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Abstract. The structure of the commutant of Laplace operators in the
enveloping and “Poisson algebra” of certain generalized “ax+ b” groups leads
(in this article) to a determination of classical and quantum mechanical first
integrals to generalized periodic and non-periodic Toda lattices. Certain new
Hamiltonian systems of Toda lattice type are also shown to fit in this
framework. Finite dimensional Lax forms for the (periodic) Toda lattices are
given generalizing results of Flaschke.
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0. Introduction

In this paper we study the Laplace operator and its commutant on a class of
generalized “ax+b” Lie groups. This analysis is carried out both in the universal
enveloping algebra of the Lie algebra and in the “Poisson algebra”. The problem in
the Poisson algebra amounts to finding first integrals for certain Hamiltonian
systems (which generalize both the periodic and non-periodic Toda lattices). The
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problem in the enveloping algebra amounts to finding quantum mechanical first
integrals for the quantized versions of these Hamiltonian systems. For the
generalized non-periodic Toda lattices (as studied most profoundly by Kostant
[12]) and all but four of the generalized periodic Toda lattices (Adler and van
Moerbeke [2]), we show that the two problems are essentially identical. Also in
the Poisson algebra case we show that there is an infinite sequence of new
integrable Hamiltonian systems that do not correspond to completed Dynkin
diagrams in the sense of Bourbaki [6]. (They do however correspond to Coxeter
diagrams of finite groups generated by reflections.)

The four generalized periodic Toda lattices that do not fit into our uniform
quantum and classical mechanical techniques are handled in this article using Lax
forms. We derive in particular a finite-dimensional Lax form (generalizing that of
Flaschka [7] for the periodic Toda lattice) for all first integrals of all the periodic
Toda lattices associated with completed Dynkin diagrams. In the case of non-
periodic Toda lattices this Lax form immediately shows that the full system of first
integrals can be linearized in terms of the action of A on G/MAN for G the
corresponding real, split, semi-simple Lie group and MAN a minimal parabolic
subgroup. In the case of the periodic Toda lattice this is also true, with G replaced
by a certain infinite-dimensional Lie group. These results will be the topic of the
second paper in this series. Also in a forthcoming paper will be another infinite
family of integrable Hamiltonian systems associated with certain “non-generic”
orbits of A on G/MAN.

The joint spectral decomposition of the quantum first integrals of the
quantized Toda lattices will be the subject of a later paper in this series. In the case
of the non-periodic Toda lattices this is intimately connected with the work of
Kostant [11] and Goodman and Wallach [8] on Whittaker vectors. For the
general case the existence of the joint spectral decomposition is guaranteed by the
results of this paper (commutativity of the centralizer of the Laplacian in the
enveloping algebra) and a theorem of Nelson and Stinespring [15].

To describe our results and motivation in more detail, consider the class of
solvable Lie algebras over R of the form

b=a®u, 0.1)

where a and u are commutative subalgebras, with u an ideal. Assume that there is
an inner product {-,-> on b so that (0.1) is an orthogonal decomposition and
ad(H), Hea, is self-adjoint. Let Q=) H?+) X7, where {H;} and {X;} are
orthonormal bases for a and u, respectively. Thus Q is an elliptic operator in the
enveloping algebra U(b), which we shall call the Laplacian of b. The principal
objects studied in this paper are the centralizers of Q in U(b) and S(b) (the
symmetric tensor algebra with its canonical Poisson algebra structure).

Let g (respectively G) be a semi-simple Lie algebra (respectively Lie group) over
R, and g=f@a®n (respectively G=KAN) an Iwasawa decomposition. Our
original motivation comes from the case when b=a@®n/[n, n], with {-,-) induced
by projecting the Killing form, B, from f* onto a@®n. In this case, letting U(g)'
denote the centralizer of ¥ in U(g), we construct in Sect.1 a canonical
homomorphism

7:U(g)' = U(b),
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so that if C is the Casimir operator of g defined by B, then %(C) = + const. Since C
is central in U(g), it is clear that

HU@@HEU®)?, (0.2)

where U(b)? is the centralizer of Q. In Sect. 4 we prove that when G is split, one has
equality in (0.2), and U(b)? is isomorphic to a polynomial algebra in dim(a)
generators.

The differential equations satisfied by Whittaker functions on A associated
with the spherical principal series =, (Kostant [11] and Goodman and Wallach
[81), are given as

(Jw)S = xnw)f, 0.3)

where  is a fixed representation of b on C*(a) (see below), and y, is the character
of U(g)" associated with v. In light of (0.3), the results of Sect. 4 amount to an
algorithm for describing explicitly the differential equations satisfied by Whittaker
functions on G. The application of this analysis will appear in a later paper.

Return to the case of a general algebra b as above, with corresponding simply-
connected Lie group B. Using the standard Kirillov-Kostant-Souriau symplectic
structure on b*, one finds that Q corresponds on generic orbits of B on b* to a
Hamiltonian system on a x a* with Hamiltonian

H=Yp}+ ) cle™ . (0.4)
j=1

(Here p; are orthogonal coordinates on a*, ¢;40 depend on the orbit, and {«} is
the set of roots of a on u.) These systems contain as special cases all of the
“generalized Toda lattices” (non-periodic and periodic). The elements of U(b)?
then define first integrals of H via symmetrization from U(b) to S(b).

We define a representation n of b on C*(a) by

0 RH) ()= 4 fc—tH o,

(i) X ) f(x)=ic,e” ™ f(x)

for feC*(a), where the X satisfy the commutation relations [¥,X ;J=0(Y)X for
Yea. Then
"Q)=A4- ) cje 0.5)
j=1
with 4 the Laplacian on a associated with <-,->| ., Formula (0.5) is the usual
quantization of (0.4), and in this case the elements n(T), Te U(b)?, now become
quantum first integrals of H.

Let u:b—a be the projection corresponding to the decomposition b=a®u,
and extend p to a homomorphism of U(b) to U(a). Let W be the group of
orthogonal transformations of a generated by the reflections about the hyper-
planes o;=0. [One knows that the ring of invariants U(a)” is a polynomial algebra
in /=dim(a) generators precisely when W is a finite group.] Our main results in
this paper are the following:
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(@) w(U®B*)CU(a)” (Theorem 2.6).

(I If oy, ..., o, are linearly independent, then u: U(b)y?—U(a)” is injective. In
particular, U(b)? is commutative in this case (Theorem 2.5).

