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Local Extensions in Singular Space-Times II

C. J. S. Clarke

Department of Mathematics, University of York, Heslington, York YO1 5DD, England

Abstract. Previous results of the author are corrected by reformulating them in
space-times whose Riemann tensor satisfies a Holder condition.

1. Introduction

In an earlier paper with this title [2] I showed the existence of local extensions
through quasiregular singularities (in the terminology of [5]) by (implicitly)
assuming that a spacetime with a Ck~2 Riemann tensor had a Ck metric. This
assumption may not be correct (the alleged proof which I gave in [3] being invalid).
The basic results do hold, however, if one uses C fc>α conditions (a Holder condition
with exponent α, 0 < α < 1, on the kih derivative). The technical tools needed to
modify the proof are given in detail in [4] the aim of the present paper is to outline
their application to local extensions.

We first clarify the term "local extension" of a spacetime (M, g), of which there
are two definitions in the literature. Here, and in [5], it means an isometry
φ : U -> M', where U c= M and (M', g') is a spacetime, such that

(i) U contains a curve y which is incomplete with respect to a generalised affϊne
parameter and inextendible in M.

(ii) φ°y is extendible in M'.
Hawking and Ellis [6], on the other hand, replace (i) by the condition that U is

not compact in M, and (ii) by the condition that φ(U) is compact in M'. This has the
undesirable consequence that Minkowski space is locally extendible [1], With the
author's definition, certain compact space-times having trapped geodesies may be
locally extendible.

2. Results

The theorem will be formulated for the case where 7 in the definition above is a
broken geodesic. Since any rectifϊable curve can be approximated by a broken
geodesic this is no loss of generality, and it enables us to give a concrete description
of the set U that can be extended. In addition we impose a restriction ((iv) below) that
corresponds to the non-spiral condition imposed in the earlier paper [2]. The
theorem will only be proved for C°'α Riemann tensors; but it is clear that the
procedure extends to Ck>α.
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Theorem. Let y :(0, 1]->(M, g) be an incomplete curve such that y\(ti9 ί f _ j _ ) is α
geodesic for some sequence 0 < ... < tn < ... < tί < ί0 = 1. Lei ί/z^re be given a sequence
(an)ne^ an^ a frame (J?)f=0 (woί necessarily orthonormaϊ) parallely propagated on y such
that the following are satisfied:

(i) Λ Λ->O(W->OO).
(ii) The map Tn : [R

4 9 £h-»exp(ξ '£(£„)) is defined and 1-1 w f/ze ball Br

n: =
{ξ\ \\ξ\\ <ran} for all r ̂  1, and its image contains both y(tn_^ and γ(tn + 1 ) .

(iii) There is a bounded (with respect to the b-metric [6]) section of the frame
bundle over the set U: = (J Tn(Bl

n

l2\ the section containing (£), on which the
n l

components R™pq of the Riemann tensor satisfy a uniform Holder condition with
exponent α.

(iv) There is a constant K > 0 such that y°(s) > K (where y = ylE)for all se(0, 1].
Then there is a local extension φ : U -> M', where (M', g') is a spacetime whose

Riemann tensor satisfies a Holder condition with exponent α.

Proof. (In the following we merely outline certain operations that have been fully
described in [4] ). Because of (i) and (iii) (the latter implying continuity of R™pq), for
large enough N the dimensionless quantity an\\R\\i/2(n> N) is so small that no
geodesies constructed in Tn(B'm) will focus or intersect (cf. §§3.2, 3.3 of [4] ). We define

n

Un= [ \ Tt (B\ /2) and proceed by induction on n: we assume Un to be extended; then

append Tn+^(BiJ^)\ and finally let n->ao.
Suppose, then, that we have a map φn : Un -> M ' = [R4 which is an isometry for a

metric g(n) on M'. The extension of this to φn + 1 is performed by using a special
coordinate system on Tn + 1(B^1\ as follows. Choose four independent vectors
Z, . . . , Ze [R4 which are such that each of ZaE (for i = 0, . . . , 3) is future-pointing and
0 3 i a

timelike.

Define

Here d denotes the supremum of the geodesic distance for timelike geodesies, the
quantities only being defined where this is finite, and gab are the components of the
metric in the frame (E).

The functions zl are the required coordinates. They are constructed to achieve
the following two properties :

(a) The Holder constants of components of the metric, and their first derivatives,
are bounded in terms of the Holder constant of the Riemann tensor.

(b) Coordinates defined from adjacent n- values (i.e. in Tn(B^/2) and Tn + 1(B^1))
approximately agree in the overlap of their domains.
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i

The verification of (a) is very similar to the proof of 6.1 in [4]. We let K denote the
tangent vector at x to the geodesic from x to St that minimises the distance, with

i j
proper-time parametrisation. Then it can be shown that gij = g(V,1ή and that

The quantity V^Fcan then be computed from the Riemann tensor, using Jacobi's

equation for the variation in the geodesic defining V.
Calculations for (b) are similar, though a bit more involved. We replace the

"ίn + ι" in the definitions of z\ P{ and P{ by a variable parameter s, and vary s from
t

n +1to ίw As s varies, Pt and P( describe curves, whose tangent vectors are related to
the tangent vector on y by Jacobi's equation. These variations in turn give rise to

i

changes in the vector field F, from which the variation of Z* as s is varied can be
calculated: it turns out to involve only integrals of the Riemann tensor.

In this way we can construct coordinates z1 in Tn + l(B^l\ and related
coordinates - z'", say-in M', using φn*E(tn + 1) instead of E(t +ί). A map

a a

φw + 1 :TM + 1(J?y+

2

1)->M/ is then defined by relating points with equal zl and z i f

coordinates.
The extended map φn +1 is then defined by "'patching" smoothly together φn and

Φn + i Condition (iv) ensures that the image of φn + 1 overlaps at most a fixed finite
number of the previously constructed coordinate domains, and in these property (b)
of the coordinates ensures that the Holder constants of g tj k and the Riemann tensor
for the metric (φ*+ι)~1g is of the order of magnitude of that of the Riemann tensor,
measured in the frame bundle.

We now have a map φn + ί on Un + ί, inducing a metric on its image whose Holder
constants are known. The metric g(n+l} is then defined by extending the difference
between the induced connections (Γ(π) and Γ(π + 1)) from φn + ι(Un + ί ) to the whole of
M', followed by a redefinition of the metric exactly as in [4], §8.3. It is here that the
use of Holder conditions, rather than mere continuity, is essential.

Convergence of g(n}ij,k and #(n)

l

j/d is then easily verified, with the Holder
conditions being respected.
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