
Communications in
Commun. Math. Phys. 84, 223-238 (1982) Mathematical

Physics
© Springer-Verlag 1982

On Witten's Proof of the Positive Energy Theorem*

Thomas Parker1 and Clifford Henry Taubes2**

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

2 Department of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract. This paper gives a mathematically rigorous proof of the positive
energy theorem using spinors. This completes and simplifies the original
argument presented by Edward Witten. We clarify the geometric aspects of this
argument and prove the necessary analytic theorems concerning the relevant
Dirac operator.

The positive energy theorem in general relativity states that an isolated
gravitational system with nonnegative local matter density must have nonnegative
total energy, measured at spatial infinity. This was originally conjectured more
than twenty years ago by Arnowitt, Deser and Misner [1]. Subsequently, a great
many people worked on this problem and proved various special cases. Finally,
the generic case was established by Schoen and Yau [10-13]. For a history of the
problem, with complete references, we refer the reader to the papers of Geroch
[5] and Witten [15].

Recently E. Witten has presented a simple new argument for a proof of the
positive energy theorem [15]. However, several points of his argument require
justification. This paper gives a complete, rigorous and self-contained proof of the
positive energy theorem, based on Witten's formulation. In addition to supplying
the necessary analytic theorems, we present the proof in its geometric context.

The first three sections present the background for Witten's proof in the
language of differential geometry. This involves a brief discussion of Dirac spinors
the definition of the Dirac operator along a spacelike hypersurface, and a derivation
of Witten's formula for the square of this operator. Section four contains the
statement of our main result: the existence of a Green's function for the
hypersurface Dirac operator. The positive energy theorem is then proved as a
consequence of this fact. The estimates and analysis required for the construction
of the Green's function are presented in Sect. five.
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Estimates similar to those of Sect. 5 have been independently proven by
Choquet-Bruhat and Christodoulou [4].

1. Introduction

The positive energy theorem, as usually formulated, is a theorem in four-dimensional
Lorentzian geometry. We are given a four-manifold N with a metric g of signature
(—h + +) and a symmetric tensor field Taβ (interpreted physically as the
energy-momentum tensor of matter) which is related to the Ricci and scalar
curvatures of N by Einstein's equations

(G is a constant). We are also given a complete oriented 3-dimensional spacelike
hypersurface M ^N which satisfies the following two conditions:

(i) M is asymptotically flat; there is a compact set K a M such that M — K
is the disjoint union of a finite number of subsets M 1 ? . . . 5 M Λ —called the "ends"
of M—each diffeomorphic to the complement of a contractible compact set in
[R3. Under this diffeomorphism the metric o f M , c N should be of the form

in the standard coordinates {x1} on !R3, where α 0 = O(l/r), dkaij = O{llr2) and
dιdkaij = O(l/r3). Furthermore, the second fundamental form hi} of M c N should
satisfy htj = O(l/r2) and dkhtj = O(l/r3).

We will often identify the end MtczM with the corresponding set M{ a [R3.
(ii) M has nonnegative local mass density: for each point peM and for each

timelike vector e0 at p, T(e0, e0) ^ 0 and T(e0, •) is a non-spacelike covector. This has
the following consequences: if {eja = 0,1,2,3} is an adapted orthonormal frame
field at peM with e0 normal to M and eί9e29e3 tangent to M, then

T00^\T«β\ for a l l θ ^ α , j 3 ^ 3
and

τ 0 0 > ί T τ0iV/2

(Here, and henceforth, repeated indices are summed with Latin indices running
from 1 to 3 and greek indices running from 0 to 3.) This condition if often called
the dominant energy condition (Hawking and Ellis [6]).

One can also define the total energy and the total momentum of an
asymptotically flat manifold. These quantities include contributions (which cannot
be defined separately) from both the matter and the gravitational field itself. They
are defined in each asymptotic and Mι as limits over the spheres SRl of radius R
in Mj cz U3:

(1.1)
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Remark. There are a number of different expressions for the total momentum
Pk in the literature. The one above, which is due to Arnowitt, Deser and Misner
[1], has the advantage of being defined solely in terms of the data on M. The
equivalence of the various definitions of Pk is discussed in [2].

Physically, a gravitational system with nonnegative matter density should have
nonnegative total energy. However, in this mathematical formulation it is not clear
that condition (ii) implies anything about the integrals (1.1). The intuition is upheld
by the positive energy theorem.

Positive Energy Theorem. Under conditions (i) and (ii) above, Et — \Pt\ ^ 0 on each
end Mt. If Eι = 0 for some I then M has only one end and N is flat along M.

This is proven in Sect. 4 below.

Remark. If the dominant energy condition holds in a neighborhood of M then N
is flat in this neighborhood. This follows by perturbing M in a compact region
and applying the above theorem.