Note that combining (I) and (II) with the Chevalley restriction theorem gives
equality in (0.2) for the non-periodic generalized Toda lattices treated, e.g. by
Kostant [12], and hence establishes their complete integrability, in the generic
sense, Sect. 4. (Kostant’s results, however, are more precise concerning the
independence of the basic invariants at every point of a generic coadjoint orbit in
b*))

(I11) Suppose the set of roots o, ...,a,, forms a completed Dynkin diagram (in
the sense of Bourbaki [6]), or corresponds to the diagram C, in Fig. 5.1 (n=7/+1).
With the possible exception of the systems associated with E,, Eq, G,, or F,, one
has w(U(b))*=U(a)” (Theorem 5.2).

(IV) With a,,...,a, as in (II), U®)? is a polynomial algebra in /+1
commuting generators (Theorem 5.2).

The analogues of (I)-(IV) are also true in the Poisson algebra S(b) (Sect. 6; the
diagram B, from Fig. 5.1 is also allowed now). The proofs of (11I) and (IV) give an
explicit inductive procedure for constructing generators of U(b)?, starting with
generators for U(a)”.

The results just cited establish the equivalence between the classical and
quantum mechanical integrability of the systems (0.4) and (0.5).

The exceptional completed Dynkin diagrams excluded in (III) and (IV), for the
case of the Poisson algebra, are treated in Sects. 8 and 9 via Lax forms. It should be
noted that the existence of “Lax forms” for first integrals of H is not sufficient to
establish Poisson commutativity of these functions. For this we also need the
results of Sects. 3 and 6.

For references to the extensive literature on “generalized Toda Lattices”, see
Adler [1], Adler and van Moerbeke [2], Kostant [12], Moser [13], and
Olshanetsky and Perelomov [16]. General Hamiltonians of the form (0.4) seem to
have been first considered by Bogoyavlensky [5], who points out the connection
between the finiteness of the group W and the existence of a complete set of
invariants of motion of the system. Our formulas for the basic invariants, in the
case of the original “Toda Lattice”, are related to the calculations of Hénon [10].
In our approach, the surjectivity of the Harish-Chandra homomorphism and the
Chevalley restriction theorem for the invariant differential operators on a
symmetric space [9] serve as the underlying existence theorems for complete
integrability (in both the quantum and classical mechanical sense). The role of the
additional invariant [a generator for the center of U(b)], which occurs in the study
of the periodic systems, was also noted by Bogoyavlensky [5] and Adler and van
Moerbeke [2].

The calculation of the symplectic structure and coadjoint orbits in Sect. 7 is
standard. The formula (7.9) for the Hamiltonian vector field corresponding to a
left-invariant function on the cotangent bundle of a Lie group appears first in
Arnol’d [3] (MiS¢enko-Fomenko [14]). This gives the link between the enveloping
algebra-Poisson algebra calculations of Sects. 2-6 and the Lax forms in Sect. 8.
The complete integrability of the generalized periodic Toda Lattice has also been
obtained by Adler and van Moerbeke, [2], using Kac-Moody Lic algebras (Ratiu
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[177). Our proof, on the other hand, stays entirely within the category of finite-
dimensional Lie groups, and also applies to the quantized systems (ignoring four
exceptional diagrams).

1. Factorization of the Harish-Chandra Homomorphism

Let G be a real, connected semi-simple Lie group with finite center, and fix an
Iwasawa decomposition G=NAK (N nilpotent, A~JR’, K maximal compact
subgroup). Let g, n, a, ¥ denote the Lie algebras of the corresponding groups. Then
g=1-+a+{ (vector space direct sum). Set

s=a-+n.

Then s is a solvable subalgebra of g, and by the Poincaré-Birkhoff-Witt (PBW.)
theorem, one has a direct sum decomposition

U(g)=U(s)®{U(9)t} . (L.1)
Let
p:U(g)—Uls)

be the projection defined by (1.1).

Lemma 1.1. If xeU(g) and yeU(g), then p(xy)=p(x)p(y). In particular, the
restriction of p to U(g)" is a homomorphism.

Proof. Clearly xy=p(x)y modU(g)f, since y commutes with f while
p(x)y=p(x)p(y) mod U(g)t, since U(g)f is a left ideal in U(g). Combining these two
observations gives the lemma.

The derived algebra [n, 1] of n is an ideal in s. We set b=¢/[n,n] and let
n:U(s)— U(b)

be the canonical quotient homomorphism. Writing u=n/[n,n], we have b=a+u.
If A" Ca* is the set of roots for the action of ad(a) on n, and {a,, ...,a,} CA™ is the
set of simple roots, then

u= u

o2

¥R

1

4

where u,={Xeu:[H,X|=a(H)X for Hea}. Thus the only nontrivial com-
mutation relations in b are

[H,X]=o(H)X, (1.2)

for Hea, Xeu,, 1si</.
The isomorphism a=>~b/u induces a homomorphism

w:Umd)—U(a).
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Set g =uomop, so that the diagram
U(g)——"—U(b)

q
u

U(a)
is commutative. From Lemma 1.1 one has
q(xy)=q(x)q(y), xe U(g), ye U(9)".
Define as usual
o(H)=(1/2)tr(ad(H)|,), for Hea,
and let 7: U(a)— U(a) be the automorphism such that
1(H)=H+9(H)1, Hea.

We may extend t to an automorphism 7 of U(b) by setting

TH+X)=tH)+X, for Hea Xeu.

Define y=10q and §=%omop. Since p-7 =1, we have the commutative diagram

U(g)———U(b)

v
u

U(a). (1.3)

The restriction of y to U(g) is the celebrated “Harish-Chandra homomor-
phism” [9, Chap. X, Sect. 6.3]. Let W be the Weyl group of (g, a). One knows that

y:U@'—U@)"
is surjective.
Lemma 1.2. u maps 5(U(g)") onto U(a)”.
Proof. Immediate by (1.3).
Let 0 be the Cartan involution on g associated with f, and

g=t+p
the Cartan decomposition. Define o(X)=(X —6X)/2, so that

g:8=p
is the projection onto p. The Cartan-Killing form B is positive-definite on p. Since
the restriction of ¢ to s is bijective, we obtain a positive-definite inner product on s
by setting

X, Y)=B(o(X), a(Y)),

for X, Yes.



Systems of Toda Lattice Type 361

Lemma 1.3. The decomposition

s=a® ) n,

x>0

is orthogonal relative to -, ). If one writes X =X +X ,, where X €ea and X [ en,
then for X, Yes,

X,Y)=BKX,, Y)—(1/2) BX ,,0(Y,)). (1.4)
Proof. Straightforward calculation.

We continue to denote by ¢ -, ) the quotient inner product on b induced by the
inner product on s. Note that by Lemma 1.3, the orthogonal complement of [, 1]
in s is

3
a® ) n,,
i=1

which is thus isomorphic to b as a Euclidean vector space.

