ

±

(Ψl)2=-q~ (2.9)

We treat the two-dimensional minimal surface embedded into n-dimensional
pseudo-Euclidean space with the metric signature ( H •). It is obvious that
all the formulae mentioned above are trivially generalized to this case: Suffice it
to consider that the indices numbering the coordinates of the enveloping space
change from 1 to n.

The conditions (2.8) and (2.9) can easily be satisfied by expanding the vectors
ψ'£ in a special basis, which is used in the differential geometry to study the
isotropic curves [13,14]. This basis is formed by two isotropic vectors eu e2, e

2 = 0,
i— 1,2, eγe2 — 1 and by n — 2 space-like vectors e , e2 — — 1, where eίej = e2βj = 0,
ejek = 0,7 φ k j , k = 3,4,..., n. The expansion for ι^/

±(tί±) in this basis can be written
as

(2.10)

The fulfillment of condition (2.8) and (2.9) requires that

i - 2 -) - 1 / 2 Cn-2 ") - 1 / 2

, 2A_=q-< £ [_g'j{u~)_
LJ — i

n-2

2β+=χ/,>+), 2B_=£flf>-). (2.H)
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Finally we have the following representation for the vectors ι/̂ /

+(w
±)

i = l

(2.12)

2 I
These formulae give the expression for the metric tensor of the two-dimensional
minimal surface in n-dimensional pseudo-Euclidean space. It depends on 2(n — 2)
arbitrary functions of one variable [14]:

( 1 1 3 1

q Σ [Λ(«+) + 0*(«Ί]2

fc= 1

3. Nonlinear Equations in the Theory of Minimal Surfaces and
Their General Solutions

Now we consider the nonlinear equations which are in deep relation with the
minimal surfaces. For this aim we shall treat the basic differential forms of the
surface.

According to the embedding theorems of the differential geometry [15], the
surface can be defined up to its position in the space as a whole by the fundamental
surface tensors: the metric tensor gi}(u) and the tensors of second quadratic forms
θα(j</(w), and the torsion vectors v ^ = — vβa^, ij = 1,2, α, β = 3,4,..., n, where n is
the dimension of the enveloping space. These quantities describe the replacements
on the surface of the moving basis, constructed by two tangent vectors x^xμ

t2

and n — 2 normals jy£, α = 3,4,..., n. This is expressed by the following derivative
formulae:

(3.2)t
βψa.

The semicolon in these formulae means the covariant differentiation with respect
to the metric tensor gtj. The functions 0 o (u), Bφj(u) and vaβ^{u) cannot be arbitrary
and should satisfy the integrability conditions of the linear equations (3.1) and
(3.2) on xμi,ημ, which are defined by the equations of Gauss
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Peterson-Codazzi

Bφj k ~ B(x\ίk;j = ~ L (Vβa\kBβ\ίj ~ Vβa\j^β\ik% (3-4)
β

and Ricci

Vβa\j;k — Vβa\k;j ~ L (Vyβ\jVya\k ~ Vyβ\kVγoc\j) + 9'm(Bβ\tjB<z\mk ~ ^β\^a\m) = 0. (3-5)
y

In these equations the Latin indices take values 1,2 and the Greek indices 3,4,...,.
In the left-hand side of the Gauss equation there is the curvature tensor Rijk/ for
the metric gtj.

The surface is minimal under the requirement [15, 16]

2

Σ Ba{ijgV = 09 α = 3,4,...,n. (3-6)

In the isometric coordinates (2.2) this means that

* « | i i = * α | 2 2 > α = 3,4,...,w. (3.7)

If the minimal surface is embedded into three-dimensional space-time, then the
system of equations (3.3)—(3.5) is reduced to a nonlinear Liouville equation
[9,17,18]

<P,u-'?\22 = 2<?V, (3.8)

where g n = — g22
 = e~φ- Using representation (2.13) with « = 3 for the metric

tensor of the minimal surface, we get the wellknown general solution of the Liouville
equation [19]