There is an important special case. If one further assumes that the metric on
M has the asymptotic form

m
( L 2 )

in the end Mv with p.. = O(l/r2), dkpυ = O(l/r3) and dmdkpu = 0(l/r4), then the positive
energy theorem is equivalent to the

Positive Mass Theorem. Assume conditions (i), (ii) and (1.2). Then m^O for each
I, with equality if and only if M is flat along N.

2. Spinors

Witten's proof depends in an essential way on the use of spinors. Thus we begin
with a review of Dirac spinors, describing them first at the level of linear algebra
and then globally on the manifold M.

Spinors are defined in terms of the representations of SL(2, C), which is the
universal covering group of the connected Lorentz group SO(3,1). Let V denote
the fundamental representation of SL(2, C) on C2. This representation carries an
invariant symplectic form σ, but has no invariant hermitian structure.

Minkowski space U3'1 is a subspace of V® V. To see this, consider each
xe V ® V as a linear transformation x: F* -> V and note that its conjugate transpose is
also a map x*: F* -» V. The fixed set of the involution x —> x* is a real 4-dimensional
invariant subspace W of V ® V. The invariant norm on W is, up to a constant, simply
the determinant of the transformation x. Choosing a basis, we have

1 i

= - d e t x = - d e t
.+1 x\ -χl

so W =
(2.1)
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Dirac spinors transform according to the representation S = F θ F*. This space
has an SL(2, C) invariant hermitian inner product defined by

for φ =(ξ1,η1)eS and φ = (ξ2^η2)eS. This inner product is not positive definite.
In this context the Clifford multiplication map U3Λ (x) S -> S (denoted by a lower

dot) is given by x.(ξ9 η) = (xη, xσξ) where xeίR3 '1 and xσ:F-» F* is the σ-adjoint of
x : F * -• F. It follows that (x. φ, φ) = (φ, x.φ\ that is x. is a hermitian operator on S.
To verify the Clifford relations, apply x. twice: x.x.(ξ, η) = (xxσξ, xσxη). Since F* is
2-dimensional and σ(υ*9 (xσx)v *) = σ(xv *, xι?*) = Ofor all v*eV*, we have xσx = β-ld.
for some j8eC. Taking the determinant shows that β2 = det xσx = (det x)2, so
β = ± || x | |2. The correct sign is minus because we can take x to be the identity
matrix in (2.1). Thus x.x. = — || x | |2. Id and, by polarization.

x.y. + y.x.= -2g(x9y)Ίd,

where g is the inner product on (R3>1.
The choice of a timelike covector e° yields a diagram

Spin(3)-^>SL(2,C)

SO(3) >SO(3,1)

(α and ά are inclusions) and allows us to regard V as a Spin(3) = SU(2)
representation. This gives V a hermitian structure, which can be thought of either
as the isomorphism V* ~V given by Clifford multiplication e o . : F * - * F , or as a
second hermitian inner product on S defined by < φ9 ψ > = (e°- φ, ψ). This new inner
product is Spin(3) invariant, and under it e°. is hermitian and x. is skew hermitian
whenever g(χ9 e°) = 0. Most importantly, <, > is positive definite: in a basis in which
e°-: F° -> Vappears as the identity matrix we have, for ψ = (ξ9η)eS,

In the physics literature the inner product (\j/9φ) is denoted φφ =φ + y°φ and
(φ,φ} is denoted φ + φ.

These algebraic facts carry over to vector bundles once a spin structure is
chosen. Let F(N) denote the SO(3,1) frame bundle of the cotangent bundle of N
and let i :M -• N be the inclusion. The required spin structure is a lift of the bundle
ί*F(N) to an SL(2,C) bundle over M. But i*F(N) = F(M) x α SO(3,1), so we need
only lift the SO(3) frame bundle of M to a Spin(3) bundle F(M). The obstruction to
such an F(M) is the Stiefel-Whitney class w2(M); this vanishes for orientable 3-
manifolds. The number of such lifts F(M) is then classified by H1(M;Z2). Choosing
one, we obtain the desired SL(2,C) bundle i*F(N) = F(M) x fiSL(2,C) over M and
the associated spin vector bundle

where p is the representation VφV* of SL(2, C), and p is its restriction to Spin(3).
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This vector bundle—also denoted S—carries the inner products (,) and <,>.
Sections of S are called Dirac spinors along M. - >

The metric connection on F(N) determines connections on i*F(N) and its
associated bundles the resulting connection V on S is compatible with the metric
(,) but not compatible with the metrix <,>. On the other hand, the Riemannian
connection V of M induces a connection on S = F (M) x βS which is compatible with
<, > but not with (,).