Proposition 1.4. Let C be the Casimir operator in U(g), defined via the Cartan-
Killing form. Suppose {h;} is an orthonormal basis for a and {X;;},<;<n, is an
orthonormal basis for u,. Then

HC)= Z hi+ Z ZX —<0,0). (1.5)

i=1 j=

Proof. Let v =06n be the opposed algebra to n, and let m be the centralizer of ain f.

Then g=n@a@m®v. Enumerate A" as {«,,...,0,}. For 1<i<d pick a basis
{Z:}1<j<m, for na!, such that =(Z;)=X,; when 1=<i=/ and
B(Z;;, GZmn)— , LThis is the correct normalization of Z;, by formula (1.4).]
Then setting Y;.= —(1/2)02l » one has

C=

i

; 1 ),ijZij)—'-Cm’

M\
||Mn,

1

I

where C,,e U(m).
Now [XU, T

Y, =(1/2)X;;mod¥, and 2¢= Z my;, this gives

i=1

1=H,, where B(H,H)=a(H) for all Hea. Since

mod U(g). Projecting onto U(b) and applymg the automorphism 7, we obtain (1.5).

2. Centralizers of Laplacians

With the results of Sect. 1 as a model, we consider a finite-dimensional real Lie
algebra b, equipped with a positive-definite inner product <-,-», such that
(i) b=a®u (orthogonal direct sum), with [a,u]Cu and both a and u abelian;
(i)) for Hea, ad(H) is symmetric, relative to {-,- ).
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By (i) and (ii) we may simultaneously diagonalize the action of a on u. Let
X4 -.»X,, be an orthonormal basis for u such that

[HX]=0(H)X, Hea. 2.1)

Here o, a*, and (2.1) is the only non-trivial commutation relation in b. We shall
refer to {a,,...,0,} as the roots of a on u.
Let {W,} be any basis for b. If ¢;;= (W, W;» and [¢"] is the matrix inverse to
[c;;], then the element
Q=) cWW,

of U(b) is independent of the choice of {W¥;}, and will be called the Laplacian of b
(relative to the given inner product {-,->). In particular, with {X;} as in (2.1) and
{h;} any orthonormal basis for a, we have

3 m
Q=) h}+ ) X}. (2.2)

i=1 i=1
Remarks. The essential data for constructing b and Q consist of the restriction of
the inner product to a x a and the set {«;} of roots. Indeed, given this information
we can construct b using the commutation relations (2.1), and define an inner
product on b extending the given inner product on a by making {X,} orthonormal.
Note that (R*)™ acts on b as automorphisms, via t-H=H, for Hea, and
t-X,=tX, where t=(t,, ..., t,). Relative to this action, all the inner products on b
constructed this way are equivalent, and the corresponding Laplacians are

likewise transformed.

In this section we shall study elements of U(b) in terms of their commutation
properties with Q, with the goal of determining the structure of the commutant
U(b)?. For this, fix the bases {h;} and {X,} as above. If xe a* then H, ea is defined
by

(H,H)=o(H), Hea.

We note that the present set-up admits the following inductive scheme:
For any subset PC {1, ...,m}, let up =span {X,|i¢P}, and set b, =a@u,, with the
inner product on b, being the restriction of {-,-). The orthogonal projection

tip:b—Dbp

is a Lie algebra homomorphism, which we extend to a homomorphism of
enveloping algebras. Then Qp,=u,(Q) is the Laplacian on b,. (Note that the
subscript P will consistently mean that the indices i€ P are to be omitted.)

If P, Q are subsets of {1, ...,m}, then the homomorphisms pp, i, are coherent,
in the sense that

tp(pp(Z) =up,o(Z),  ZeU(b).
When P={1,...,m}, then we write up=u, so that u: U(b)— U(a). When P = {j}, we

write pup=p;.
We now turn to some explicit calculations of commutation relations with €.

Lemma 2.1. Suppose ZeU(w), aca*, and [H,Z1=o(H)Z for all Hea. Then
[@Q,Z]1=Z(2H, +o,a)).
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Proof. Since Ze U(u), one has
=Z{> 2u(h;)h;+o(h;)*} .

But (h;,h;» =0, so that Y a(h)h;=H, and ) o(h))* = <o, o).
Lemma 2.2. Let ue U(b), and suppose that

[ u]+hu+cu=0, (2.3)
where ce R and he a. Assume that for all n,eN,

h+2 Y nH, +0.
Then u=0. =1
Proof. By induction on dim(u). When dim(u)=0, condition (2.3) becomes
(h+c)u=0, with the hypothesis 7=0. Thus u=0 in this case.

Now assume the lemma is true when dim(u)<m—1, and consider the case

dim(u)=m. Applying the homomorphism g, to (2.3), we obtain by the induction
hypothesis that p,(1)=0. Hence u=X,u, for some u,e U(b). By Lemma 2.1

[Q,X,u,1={2X Ju, +X,[Qu,]
=X, {2H, u; +<t,, o, >u, +[Qu,1}.
But by (2.3) one also has
[Q,X,u 1= —hX, u, —cX,u,
==X, lhu, +(c+o,(M)u,}.
Hence u, satisfies
[Qu,]+hu+cu, =0,

where hy=h+2H, and c¢,=c+a,(h)+<a,,o,>. Since h, satisfies the same
hypothesis as h, we may repeat this argument, to obtain elements u, e U(b) such
that u=Xku, for k=1,2,3,.... Hence u=0.

Lemma 2.3. Let ue U(b) satisfy
[Qu]+hu+cu=0

for some he a and ceR. Assume that for some j<m and all n,eN, h+2 ) nH, +0.
iFj
Then ueX ;U(b).

Proof. Apply Lemma 2.2 to u(u) to conclude that ue Ker(u;)=X;U(b).
Let g,:b—b be the orthogonal reflection defined by ¢,(H)=H for Hea and

oX)=(—1)"X, 1Zij<m.

Then o, is clearly an automorphism of b, and so extends to an automorphism of
U(b). Define

“U(D)={beU®):o(b)=b, 1<i<m}.
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In terms of a PBW basis {X'h’:1eIN", JeN’} for U(b), °U(b) is the subspace
spanned by {X'h’: Ie(2N)", JeN’}.
Here X'=X''.. X' and b’ =hi'.. .hi.

Lemma 2.4. Let PC{l,...,m}, ueU(b), and suppose p(u)=0 for keP. Then
u= ];[Xk>v for some veU(b). If also ue°U(b), then u= (];[X,f)v' for some
v'e® (k]{b). <

Proof. Use the PBW basis {X'h’} for U(b) and the commutativity of {X,}.
Theorem 2.5. Assume that the set of roots {0, ...,o,.} is linearly independent. Then

(1) p:U®)?>Ul(a) is injective;

(2) degu(T)=degT, for TeU(b)?;
(3) U(b)? is commutative;

(4) UMD2C°U(®).