With increasing dimension of the enveloping space with the minimal surface
embedded into it, the number of equations in system (3.3)—(3.5) increases rapidly and
the number of functions g^.B^^v^i exceeds the number of equations. However,
this system of equations can be considerably simplified by choosing a proper moving
basis on the minimal surface. Indeed, the derivation of the Gauss, Peterson-Codazzi
and Ricci equations (3.3)—(3.5) will not change if we pass from the basis

x?!,*^ >&•.-,< (3.10)

to a new one obtained from (3.10) by the SO(1,1) x SO{n — 2) rotation, which does

not mix the tangent space of the surface {xμ

Λ,x
μ

2} with its normal space

If the dimension of the enveloping space is n ^ 4, then in the space normal to
the two-dimensional minimal surface there are two mutual orthogonal space-like
vectors xj\x and xμ

ί2 (according to (3.1) and (3.7) the vector xμ

22 coincides with
xfn). Indeed, in the metric (2.2) from (2.6) it follows that

( ^ u ± x r i 2 ) 2 = ( ^ u ± ^ i 2 ) 2 = - Σ {Balll±Bφ2)
2=-q2, (3.11)
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i.e. (x ; 1 1x ; 1 2) = 0. Therefore, it is natural to direct two normals to the minimal
surface along the vectors xμ

Λx and xμ

l2, for instance η% along x ^ t and η% along xμ

12.
Then we immediately obtain

^3|i2 = 5 4 , i i = B 4 | 2 2 = -Ba|y = 0 ' « = 5,. . . ,n; i j = 1,2. (3.12)

To satisfy condition (3.11), we assume

n n

B3]ίl=qcos-, B4μ2 = qsin-. (3.13)

The Gauss equation (3.3) takes the form

2 2 % (3.14)

this equation being valid for any dimension of the enveloping space with the
minimal surface embedded into it.

The torsion vector v34 | ί, i = 1,2 is determined through the function θiu1^2)
using the Peterson-Codazzi equation (3.4) at α = 3,4

θ θ
v 3 4 j i=-y ? ^34 |2=y- (3.15)

In four-dimensional space-time the system (3.3)—(3.5) is reduced to two nonlinear
equations

Ψ 11 ~ φ 22 = 2q2eφCOS θ,
(3.16)

where the function φiμ1, u2) determines the conformally-Ωat metric on the minimal
surface gιι = — g22 =e~φ,gl2 = 0 and θ{uι,u2) determines the second quadratic
forms B3\ij and B^ (ij = 1,2) and the torsion vector v34.^ (i= 1,2) by formulae
(3.12), (3.13) and (3.15).

A special choice of normals η% and γ\% to the minimal surface allows one to
derive directly from the general system (3.3)—(3.5) the system of two equations for
two functions in contrast with papers [8,9,11] in which the normals rf3 and η%
are not fixed. In these papers it was necessary to introduce auxiliary functions α + ,
which entered in the final equations only in the form of differences θ = α + — α_.

The general solution of system (3.16) can be derived using our formulae (2.12)
and (2.13)

eφ = Λ2, (3.17)

(3.18)

To express θ through arbitrary functions ft(u+) and g^W) explicitly, it is more
convenient to use the first of equations (3.16) substituting into it (3.17) rather than
formulae (3.18), (2.12) and (2.7). As a result we obtain

(3.19)
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where

t(fi + 9i)f'it (fj + 9X Σ/ίft
A - Ί IΞΛ IZl ί=λ

n ~) 1/2 ( n n Λ 1/2 '

fi + βd2 ΣΛ 2Σ^ 2 iΣfΐΣdή
U = l j = l J U = l 7=1

(3.20)

In paper [9] the general solution of system (3.16) has been written down by
reducing these equations to one Liouville equation for the complex function φ + iθ.