Finally, we examine the spin structure on the asymptotic ends Mι a M. Let
Φ^.U3 — Kι-+Mι be the diffeomorphism which defines Mv The pullback bundle
Φf F{M) differs from the trivial spin bundle over U3 — Kι by an element of
//^[R3 — Kι\Z2) = 0. Hence the spin structure is trivial over the ends Mι and the
bundle Φf S extends trivially over all of U3. The Φf 1-pullbacks of the constant
sections of the bundle U3 x S over U3 then provide a distinguished set of "constant
spinors" over the ends Mv These constant spinors will play an important role in
Sect. 4 and 5.

3. The Hypersurface Dirac Operator

The Dirac spin bundle S along M is associated to the Spin(3) bundle F(M) and
has, in addition to its Riemannian connection V, the connection V = VN inherited
from the four-manifold N. We can then define a Dirac operator whose symbol is
that of the usual Dirac operator on M, but which uses this second connection V.
We call this the hypersurface Dirac operator and denote it by Θ. Intrinsically, Q)
is the composition

where c is Clifford multiplication. In a local orthonormal coframe {e1} of M

i = 1

for φeΓ{S).
We are going to derive an equation—a "Weitzenbόck formula"—relating the

square of Q) to the covariant Laplacian. The second fundamental form of the
hypersurface M will appear several times in this derivation; it is crucial to keep track
of these terms.

Weίtzenbόck Formula.

&*3=@2 = V*V±@ (3.1)

where ^ * and V* are the formal adjoints of <% and V under the inner product <,)
and 3t = 1/4(R + 2R00 + 2ROie°.e\)eEnd{S). The integral form of (3.1) is

J |VιA|2 + <ι//^.ψ> - \@ψ\2 = - i f d[(ψ, le\eq.Wjφ}ei Jμ]
M M

i μ (3.2)
δM
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for any Dirac spinor φ along M, where \_e\e^~\ = e*-ej ~ ej-el is t n e commutator in
the Clifford algebra.

Remark. The endomorphism & can be written in terms of Taβ by Einstein's
equations; in fact 01 = 4πG(T00 + TOie°.e\). The dominant energy condition then
implies that m ^ 4πG[T 0 0 - ( - T 0 i T

0 ι ) 1 / 2 ] ^ 0.
The verification of (3.1) and (3.2) is simpler when done in the moving frame

defined as follows. Fix a point peM and an orthonormal basis {ea} of TpN with
e0 normal and eue29e3 tangent to M. Extend {eί,e2,e3} to an orthonormal frame
in a neighborhood of p in M in such a way that (Vj^)p = 0 for 1 ̂  ij ^ 3. Extend
this to a local orthonormal frame {ea} for N with (Voef)p = 0 for i = 1,2,3. Let {e*} be
the dual coframe. Then (V^)^ = — hue° and (V,-*?0)̂  = — h{ eJ where
htj = <Ve ^o,^) are the components of the second fundamental form at p.

In this frame we have, at peM,

= Σ vFi + f Σ ̂ .^-(v.v. - v̂ .v.)

Since [βz , ej]p = 0, the middle term is the curvature expression

Λ ^ ) ,

where p:so(3,1)-+End(S) is the spin representation, given by p(e*Λeβ) =
— l/2ea.eβ. This is easily simplified using the Bianchi identity and the symmetries of
R. Equation (3.1) then reads

^ 2 = - V ^ + ί ( * + 2 *oo + 2K 0 /.e*.) - ht/.eO.Vj. (3.4)

Next, we need the integration by parts formulae for V and <$ with respect to
the positive definite inner product <,>. Again computing in our local frame at p,

i J μ] =

= C( — Λye'. φ, Vf̂ f) + <Vfφ,

where μ = e1 Λ β2 Λ β3 is the volume form on M and J denotes contraction. In
particular, this shows that the formal <, >-adjoint of V is given by Vf = — Vf

-hije

j.e°.
A similar calculation yields

d[<φ, e\ ^>e. J μ ] = [<φ, ̂ ι//> - <^φ, ψ>]μ, (3.6)

so ^ is formally self-adjoint under <,). Together (3.4), (3.5) and (3.6) give (3.1),
which is valid in any frame.

The integral expression (3.2) follows by applying (3.1) to ψ, taking the inner
product with ψ, and integrating by parts. The boundary term, which arises from
(3.5) and (3.6), has been simplified using
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4. The Positive Energy Theorem

The Weitzenbock formula (3.2) and the remark which follows it lead to the vanishing
theorem discovered by Witten: under the conditions of the positive energy theorem,
if φ is a spinor field along M which satisfies Qiφ = 0 and which vanishes at infinity
fast enough that the boundary term in (3.2) is zero, then ψ = 0. Furthermore, if φ
is an asymptotically constant solution of Q)φ = 0 then the left-hand side of (3.2)
is positive while the boundary term is essentially the total energy-momentum of
M. In this sense the positive energy theorem is a consequence of formula (3.2).