Proof. The independence of the roots implies that there is a basis {H;} for a such
that o(H;)=9,; One has [H, X ;]=¢,X; and

‘szainiHj+ 2X7, (2.4)

where a;;= o, ;).
Fix the basis {H,} and define linear maps 4,: U(a)— U(a) by

AfH,, . H)=fH,, . .H+2, .., H)—f(H,,...H, .. H),

for 1<i</, where f is any polynomial in # variables. One verifies by induction on
deg(u) that

[, X ]=X7?Au, ucU(a).
Also one has
[HiHj,XK] =XK(kiHj+ kH;+kk),

for any multi-exponent K=(k,, ..., k,)eIN™.
Suppose Te U(b). Then T may be written uniquely as a finite sum

T= Y X*uy, uge U(a). (2.5

By (2.4) and (2.5) the equation [@, T] =0 is equivalent to
Y X upge= > XIX* Ay, (2.6)
K i,K
where
gx= Zaij(2k,-Hj+k,-kj).
ij

If we introduce the notation

ocK=Zkioci, for K=(ky,...ky),
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then o, #0 for K0, and we have
gx=2H,, + <o, 0.

In particular, deg(g,)=1 for any K0, and Eq. (2.6) is equivalent to the following
recursion for {ug}:

Ugdgg = Z A5, (2.7)
i=1

for K+0. Here ¢,=(0, ..., 1, ...,0) (1 in i place), and we set u, =0 if any coordinate
of J is negative.

The assertions of the theorem now follow from (2.7). Note that
deg(4,u) =deg(u)— 1, while deg(ugy) =degu+ 1, if u#0. Hence by induction we see
that degu, <degu, —|K|, so that deg T=degu,. But u, = pu(T), which proves (1) and
(2). Since u is a homomorphism, (3) follows from (1), and (4) is clear inductively
from (2.7). Q.E.D.

Given aca*, a0, denote by s,:a—a the orthogonal reflection through the
hyperplane a=0; thus

s,(H)=H —(2u(H)/{a, 0))H,.
Extend s, to an automorphism of U(a).
Theorem 2.6. Assume that o+0 is a root of a on w. If ve U(b)? then s, u(v)= u(v).

Proof. Assume o=oa, and let P be the set {1,...,m} with i omitted. Then
u()=p(pp(v)), and dim(up)=1. Thus it suffices to treat the case dimu=1, since

11p(v)e U(bp).

We now assume dimu=1. Since 040, we may assume that the orthonormal
basis {h;} for ais taken such that a(h;)=0 for j=2. Set a, =span{h,,...,h,}, and
write 4 =U(a,). Then [X,,#]=0, s,|,,=1, and U(a)=4"[h,]. We shall prove
that

Uby¥?=x12]. (2.8)
This will yield the theorem, since
s,(hy)=—h, and wQ)=himodx .

To prove (2.8), write H=h,,X =X, c=0o(h,), and note that the only non-trivial
commutation relation in b is

[HX]=cX.

Define Af(H)=f(H+2c)— f(H), if fe#[H]. Let TeU(b)? and write, by
Theorem 2.5,

T= Y X*f(H),

k<d

where f,(H)e #[H]. Equation (2.7) can be written in this case as
4k f(H)(cH + k{a, D)= Af,_,(H). (2.9)
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In particular, for k=d+ 1, one has Af,(H)=0. Since ¢+0 and f; is a polynomial,
this implies that f,(H)=uq,€ #". But then T—uyQ%e U(b)? and has degree in X less
than d. Thus (2.8) follows by induction on d.

3. Inversion of the Symbol Map

Motivated by the example of the “periodic Toda lattice” (Sect. 5), for which the
roots are not independent, we next construct a (partial) right inverse to the symbol
map

U0~ U(a),
under the following hypotheses on the set of roots n={a;, ..., a,,} Ca*:
For all i, o;#0, and
n~{o,} is linearly independent.

(3.1)

Let WC Aut(a) be the group generated by the reflections {s, ; 1 Si=m}. (Write
W=W, if necessary to indicate the dependence on =) By Theorem 2.6,
wWUMBYCU(a)”. For any non-empty subset PC{1,...,m}, condition (3.1) and
Theorem 2.5 give the injectivity of

w:Ubpy > Ua)” .
Define
Ula)y = 'PQ . WU (D)) (32)

Then given ueU(a)) and a non-empty subset PC{1,...,m}, there is a unique
element wy(u)e U(bp)?* such that

wwp(u)) =u.

Furthermore, degw,(u)=degu and wp(u)e°U(b). Via the natural inclusion
U(b,)CU(b), we may view the map ut>w,(u) as an injective degree-preserving
algebra homomorphism

wp: U@ >°U(b).
Now define a linear map w': U(a)y —°U(b) by
w(w) = (= DIP* twp(u) (3.3)

(sum over all non-empty subsets P of {1,...,m}). This map gives a “first approxima-
tion” to the desired right inverse for u; under suitable conditions on 7 and deg(u)
we will show that w'(u)e U(B)°.
To obtain some basic properties of the map w’, recall that for every subset
PC{l,...,m} there is a homomorphism
Up:UD)—=U(b,).
Lemma 3.1. If |P|=1 and ue U(a)y, then

tp(W (1) =wp(u). (34
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Proof. Suppose P={i} and 0+ QC{1,...,m}. By the injectivity of u on U(b,)?", one
has

. WQu{i}(u) > lf léQ
“i(WQ(“))‘{wQ(u), it icQ.
Hence by (3.2),
w(w'(w) = ZQ(— I)IQ' i 1WQ(“) + ;Q(- 1)IQI i leu(i}(u) (3.5)

(sum over non-empty subsets Q of {1,...,m}). Writing Q = {i}uQ,, with i¢Q,, in the
first summand in (3.5), one obtains cancellation with a corresponding term in the
second summand, except for the term with Q ={i}. This proves (3.4) when |P|=1.
Suppose now P=Qu{i}, where i¢Q. Then up=pyop;, s0 up(W'w)) = po(wy(u).
But popy=p, so wp(u) and pp(w'(u)) both project onto u. Hence they are equal, by
Theorem 2.5, Q.E.D.
Next we measure the extent to which w'(u) fails to commute with Q.

Lemma 3.2. There is a linear map w": U(a)) =°U(b) such that
[Qww)]=X7.. X2w"(u). (3.6)
Furthermore, degw”(u) =deg(u)+ 1 —2m, so that w"(u)=0 if deg(u) <2m—2.
Proof. For 1 £i<m, one has u,(2)=Q,. Hence by Lemma 3.1,
1(LQw'w)]) = [2;, wiw)]1=0.