The new system of three nonlinear equations, which has not been mentioned
in the literature before, is derived by treating the two-dimensional minimal surfaces
in the five-dimensional pseudo-Euclidean space within the given method. Choosing
the normals η3 and η4 according to the above prescription, we get formulae
(3.12)—(3.15). There appear two torsion vectors v35 | f and v4 5 | ί 5ΐ = 1,2 in addition
to the variables in the four-dimensional case. The Peterson-Codazzi equation (3.4)
with α = 5 yields

θ . θ . θ θ
v35|2cos- = v4 5 1 1sin-, v 4 5 | 2 s m - = v 3 5 | 1 cos-. (3.21)

To satisfy these equalities, we assume

- , v 4 5 | ! =/I(M 1,M 2)COS-,

=p(u 1, H2)cos-, v 3 5 | 1 =p(u 1,u 2)sin-.

(3.22)

-, v 3 5 | 1 =p(u 1 ,u)s in- .

The Ricci equations (3.5) are written now as

θ.ii - θ,22 - (h2 - P2)sinθ = 2q2ei>smθ, (3.23)

sin^Λ,! - P,2) + cos^(Λflfl - pθ 2 ) = 0, (3.24)

θ f)
.. cos-(p > 1 -Λ 2 ) + s in-(ΛΘ 2 -p0 1 ) = O. (3.25)

Substitution of

| (3.26)

turns equation (3.24) into an identity, and (3.25) gives

Finally, in the case of the five-dimensional enveloping space system (3.3)—(3.5)
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is reduced to the following three nonlinear equations

,11

cos-

(3.28)
(

= c
\

- χ2
λ

It should be emphasized that the last of equations (3.28) coincides exactly with the
second equation in the nonlinear Lund-Regge system [7,20].

Let us write down the general solution of system (3.28)

eφ = Λ3, θ = arccos ZJ3,

Ί 1 V V Ί

y 2

1,2 °1
4

(3.29)

The quantities Λ3 and A3 are determined by (2.13) and (3.20), respectively, and
the covariant derivative xμ

l x should be constructed by using expansions (2.7) and
(2.12).

It is obvious that the proposed method can be applied also for higher dimensions
of the enveloping space. At the same time equations (3.3)—(3.5) will be reduced to
the system of (n — 2) nonlinear equations for n — 2 unknown functions. The general
solutions of these systems will be constructed by formulae (2.13), (3.20) and
expansions (2.7) and (2.12).

4. Gauge t = τ

In this gauge the world surface of the string moving in the n-dimensional
pseudo-Euclidean space is described by the (n — l)-dimensional Euclidean vector
x = {x^s2,...,x"~1} which depends on two parameters τ = t = x° = u1 and σ = u2.
The equations of motion (2.4) and supplementary conditions (2.2) are

X 1 1 X 9? —,22 '

2 — 1,. — 0.

(4.1)

(4.2)

Conditions (4.2) cause the following form of the metric tensor on the world surface
of the string

SΊi= χ 2i = g22=x2

2=cos2

gi2 = =0. (4.3)
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In what follows we shall need the Christoffel symbols corresponding to this metric

Γ j x - T\2 = cot 0-0 l 5 Γ\2 = Γ2l = cot 0-0 2,

Γ2

11=Γ2

22= - t a n 0-0 2, Γ2

2=Γ2

21 = - t a n 0 - 0 j . (4.4)

The world surface of the string in the gauge t — τ is not minimal for the
(n — l)-dimensional Euclidean space with the coordinates x 1 , . . . ^ " " 1 . Neverthe-
less, from the derivative formulae (3.1) taking into account the equations of motion
(4.1) and formulae (4.4), it follows that

The only essential component of the Riemann curvature tensor in metric (4.3) has
the form [8]

K 1 2 1 2 = i s i n 2 0 ( 0 n - 0 2 2 ) . (4.6)

Using (4.7) and (4.6) the Gauss equation (3.3) can be written as

| s in20 ( 0 n - 0 2 2 ) = £ (£α

2

( 1 1 -B2

]12). (4.7)

The construction of general solutions of equations (3.3)—(3.5) will be based, as
in Sect. 3, on the solutions of equations of motion (4.1) satisfying conditions (4.2)
in a special basis.