In this section we will prove the positive energy theorem by this argument.
The key step in the proof is the construction of a Green's function for the operator
Q)\ this is carried out in Theorems 4.1 and 4.3. There are several features of this
argument which should be emphasized.

The first concerns the proof that if Q)φ = 0 and φ vanishes at infinity then φ
vanishes identically. These hypotheses and Weitzenbock formula (3.2) imply that
Vφ = 0, but, since V is not compatible with the inner product, it does not follow
immediately that φ vanishes. In fact the argument (Lemma 4.3) depends crucially
on the decay of the second fundamental form. Second, the fact that the boundary
term of (3.2) reduces to the total energy-momentum of M is actually quite general:
it is true for any φ which approaches an asymptotically constant spinor sufficiently
fast, independent of whether Q)φ = 0. Finally, to prove "if the spacelike hyper surface
M has zero energy then N is flat along M", it is not necessary to perturb the
hypersurface (as Witten does); the conclusion follows directly from the dominant
energy condition.

Throughout this section we will assume that M and N satisfy conditions (i)
and (ii) of Sect. 1. Our first theorem guarantees the existence of harmonic spinors
with prescribed asymptotics.

Theorem 4.1. Let M and N be as in Theorem 4.1. Let {φoι}
)ί=1 be constant spinors

defined in the asymptotic ends {Mjf=1. Then there exists a unique, smooth spinor
φ on M that satisfies

(i) 3>ψ = 0.

(ii) For every ε > 0, lim r1 ~ε\φ — φoι\ =0 in each end Mv

(iii) In addition,

M

= 4πG X (Eι(ψoι,ψoιy+(ψoι,p!kdx°.dxk.ψoι». (4.1)
1 = 1

Here {dxa} is the standard basis of T*{M3Λ).
Theorem 4.1 follows from a technical result which establishes both the existence

of the Green's function for the operator Q) and the space of spinors on which this
Green's function acts. For this reason, we use weighted Sobolev spaces, which are
the natural analogues on asymptotically flat manifolds of the standard Lk

p spaces
on compact manifolds.

Definition 4.1. Let R ^ 1 be large enough so that each end Mtcz U3 contains the



230 T. Parker and C. H. Taubes

exterior of the ball BR of radius R. For each I and each r^R, set Mlr — Mx — Br,
considered either as a subset ofU3 or of M. Fix a smooth function σ on M with the
following properties: (i) σ ^ 1, (ii) σ = r in Mt 2R, and (iii) σ = 1 in M — vιMι R.

Definition 4.2. For p ^ 2,1/2 — 3/p ^δ ^ 2 — 3/p, and s = 0 or 1, the Banach space
^s,δ,P

 ϊ 5 the completion of C^(M S) (smooth sections of the vector bundle S with
compact support) in the norm

where

, M

is the Lp norm. For notational convenience, denote J^i^-i^ by $? an^ II Ίl 1,-1,2 by

The existence of a Green's function for the operator <% can be stated in terms
of these Sobolev spaces as follows.

Theorem 4.2. For p ^ 2 and 0 < δ < 2 — 3/p, or for p = 2 and δ = — 1, ί/ie operator

^ ^ l . a p ^ ^ o a i . p ZiS α n isomorphism with bounded inverse Q)~ι. If

The proof of Theorem 4.2 is presented in the next section. Here we will use it
to prove Theorem 4.1 and the positive energy theorem.

Proof of Theorem 4.1. In each end /, fix a smooth function 0 ^ βR(l) ^ 1 which is
identically 1 in the end Mlt3R and 0 inside Ml2R- Let ψoeC(M;S) be the spinor

Φo=Σ */ΌΛ(0
1=1

The hypotheses imply that @ψ0 = O(r~2) and hence that ^ψo^L2rλj^OA+δίP for
all 2 ^ p < 00 and 0 < δ < 1 — 3/p. By Theorem 4.3, there exists a unique spinor,
φί9 in j f n j f i ( 5 pnC c 0(M; ίS) such that

Hence φ = \l/0-\-\j/ίis2i harmonic spinor. Note that because \j/1eJ^1 δ p the function
ίAi> 1 / 2 e^(M) for all 0 < δ < 1 - 3/p and 2 ^ p < o o . For 3 < p < o o , L ^

0, hence L* functions have asymptotic decay [9; pg. 79]. This establishes
statements i) and ii) of Theorem 4.1.