Since w'(u), Qe°U(b) and °U(b) is a subalgebra, we have [, w'(u)]e°U(b), so (3.6)
follows from Lemma 2.4. Since degw'(u) <deg(u), the estimate for degw”(u) is
immediate.

Lemma 3.3. Let ue U(a)y, Re U(b), and set
T=w(u)+X?..XZR.
Then T commutes with Q iff R satisfies
[Q,R]+4(H,+<7,7))R+w"(u)=0, (3.8)
where y=o, +...+0,,.
Proof. By Lemma 2.1, for any Re U(b),
[QX1. XR]=X?..X.(4H, +4{y,7))R+X}.. X [ R].
Thus by (3.6) it is clear that [T, 2]=0 is equivalent to (3.8).

Theorem 3.4. Assume the set of roots {«,...o,} is linearly independent, and let
ueU(a)y be given. Then there exists TeU()? such that wT)=u iff
T=w'(u)+X2.. X2R,where Re°U(b) and satisfies equation (3.8).

Remark. Since H, satisfies the hypotheses of Lemma 2.3 (for h) when {o;} is
independent, a solution R to (3.8) is uniquely determined by u.
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Proof of Theorem 3.4. The map
w:UD®P—>U(a)”
is injective, by Theorem 2.5. Suppose there exists Te U(b)? with (T)=u. Then
Te°U(b) and
u(T—w()=0, 1=i<m,

by Lemma 3.1. But w'(u)e°U(b), so that T—w'(u)=X?2.. X 2R for some Re°U(b), by
Lemma 2.4. Now apply Lemma 3.3 to complete the proof.

We now turn to the situation that arises in the periodic Toda lattice and its
generalizations. Namely, we assume that dima=/, dim(u)=¢+1, and that the
relation among the roots is of the form

¢
Ui+ ), =0, (3.9
i=1

where n; 21 are integers. Set

E=X".XUX,, . (3.10)
Note that [H, £]=0, so & is in the center of U(b).
Lemma 3.5. Let Te U(b)? and suppose w(T)=0. Then Te EU(b)2

Proof. For 1<i</+1 one has
u{(T)e U(b)™.

But u(u{T))=u(T)=0, so by condition (3.1) and Theorem 2.5, u(T)=0. Hence
T=X,..X, v for some ve U(b), by Lemma 2.4.

If all n,=1, we are done. If not, assume the roots o; are numbered so that
ny2n,2...2n, Set

£+ 1 12

Y= Z o= ';1(1_711‘)0‘1"

i=1
Then by Lemma 2.1,
0=[QT]=X,..X,, {2H,+<{y,)v+[Qv]},

which gives 2H,+<y,y>)v+[Q,v]=0.

But n, >1 and {o;:1 i</} is linearly independent, so that y¢span{«;;j=1}.
Hence by Lemma 2.2, v=X,v’. We may repeat this argument until we get v=X"7'v,.
Now use (2.5) again, to get

0=[Q TI=X1X,.. X, {2Hy+ B, B)v, +[Q,0, 1},

3
where f= ) (1—n)a. If n,>1, then P¢span{a;;j=*2}, so by Lemma 2.2,
i=2

v, =X,v]. Repeat to get v, =X%v,, etc. Finally, we have T=¢v. Now [T,2]=0
implies [v, 2]=0, so that Te¢U(b)™
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Lemma 3.6. Let 0=0,, € Aut(b) be the reflection sending X,,, to —X,,, (cf.
Sect. 2). Suppose Te U(b)?.

(i) If o(T)= —T, then TeEU(b)2

(ii) If w(T)=0 and o(T)=T, then Te&*U(b)~

Proof. (i) Since puoo = identity, we have Te Kerpy, so Lemma 3.5 applies.
(i) By Lemma 3.5, T=¢T for some T'e U(b)? Since o(¢)= —¢, one has
o(T)y=—T,so T'=ET" by (i).

Theorem 3.7. Assume that dim(u)=7/+1, and that the roots {o,...,0,, } satisfy
(3.1) and (3.9). Define £ by (3.10).

(@) If U(a)y is generated by elements u,,...,u, of degrees <2/, then U(b)? is
generated by & and w'(uy),..., w'(u,).

(b) If 2degé= qgf}((deguﬁdeguj), with {u;} as in (a), then U(D)? is
commutative.

Proof. (a) Since m=/+1 in Lemma 3.2, we have w"(;)=0, so that w'(u;)e U(b)™
Given Te U(b)?, we can thus construct 7" in the algebra generated by {w'(u,)} with
wWT)=u(T) and degTz=degT  [since w(T) is a polynomial in {u;}, and
degw'(u;) =deg(u,;)]. Hence T=T +¢v for some ve U(b)?, by Lemma 3.5. Since
deg(v)<degT, we obtain the result by induction on deg(T).

(b) Note that [w'(u,), w’(uj)]eKer(u)r\DU(b)g, and has degree at most r—1,
where r= r{lfjx (deg(u;) +deg(uy). But this commutator is divisible by £2, by

Lemma 3.6(ii), and deg&?=r, by assumption. Hence w'(u;) and w'(u;) must
commute. Since ¢ is central in U(b), part (b) follows from (a) in this case.

4. Structure of U(b)* for Dynkin Diagrams

We shall say that a subset n={«,,...,0,} Ca* defines a Dynkin diagram if it is a set
of simple positive roots for a reduced root system R Ca*. This is equivalent to the
following conditions:

(D)) m is a basis for a*;

(Dy) the group W generated by the reflections {s, } is finite;

(Dyy) the numbers a;;=2<ao;, a;>/ o, ;) are integers =0, for i=j.

(For these and other properties of root systems cited below, Bourbaki [6].) The
matrix [a;;] is called the Cartan matrix of =.

Theorem 4.1. Let b=a®u as in Sect. 2. Assume that dima=dimu and the set @ of
roots of a on u defines a Dynkin diagram. Then

w: UB)2-U(a)”
is an algebra isomorphism.

Remark. The condition that 7 define a Dynkin diagram depends on the inner
product on a*, dual to the given inner product on a. Given any base 7 C a* defining
a Dynkin diagram, we can construct b, an inner product {-,-», and Laplacian ,
as remarked in Sect. 2.
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Corollary 4.2. Let u,,...,u, be a set of homogeneous, algebraically independent
generators for U(a)”. Then there are unique elements T,,...,T,€ U(b)? such that
WT)=u; and

UD)?=R[T,...,T,].
Furthermore, if deg(u;) <2/ —2, then T,=w'(u;), where the map w" is defined by (3.3).