First consider the simplest case of the three-dimensional space-time with the
relativistic string moving in it. In the gauge ί = τ the string coordinates x1(ί, σ)
and x2(ί, σ) determine the plane which is the projection of the world surface of
the string in the space {ί, x\x 2 } onto the coordinate plane Ox1x2.

In this case B^u = 0 and vaβ^ = 0 , and the only nontrivial equation in system
(3.3)—(3.5) is the Gauss equation which is reduced, according to (4.6), to the
D'Alambert equation [8]

0 n -Θ22 = 0. (4.8)

The solution of Eqs. (4.1) and (4.2) for the two-dimensional vector x(ί, σ) is as follows:

x(t,σ) = ιl/ + (u + ) — ιl/_(u~), (ψf)2 = 1, u ± = t ± σ , (4.9)

>*), ±sinφ ± (w ± )}. (4.10)

According to (4.3) the function Θ(t,σ) is determined by the formula

/ χ 2 \ 1/2

0(ί,σ) = arctan - £ ) . (4.11)
\X,2/

Substituting into the latter formulae (4.9) and (4.10), we obtain the general solution
of Eq. (4.8)

( 4 1 2 )
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This trivial case demonstrates clearly the idea of deriving general solutions of
equations (3.3)—(3.5) in the gauge t = τ.

Now we pass to four-dimensional space-time. In this case the three-component
vector x(ί, σ) describes the projection of the two-dimensional minimal surface from
four-dimensional Minkowski space onto the ordinary three-dimensional Euclidean
space. The system of equations (3.3)—(3.5), taking into account (4.4)-(4.7), is reduced,
as it can easily be shown, to the following two nonlinear equations:

. S | ( X i Z , 2 ) , ( χ f l ) f l ( χ f 2)> 2, (4.13)
sin u

where the function χ determines the coefficients of the second quadratic form

B i i = B 2 2 = c o t 0 χf2, B 1 2 = cot0.χ f l. (4.14)

The system (4.13) differs from the known Lund-Regge equations [20] by the
absence of the term sin# cos# in the first equation.

We represent again the vector x(ί,σ) using formulae (4.9), and for φ'±(u±) we
take the spherical basis in three-dimensional Euclidean space

^ ( u 1 ) =--={sinω ± cosφ ± , + sinω+ s inφ ± , ± c o s ω ± } ,

V2

ω±=ω±(u±), φ±=φ±(u±). (4.15)

For 0(ί,σ) according to (4.11), we obtain

1 — [sinω + sinω_ cos(φ , + φ) — cosω , -cosω _] ) 1 / 2

1 + [sinω+ sinω_ cos((p+ + φ_) — cosω +-cos ω_]
(4.16)

Using the law of cosines for the spherical triangle [21], one can easily verify that
20(ί,σ) in (4.16) is the angle in the spherical triangle opposite the side φ+ + φ_
with the adjoining angles ω+ and ω_.

Only the partial derivatives of the function x(ί, σ) enter into system (4.13).
According to the derivative formulae (3.1), they are determined as follows:

χΛ =UnO-(xfl2)
1/\ Z 2 = tan0-(x ;

2

n)1 / 2. (4.17)

It is obvious that expansions (4.9) and (4.15) allow one to express χ z , i = 1,2 through
four arbitrary functions of one variable φ±(t/±) and ω±(w±). Therefore we shall
not cite here these cumbersome formulae.

Generalizing representations (4.10), (4.15) to the n-dimensional case, one can
construct the general solutions of the system of nonlinear equations (3.3)—(3.5) in
the gauge t = τ for an arbitrary dimension n of the enveloping space.

5. Conclusion

It is certainly interesting to investigate the group basis of the proposed way of
constructing general solutions for non-linear equations in the spirit of paper [22].
The same procedure, minimal embedding, is used in our approach and in
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paper [22]. In our case this is the minimal embedding of the two-dimensional
Riemannian manifolds into the plane space, whereas in paper [22] it is the minimal
embedding of one Lie group into another. Just the minimal embedding led to the
linear equations (2.4) for the coordinates of the embedding submanifold. As a result
this allows the construction of general solutions for the system of nonlinear
equations (3.3)—(3.5).
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