To establish statement (iii), we utilize the integration by parts formula (3.2).
Since <2ιψ = 0, we have

M

where η is the 2-form

The left-hand side of (4.2) is real, so the imaginary part of the right side must
vanish. Indeed, a direct calculation (best done in the frame used in Sect. 3) shows
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that

so we can replace η in (4.2) by

We now observe that drjeL1. This is seen by differentiating ή, using Vf = Vf ~
^ / V . and [ e U ^ . V ^ ^ f ^ ^ J . ^ + V^.]) where β..eEnd(5) is the cur-
vature of M:

2 ^ = {<V i*A1,[eV].V^

This gives the pointwise estimate

\φ!|

Since \\)xe.ff, the spinors Vψ1,hijφί and σ~1ψ1 are square integrable, while V^o

is square integrable since M is asymptotically flat (cf. Eq. (4.4) below). (Recall that
Vh and Ω are O(l/r3). It follows that dήeL1.

Let wp be a cutoff function with (i) wp = 0 on uJL x Mf 2 p, (ii) wp = 1 on the
complement of uJL iM / ) P in M and (iii) |dwp| < 2/p.

Since dηeLx, the dominated convergence theorem implies that,

= lim J w p ^ = lim j {d(wpί?) - Jwp Λ ̂ }

= lim J dwp A ή.
p->co M

For sufficiently large p,\σ-dwp\ ^ 2,rfwp = (1 — vvp/2)dwp, and

This vanishes as p -> oo. We are left with
k

The right-hand side of (4.3) explicitly depends only on the asymptotic data.
The proof of statement (iii) is completed by expressing the boundary term of

(4.3) in the coordinate system given by the diffeomorphism Φι: U
3 — Kt -> Mι which

defines the end Mv The hermitian structure e°. on S corresponds under Φι to the
hermitian structure dx°. on ΦfS = U3 x S arising from the inclusion R3 c U3Λ.
The expression for the spin connection on ΦfS in terms of the metric connection
and the second fundamental form is then

(4.4)
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where Γkjl are the connection components and djφ0 = 0 since φ0 is constant. The
hypotheses allow for an orthonormal coframe {e1} with \e{ — dxι\ = O(l/r), so we
can replace the {V} by {dx1} in (4.3) without changing the value of the limit. Using
(4.4), the symmetry Γkjl = Γklj and the formula for Γkjl in terms of the metric, we
find that the boundary term of (4.3) is

0, \dx\ dx'].Vjφ0 >dί2* i ί < ^ o » { - τiΓkjl[dx\ dxΓ\.[dxk, dx1]

4- hjk.2{δiidx°.dxk - ^kdx

•dxo.dxk.φo}dΩi

on each end Mv Here dΩι = —- _Jμ.

Lemma 4.3. Suppose that φ and {φ.} are smooth spinors along M with Wφ = 0 and
Vφi = 0 for each i.

(a) // lim φ(x) = 0, where this limit is taken along some path in one asymptotic
x-* oo

end Mz, then φ = 0.
(b) // [φi] are linearly independent in some end Ml9 then they are linearly

independent everywhere on M.

Proof, (a) Set \φ\ = {φ,φ}112. Calculating in the orthonormal frame used in Sect.
3 we obtain

d\φ\2 = [- (/*./>, φ)+ <V^,^> + < ^

a n d t h e p o i n t w i s e e s t i m a t e 2\φ\ \d\φ\\ =\d\φ\2\^\h\-\φ\2. Since h = O(l/r2) th is
gives |<iln|^| ^ C/r2 on the complement of the zero set oϊφ. Integrating this along a
path from xoeM to x gives | ^ ( x ) | ^ |^(x o) | expC(l/|x| - l/|xo |), and taking x to be
the first zero of φ along the path of integration, or taking the limit as |x| -+ oo if no
such zero exists, shows that φ{x0) = 0.

(b) Suppose that there are constants ct such that φ = YJcιφi vanishes at some
point x o eM. Since Wφ = 0 we can repeat the above argument to conclude that
0 = \φ(xQ)\ ^ |^(x)|expC (l/|x| - l/|xo|) for any xeM; this contradicts the hypo-
thesis. D

We can now prove the positive energy theorem stated in Sect. 1.

Proof of the Positive Energy Theorem. Let P ί m , i = 1,2,3 be the components of
the total momentum of the end Mma U3. Let {φm}m=ι ^ e constant spinors on
the asymptotic ends with φm = 0 on each end except Mz, and φx an eigenvalue of
the hermitian matrix Pίldx°.dxi.eEnd(S) with eigenvalue - |P|. Theorem 4.1 then
gives a harmonic spinor φ with asymptotics {φm}. Substituting φ into (4.1) shows
that Et - jP,! ̂  0.
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Now suppose that the energy of some end, say M 1 ? is zero. Choose a basis
{\jja\a = 1, 2, 3, 4} of constant spinors and take as asymptotic data the constant
spinors {ψ"} with \l/a

ι=φa on M t and ψΊ = O on all other ends Mt. Let {ψa} be
the solutions of Q)\\fa = 0 constructed from this data by Theorem 4.1. The boundary
term in (4.1) then vanishes, so Vφa = 0 and ^ α ->0 uniformly on each and except
Mγ. But this contradicts Lemma 4.3a unless M x is the only end of M.