Remarks. 1. For the irreducible classical Dynkin diagrams of type 4, or D,, £ =3,
the basic invariants {u;} all have degrees <2/ —2. Also, starting with a diagram of
type A, or D, and applying the inductive construction of Sect. 3 for the map w’, one
obtains subdiagrams which are direct sums of types A, and/or D,. Thus all the
elements T; can be constructed inductively via w’ in cases 4, and D,. [For 4,, it
follows easily by Theorem 3.4 that w'(u,)e U(b)?, where u, is a basic invariant of
order 3.}

2. For the diagrams of type B, or C,, all but one basic invariant have degrees
<2/ -2, so Corollary 4.2 applies to these. For an invariant u, of degree 27, we
note that in Lemma 3.2, degw”(u,)<1. Using Theorem 3.4, we find that
T,=p" '(u,) is given by the formula

E(W”(ut)) X 2 2

T,=w'(u,)+ Xy,
U Ay T

@.1)

where y=a; +... +a, and
e:U(b)—R
is the augmentation homomorphism [¢(T)=constant term of T7]. Thus for all

diagrams of classical type there is an explicit inductive algorithm to determine
Ti,...., T, from u,,...,u,.

Proof of Theorem 4.1. There exists a real semi-simple Lie algebra g, with Iwasawa
decomposition g=n+a~+¥f, as in Sect. 1, such that = is the set of simple roots for
the action of ad(a) on 1, and (-,-) restricted to a x a is the Cartan-Killing form.
Thus b~a®(n/[n,n]), and as previously noted we may assume that the inner
product on b is consistent with formula (1.4), since rescaling the inner product on u
can be done via an automorphism of b which is trivial on a.

With these normalizations we may apply Proposition 1.4 to conclude that

Q=5C)+<e 0>,

where C is the Casimir operator in U(g) (notation as in Sect. 1). Thus
HU(g)S U(®)?,

and it follows by Lemma 1.2 and Theorem 2.6 that
w:UG->U@"

is surjective. The injectivity of u is immediate from the linear independence of the
roots and Theorem 2.5.

Proof of Corollary 4.2. The existence of the generators u,...,u, follows from
Chevalley’s theorem. Applying Theorem 4.1 to the subalgebras b,, we conclude
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that
Ula)g =U(a)"

[Eq. (3.2)]. Now apply Theorem 3.7, noting that n=/ in this case.

5. Structure of U(b)? for Extended Dynkin Diagrams

Assume that n={a,,...,a,} defines a Dynkin diagram, in the sense of Sect. 4. Let
R=R, be the associated reduced root system. We shall assume throughout this
section that R is irreducible. Let feR, and write a,, ; = — f.

Definition 5.1. The set n;={a,,...,0,, } defines an extended Dynkin diagram if
every subset obtained by deleting one element from 7, gives a Dynkin diagram.

Proposition 5.1. The set n; defines an extended Dynkin diagram iff B is dominant :

{B,o>=0 for 1Zis/. (5.1)
When (5.1) holds, then
3
B= ) no, with n,z1 forall i. (5.2)
i=1

Proof. We first prove that (5.1) implies (5.2). Let {w,,...,®,} be the fundamental
weights relative to 7, defined by {o;, ;> =(1/2)J;<e;, &;>. Then by (5.1), = Y mw,
with m; 0. But one also has w;= ) ¢;o; with ¢;;=0. Hence the coefficients n; in
(5.2) are non-negative. Set J={j:n;=0}. Since {o;;>=0 for i%j, we have

Zni@ci, a;» =0 for all jeJ. But by (5.1), this forces {o;, ;> =0 when i¢J, je J. The

irreducibility of R then implies that J is empty, proving (5.2).

Suppose now BeR. If n; defines an extended Dynkin diagram, then by
condition Dy, of Sect. 4, {f,0;> = — o, ;, ;> 20 for 1 £i<¢. Conversely, suppose
(5.1) holds. Then from (5.2) we see that any proper subset of m, is linearly
independent. Since feR, the reflection s; is in the Weyl group of n, and
24P, o, »/{a; 0> 1s @ non-negative integer. Hence conditions (D)—(Dyy) of Sect. 4
hold for the sets m;~{o;}, 1=i</. This proves that 7, is an extended Dynkin
diagram in the sense of Definition 5.1.

Example. Let f=8& be the largest root of the system R, relative to the ordering
given by the base n. Then f satisfies condition (5.1). The set n; is the completed
Dynkin diagram corresponding to the root system R, in Bourbaki’s terminology.

The classification of extended Dynkin diagrams follows easily from the
classification of Dynkin diagrams, Proposition 5.1, and the following properties of
root systems:

(A) R has elements of at most two lengths.

(B) The group W operates transitively on the roots of a given length, and for
ae R, the orbit W-« contains exactly one dominant root.

For the diagrams A4,, D,, E¢, E,, Eg, for which all roots have the same length,
the only choice for f is the largest root & When R has roots of two lengths, there is
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also a unique short dominant root f. Hence the diagrams B,, C,, F,, G, each give
rise-to two extended Dynkin diagrams (see Fig. 5.1).

By(=C,): O=<=0==0 B=a;+o,
%3 oy 93
B(/>2): O=—=<—=0—-0—.—~0==0 f=o,+...+0,
et 1 oy % %p—1 %y
Oyt
CAt>2): O——0O—..—O O==<=0 f=o,+20,+...+o,_,)+o,
o o %rn %y &,
F,: O0—0===—=0—+-0—-0 B=o, 4+ 20,4+ 3005+ 20,
o,y o, 0y oy s
G,: O——0===0 p=20,+a,
o3 %y %y

Fig. 5.1. Extended Dynkin diagrams determined by f=short dominant root («,, , = — )

Let n,; be an extended Dynkin diagram, and form the Lie algebra b=a@u as in
Sect. 2, with {a,...,0,; , } the roots of ad(a) on u, and the inner product {-,- |, x,
being the one associated with the root system [see remarks after formula (2.2)].
Let Q be the Laplace operator for b. We are thus in the situation of Sect. 3, since

£
a Y no=0,
i=1

¢
with {n;} asin (5.2). Set |f|= 3 n,, so that the element &€ U(b) defined by (3.10) has
i=1

degree |B|+1. Let {u,,...,u,} CU(a)” be a set of homogeneous, algebraically
independent generators.

Theorem 5.2. Assume that © is a Dynkin diagram of classical type or Eg, and that b
and Q are defined from the extended Dynkin diagram m;. Then

(a) U(b)? is generated by & and w'(u,),...,w'(u,);

(b) U(b)? is commutative if B=a is the largest positive root, or if n=C, and
B =short dominant root.

Remark. For the diagram B, with f§ the short dominant root, we prove a weaker
version of (b) in Sect. 6.

Proof. We use Theorem 3.7. The diagrams A4,, B,, C,, D,, and E, are exactly those
for which all basic invariants in U(a)” have degree <2¢. By Theorem 4.1 we know
that U(a)§ = U(a)", so part (a) follows from Theorem 3.7.