Because {\jja} are linearly independent on Mί they are linearly independent
everywhere by Lemma 4.3b. Furthermore, S7ψa = 0, so in a local frame {et} of M,

0 = (V,V, - V,V; - V^eΛψ = -kRΛti}er e>ψ

for all 1 <; ij <; 3. This implies that Raβij =0 because {φa} are a basis of S and 5
is a faithful representation of 4/(2, C). Subsequently, Tα/J = 0: by Einstein's equations
and the dominant energy condition 8πG|Tα/?| ^ 8πGT0 0 = l/2R|j = 0. The remain-
ing curvature components now vanish because Raβ = 8πG(Tα^ - \βgaβT) = 0
(T - τ;). Thus JV is flat along M. D

5. The Green's Function

In this section we will establish the existence of the Green's function for the operator
^ by proving Theorem 4.2. The theorem is established through a series of
propositions concerning the map Θ : ffl γ ό p ->j f 0 δ + 1 p.

Remark. Proposition 5.1, Lemmas 5.2, 5.5 and the estimate of Eq. (5.5) are proved
in [4] for similar operators on tensor bundles. The spinor bundle gives no
complications, cf. Sect. 2. In fact, Choquet-Bruhat and Christodoulou prove
estimates for the weighted Sobolev spaces based on L2

k, k ^ 0. Using their results,
one can show that statement (ii) of Theorem 4.1 follows from statement (i). Our
proof of Theorem 4.2 is self-contained, except for a basic result based on the work
of Nirenberg and Walker [9] and Cantor [3].

Proposition 5.1. For p Ξ> 2 and 0 < δ < 2 — 3/p, or p = 2 and δ= —I, the operators

V and @ are bounded linear maps from J*f i A p into J fOsδ+ljP.

3

Proof. In a local orthonormal frame Vt.. = V. — 1/2 £ hi}e°-ej. and Θ =

3

where \h\2 = ^ ^ίj^ij The proposition follows because |/i| ^ const σ " 2 for

asymptotically flat manifolds.

Lemma 5.2. For p αnίi δ as in Proposition 5.7, there is a continuous embedding
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/ 1 Λ j ) c / . For

+ < ^ * ^ > (5.1)

with SI ̂  0.

Proof. By Holder's inequality

HV^||2 = ||σ-
(1+<i» σ

1 + a V 1 A| | 2 ^ |k-< 1 + ; i ) | | 2 p / ; ) _ 2 | | σ

1 + a Vψ| | p

and

lk"Vll2 = ll(^"(1+ί) σa^l|2^lk- ( 1 + ί ) | |2 p / l,-2 |kVllp.

The embedding exists because ( j " ( 1 + δ ) eL 2 W p _ 2 for δ > 1/2 — 3/p. As for Eq. (5.1),
note that by Proposition 5.1 both sides of (5.1) define continuous functionals on
j f which are equal on the dense set CQ(M S) by Eq. (3.2). We have ^ ^ 0 from
the remark made in Sect. 3.

P r o p o s i t i o n 5 . 3 . F o r p and δ as in P r o p o s i t i o n 5 . 1 , t h e o p e r a t o r Q > : 3 t f l t δ i P - + j f Ofδ+ iίP

is an i n j e c t i o n .

Proof. Suppose that φeJf M f P satisfies 9φ = 0. By elliptic regularity (Morrey [8],
§6.4) φ is smooth and by Eq. (5.1) V^ =0. Furthermore, φeJ^ltδtP means that

j J ?
M,,2R S2 2R

(cf. definitions 4.1 and 4.2) so by Fubini's Theorem |^(x)| takes arbitrarily small
values along almost every ray to infinity. Now apply Lemma 4.3. •

The next two lemmas establish estimates which will be needed to prove the
existence of solutions to Q}φ = η.

Lemma 5.4. For sufficiently large R the following estimate hold for all φe<ff\

(a) llσ-Vl!i,M12

(5.2)

Proof. By continuity it suffices to show this for φeC^(M S). Given such a φ we
have, using integration by parts and Holder's inequality,

J r~2\φ\2dμ,^ J \d\φ\\2dμ,.

Here r is the Euclidean distance in 1R3 and dμ3 is the Lebesque measure on U3.
Because V is the connection compatible with the norm \φ\2 = (φ, φ}, we also have
\d\φ\\2 ^ |V^|2 (Kato's inequality). Equation (5.2a) now follows by replacing dμ3

by the volume form ^fgdμ3\ this can be done because gυ = <5fj. + O(l/r) in the
asymptotic end Mz R.

The inequality (5.2b) is obtained by comparing the covariant derivatives V, and
Vj = Vf - 1/2/z;/0 V. in the end MlR, where \h\ ̂  CJr2. In fact, using (5.2a),
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for sufficiently large R.

Lemma 5.5. There exists a constant 0<c=c(R) (defined for sufficiently
large R) such that for all

Proof. Fix any R large enough that Lemma 5.4 holds and define a cutoff function
β=βR which is identically 1 in each end M ί 3 K , which satisfies 0 ̂  β <; 1, and which
vanishes on M = M - vj,M i ϊ2Λ. Given xj/etf, write φ as the sum of its interior
part φin = (1 - jg)ι/r and its exterior part φex = βφ. We shall estimate φin and ^ e χ

separately.

First, note that ψίn has support in M and that on C^(M S) the bilinear htm
{φ,φ)-^<yφ,Vφ} is positive definite by Lemma 4.3. Standard elliptic theory
(Morrey [8], §5.2) then shows that

for some constant c2 = c2(R) > 0. This, and the inequality

imply that

(5.3)

for some c3 = c3(R).
On the other hand, yψ^ =dβ-ψ+β>Vψ with dβ = 0 in M and

outside M. Combining this with Lemma 5.4 gives

(5.4)

where c5 = c5{R).

We can now use (5.4) to estimate the total spinor φ^φin + φex:

Rearranging this and substituting in (5.2b) and (5.3) yields

Finally, using Lemmas 5.2 and 5.4a, we obtain

where c7 = cΊ(R) is independent of ψejfV. Π

At this point we know (from Propositions 5.1 and 5.3) that 3> :3#Ί,δ<p -> -%Ό,δ+i,P
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is continuous and injective. We shall next demonstrate that it is surjective. This
is done in two steps. We first prove that, given ffeJf o.a + i,p> there exists a unique
φeJί? with Q)φ=η. The second step establishes that φeJ^lδp by proving an
a priori estimate for \\φ\\ltδiP in terms of \\η\\Qtδ+ltP.

Proposition 5.6. For each ηeC^(M S) there exists a unique uejf such that

g)2u — η. Furthermore, φ = ^ueJήf and

where c is the constant of Lemma 5.5.

Proof. The equation Q)2u = Θ*Θu — η is formally the variational equation of the
functional

It follows from Proposition 5.1 that for ηeC£{M; S) #" is a C00 functional on the
Hubert space jf7. The functional u\-*(u,ηy2 *s continuous and linear and
u\-+\\@u\\l is strictly convex; hence #" is strictly convex and weakly lower-
semicontinuous. Lemma 5.5 implies the lower bound

Hence, by the calculus of variations (Vainberg [14]), the functional #\u) has a
unique critical point u e j f which is an absolute minimum in jf, and u is a weak
solution of the variational equation. Standard elliptic regularity arguments imply
that u is smooth. Set φ = Q)ueJf. Then S>φ = η and Lemma 5.5 gives the stated
inequality. •

Proposition 5.7. For each ^eC^(M S) there exists a unique φe J f with Θφ = η. For
p and δ as in Proposition 5.L

, ί P t δ + ltP. (5.5)

Proof. Let u be the solution Q)2u = η obtained from Proposition 5.6 and set
φ = Qiue^. Then φ satisfies Q)φ = η.

We again separate φ into its interior part φin = (1 — β)φ and its exterior part
φex = βφ and estimate each part separately.

The estimates for φin are straightforward: since φin has support in the bounded
domain M, standard elliptic estimates (Morrey [8], §6.2) imply that

We shall estimate φex on each asymptotic end Mz c U3 by extending φ and Q)
to all of U3. This is done as follows. Fix an end Mι with defining diffeomorphism
Φι: U3\Ki -^ Mz. Let Ro > 0 be such that MιaβRo a Mv As noted in Sect. 2, ΦfS
is the trivial spin bundle over Mι a [R3, so we can extend φcx and η to spinors on
U3. For each R> Ro extend the metric gtj to a metric gfj on U3 in such a way
that gR - g on MlR by setting g*(χ) = δυ + βφxtyipc) - δ o ). For each R > Ko,
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let ®R be the operator on C^fR 3 ;^ 3 x S) defined by

where Vf = δt + ̂ (3x)Γ/(x), Γ |M / is the spin connection on S\Mι of the metric 0̂ ., {eι

R}
is a #κ-orthonormal coframe, and e°. is the standard hermitian structure on U3 x S.