For (b), we note that when =&, then degé =|f|+ 1 =h, the Coxeter number of
W. But one also has h=max(deg(u,;)), for any Weyl group. Thus part (b) of



Systems of Toda Lattice Type 373

Theorem 3.7 applies. When = is the diagram C,, and f is the short dominant root,

then f=¢, +¢&, =0, +2(ct, +...+,_ )+, in the notation of Bourbaki (loc. cit.),

so that |f|=2¢—2. But degu;=2i, so max (degu; +degu;) =4/ —2=2degl. Again
i*j

part (b) of Theorem 3.7 applies.

6. Centralizer of the Laplacian in the Poisson Algebra

If g is a Lie algebra (over a field of characteristic zero), recall [12, 18] that the
symmetric tensor algebra S(g) carries the structure of a Poisson algebra; there is a
Lie algebra multiplication {f, g} on S(g) such that

() {X,Y}=[X,Y], for X, Yeg;

(i) {fg.h}={f,h}g+f{g.h} for fg,heS(g).

The bracket operation {f,g} can be defined via U(g) as follows (in Sect. 7 we
give an equivalent differential-geometric definition): Let {U ,(9)},», be the canoni-
cal filtration on U(g), and let S"(g) be the subspace of S(g) of homogeneous
elements of degree n. Let

j:U(g)—S(g)
Jn:U@)/U,_(3)—~S"(g)

be the canonical isomorphisms given by the Poincaré-Birkhoff-Witt theorem. If
PeU,(g) and Qe U,(g), then one defines

U Pl D)} =j+n—1(PQ—PQ). (6.1)

(Since [U,,, U, 1€ U, 4.1, it is clear that the right side of (6.1) depends only on P
modU,_, and Q modU,,_,.) Property (i) of {-,-} is immediate, and (ii) is easily
verified. Note that

{5™(g), S™(g)} 5™ """ X(g). (6.2)

The elements f, ge S(g) will be said to Poisson-commute if {f,g}=0. If f=j(P)
and g=j(Q), with f,g homogeneous of degrees m, n respectively, then the Poisson-
commutativity of f,g is equivalent to the condition [P,QleU,, . ,_,(9). In
particular, if P and Q commute in U(g), then j(P) and j(Q) Poisson-commute in
S(g).

We return to the general context of Sect. 2. Let Q be the Laplacian defined
there, and define

S(B) @ ={feS(6):{£,j(Q)}=0}.

Since j(Q)e S*(b), we see by (6.2) that S(b)'“? is a graded Poisson subalgebra of S(b).
Also
J: U(B)2 S(b)y@

is an injective linear map. Corresponding to the decomposition b=a®n there is a
projection map v:S(b)—S(a), and of course j:S(a)= U(a). One checks that the
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diagram

U —I— S(b)®@

" v (6.3)
Ula) —— S(a)

is commutative.

In this section, we adapt the arguments of Sect.2 to study the Poisson-
commutant S(b)"“?. We show that it is Lie-isomorphic to the enveloping algebra
commutant U(b)?, when b and Q are defined by Dynkin diagrams or certain
extended Dynkin diagrams.

Define

°S(b)=jCU(D)),

so that the elements of °S(b) only contain even powers of the basis {X} for u. We
then have the following Poisson-algebra analogue of Theorem 2.5:

Theorem 6.1. Assume that the set of roots {«,,...,0,} is linearly independent. Then

(1) v:SOYD—S(a) is injective;

(2) degv(Q)=degQ, for Qe S(bY'?;
(3) S(BY“ is Poisson-commutative ;
4) S ces(b).

Proof. Since S(b) is graded, it suffices to consider only homogeneous elements in
S(b); for these we can calculate Poisson brackets using (6.1). This amounts to
taking only the top-order terms in the calculations of Sect. 2. We sketch the
resulting modifications in the proof of Theorem 2.5 to obtain Theorem 6.1.

Fix the basis {H,} for a as in that proof. Then for a homogeneous polynomial f
of degree m,

0
AfH,, .., H)=2——f(H,,....H)
0H,

modU,,_,(a). Thus if TeU,(b) is given by (2.5), then by (2.6) the Poisson
commutativity equation [@, T]=0mod U, (b) is equivalent to

0
ZXKuK = ZXZXK

o (0 (64

mod U, (b). It follows that the analogue of Eq. (2.7) for Poisson commutativity of a
homogeneous element Q=Y X*u,eS5™(b) is

0
H, =Y 5 TR (6.5)

[Here ugeS™ 1¥l(a) and the product X*u, is in S(b).]
Assertions (1), (2), and (4) of Theorem 6.1 now follow from (6.5), just as the
analogous statements in Theorem 2.5 followed from Eq. (2.7). For Poisson-
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commutativity, note that
{S(b), S(b)} SuS(b),

so the map v annihilates all Poisson brackets. Hence the injectivity of v on S(b)/?
implies assertion (3), finishing the proof.

Theorem 6.2. Assume that o.#0 is a root of a on w. If Qe S(bY*“?, then s, (Q)=v(Q).

Proof. The same reduction to the case dimu=1 as in the proof of Theorem 2.6
applies here. Let the notation be as in that proof, and suppose that
T= ) X?*f,(H)e Uy(b),
k=d
where f,(H) is a polynomial of degree <2(d—k) in H with coefficients in .#". Note
that Eq. (2.9) can be written as

2KHf(H) =(d/dH) f,_,(H), (6.6)

modU,,_,(b). Now transfer Eq. (6.6) to S(b) via the map j, and argue by induction
on d that S(bY“?=1[j(Q)], as in the proof of Theorem 2.6. [Here we identify
A =U(a,) with S(a,)CS(b).] We leave the details to the reader.

Corollary 6.3. Assume that dim(u)=dim(a)=7 and the roots {o,,...,0,} define a
Dynkin diagram. Then S(bY®® is Poisson-commutative, and

J:U(®)? > S(6« (6.7)
is a linear isomorphism.

Proof. By Theorem 6.2, v:S(b)’®—S(a)”, where W is the Weyl group of the
Dynkin diagram. But by the commutativity of diagram (6.3) and Theorems 4.1 and
6.1, the map v is a linear isomorphism. Hence (6.7) is also bijective, Q.E.D.

Now we assume that n={a,,...,0,} is a reduced, irreducible Dynkin diagram,
and we form an extended Dynkin diagram as in Sect. 5. We then have the
following Poisson algebra analogue of Theorem 5.2:

Theorem 6.4. Assume that w is a Dynkin diagram of classical type or E¢, and that b
and Q are defined from an extended Dynkin diagram mz. Then

(@) the canonical map j: U(bY?—S(b)® is bijective;

(b) S(BY is Poisson-commutative.