3

With these definitions we have ® 0 = £ dx fδ ί5 while ^ κ = ^ on sections of

ΦfS with support in M ί>Λ.
Note that the asymptotic decay assumptions imply that given ε > 0, there exists

Ro < R < oo such that

sup \eR — dx'| < ε
xeK3

and

This fact allows us to utilize a theorem due to M. Cantor (based on the work of

Nίrenberg and Walker [9].)

Theorem 5.8. (Cantor [5], Theorem 1.3.). Under the assumptions on the asymptotic
decay of gu and hV} stated in Sect. 7, one can choose R < oo, sufficiently large such
that when p ^ 2 and 0 < δ < 2 — 3/p,

is an isomorphism with bounded inverse. •

We can now complete the proof of Proposition 5.7. On [R3, ψcx = βψ satisfies

Since Jf^ ό p(IR3;S)c: j f(R 3 ,S) and 4 x e J f ( R 3 ; S ) , Theorem 5.8 is applicable; it
gives

| |<Oi.a.p^Φ,p)llj8 »ίllo,,» + i,,, ( 5 7)

for p ^ 2 and 0 < (3 < 2 — 3/p. The norms in (5.8) are for the Euclidean metric on
U3 but, because gu = δtj + O(l/r) and |d fc0y | = O(l/r2) in R3 - BR, these norms are
equivalent to the norms induced by giy

We now have (5.8) on each end and (5.6) in the interior; together these give
(5.5) for p >̂ 2 and 0 < δ < 2 — 3/p. The case p = 2, £ = — 1 was obtained in
Proposition 5.6. •

P r o p o s i t i o n 5 . 9 . L e t p and δ be as in Proposition 5 .1 . T h e n Q) ^i,δ,P^^o,δ + i,P

is a surjection. If ηeJ^Oδ + l p and \\je^lδp with <3)\\ί = η, then the a priori bound
(5.5) holds.

Proof. Given ηeJfOtδ + ίtp9 choose a sequence { ^ J e C ^ M S) which coverges
strongly to η. For each i, let ψ.etf be the solution oϊ^ιj/i = n{ found in Proposition
5.7. Since @(ψ. - xj/j) = ηt - ηp (5.5) implies that {ψ.} is a Cauchy sequence in JfltδtP
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Let ψ denote its limit. Then

for all i, so <3\jj = η. The a priori bound (5.5) follows similarly. •

Propositions 5.1, 5.3 and 5.9 show that Q) :3tfltδyP -> ̂ Ό,δ + iiP *s a n isomorphism
and that Q) and Q)~1 are bounded linear maps. Also, if @ψ = η with ηeCQO(M;S),
then ψeCco{M;S)by elliptic regularity. This completes the proof of Theorem 4.2.

Acknowledgements. We thank Professors R. Bott, A. Jaffe, and S.-T. Yau for their suggestions and

encouragement.

References

1. Arnowitt, R., Deser, S., Misner, C : Phys. Rev. 118, 1100 (1960)

2. Arnowitt, R., Deser, S., Misner, C : Coordinate invariance and energy expressions in general

relativity. Phys. Rev. 122, 997-1006 (1961)

3. Cantor, M.: Some problems of global analysis on asymptotically simple manifolds. Compositio

Math. 38, 3-35 (1979)

4. Choquet-Bruhat. Y., Christodoulou, D.: Elliptic systems in Hsδ spaces on manifolds which are

Euclidean at infinity. Acta. Math. 146, 124-150 (1981)

5. Geroch, R.: General relativity. Proc. Symp. Pure Math. 27, 401-414 (1975)

6. Hawking, S., Ellis, G.: The large scale structure of space-time. Cambridge: Cambridge University

Press 1973

7. Hitchen, N.: Harmonic spinors. Adv. Math. 14, 1-55 (1974)

8. Morrey, C. B.: Multiple integrals in the calculus of variations. New York: Springer 1966

9. Nirenberg, L., Walker, H.: The null spaces of elliptic partial differential operators in UN. J. Math.

Anal. App. 47, 271-301 (1973)

10. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun.

Math. Phys. 65, 45-76 (1976).

11. Schoen, R., Yau, S.-T.: Positivity of the total mass in a general space-time. Phys. Rev. Lett. 43,1457-

1459 (1979)

12. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231 (1981)

13. Schoen, R., Yau, S.-T.: The energy and the linear momentum of space-times in general relativity.

Commun. Math. Phys. 79, 47 (1981).

14. Vainberg, M.: Variational methods and the method of monotone operators in the theory of nonlinear

equations. New York: Wiley 1973

15. Witten, E.: A simple proof of the positive energy theorem. Commun. Math. Phys. 80,381-402(1931)

Communicated by A. Jaffe

Received September 23, 1981