Remark. Part (b) is immediate from (a) whenever U(b)? is known to be com-
mutative. In the case of the diagram B, with f the short dominant root, which
could not be treated by the methods of Sect. 5, we do not know if U(b)? is
commutative. Nonetheless, the Poisson-commutativity (b) does hold.

Proof. (a) First note that an obvious modification of the proof of Lemma 3.5 shows
that

Ker(v)=(£)S(b), (6.8)

where ¢ is defined by (3.10), with the exponents {n;} being the coefficients of f in
terms of {a,,...,o,}.
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Next, given QeS™(b)“?, we know by Theorem 6.2 that v(Q)eS(a)”, where
W=W,. Hence by Theorem 5.2 there is Te U, (b)? such that jou(T)=v(Q). Hence
by (6.3), Q —j(T)e Ker(v). Thus Q —j(T)=(£)Q,, where Q, Poisson-commutes with
- j(Q) and has degree less than m. By induction on m this proves (a).

(b) By Theorem 5.2 and part (a), the only case to be checked is #=f,, f=short
dominant root. In the notation of [6], f=¢, =, +...+a, so that n,=1 and
deg&=7/+1 in this case. By part (a) of Theorem 5.2, it will suffice to show that the
elements w'(y;) Poisson-commute in U(b). But one has degw'(u;) =degu,=2i, and
by Lemma 3.6,

[w(u), W)=, (6.9)

where v;;,€ U(b)?. Since deg(v;)<2(i+j—¢)—3<degé, we know that v;; is a
polynomial in {w'(x,)}, by part (a) of Theorem 5.2. In particular, deg(v;;) is even.
Hence the left side of (6.9) has degree at most 2i+ 2j—2, establishing Poisson-
commutativity.

7. Cotangent Bundles and Coadjoint Orbits

In order to relate the enveloping algebra results of the previous sections to the
Hamiltonian systems of “Toda Lattice” type, we now recall some basic symplectic
geometry. We will use standard differential-geometric notation, following [20]
(except for occasional minus signs arising from a choice between right and left
actions). Since the results are mostly known [4, 12, 14], the proofs will be generally
sketched or left to the reader.

Recall that if M is a smooth manifold and T*(M) is the cotangent bundle of M,
then T*(M) has a natural symplectic structure, obtained as follows:

Let n:T*(M)—>M be the projection. If {e T*(M) and ve T(T*(M),), define
0v) =¢(drv)). Set = —db. Then w is a closed non-singular 2-form on T*(M). If
pe CR(T*(M)), let the Hamiltonian vector field v, on T*(M) be defined by
vy, u)=u(¢p) for all smooth vector fields u on T*(M). The Poisson bracket of
¢, pe CR(T*(M)) is then defined as

16, W} =v4(w) = 0(v,, vy). (7.1)

We now specialize to the case M =G, a real Lie group. Let g denote the Lie
algebra of G, which we view as the space of left-invariant real vector fields on G.
For Xeg and ge G, one has X e T(G), given by

X,(6)= 5 Haexp X, o,

for pe C*(G).
We can trivialize the cotangent bundle of G by defining v:G x g*— T*(G) as
w(g, /)X, =fX),

for ge G, feg* and Xeg. Then v is a vector bundle isomorphism. The left action
of G on T*(G) becomes the action s-(g,f)=(sg,f) on G x g* under this isomor-
phism. The right action of G on T*(G) becomes

(g,f)'S=(gS,S_1'f), (72)
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where s-f(X)=f(Ad(s)”'X) for s€G, feg* Xeg, with Ad the adjoint repre-
sentation of G. Thus the left G-invariant functions on T*(G) correspond under v to
the functions on g*.

If le g*, feg*, we define A € T(g*), to be the directional derivative in g* at f in
the direction 4. If ve T(G x g*), ,), then there are elements X(v)eg and A(v)eg*
such that

v=(X(),, 4v);).
If 0 is the canonical 1-form on T*(G), one has y*(0)(v) = f(X(v)), where {=(g, f).

Using the standard formula d6(A4, B)= A6(B)— BO(A)— ([ A, B]), for A, B vector
fields, one calculates the symplectic structure on G x g* as follows:

Lemma 7.1. For (g, )€ G X g* and v,we T(G X g¥), /), one has
(W*@)y, v, W)= f([X (), X(W)]) — Av) X (W) + Aw) (X (v)) - (7.3)

We abuse the notation and henceforth use the symbol w to denote y*w on
G x g*.

Let He CR(g*). Using the canonical identification between (¢*)* and g, we may
consider the differential of H as a function from g* to g. Thus for f, e g*, we have

HaH()= & HO+ ) o

We also look upon H as a function on G x g*, by setting H(g, /)= H(f), for
geG, feg*. Let vy be the corresponding Hamiltonian vector field on G x g*. The
next lemma is proved by the obvious calculation, using (7.3), and is left to the

reader. [For X, Yeg, feg*, write X - f)(Y)= —f([X, Y]).]
Lemma 7.2. If He CR(g*), g€ G, feg®, then

(vn)g, 5y =dH(f)y —(dH(f)-f)y)- (7.4)
Furthermore, if H,, H,e CE(g*), then
{H,Hy}, pn=f[dH (f),dH,(/)]). (7.5)

In particular, if X € g, then X defines a function Hy on g* by Hy(1)=A(X). The
corresponding Hamiltonian vector field is

g, n=Kp =X 1)) (7.6)

Comparing (7.6) and (7.2), we see that vy is in fact the vector field on G x g*
corresponding to X under the differential of the right action of G. By (7.5) we have

{Hy,Hy}=Hx v (7.7)

for X, Yeg, so the right G-action on T*(G) is Hamiltonian [4]. Furthermore, the
map X — H, extends to an algebra isomorphism between S(g) and the real-valued
polynomial functions on g*, and (7.7) shows that the Poisson bracket on S(g)
defined via U(g) in Sect. 6 agrees with the Poisson bracket coming from T*(G) (cf.
[12]).

Given feg*, let =0’ =G-f be the coadjoint orbit of f; and G, the stabilizer
of f If Xeg, then (X -f) .€ T(0), and we let ? be the symplectic form on ¢ such
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that
o XN (Y-£))=f[%.X]), (7.8)

for X, Yeg. If He C{(g*), let H’= H|,, and denote by X§; the Hamiltonian vector
field on O corresponding to HY via .

Lemma 7.3. One has

X5),=—(dH(f) 1), (7.9)
If H,, Hy,e CR(g*), then

{H{,H3}={H,,H,}°. (7.10)
Proof. Let Yeg. Then

W0 V)= S U+ f o= FLAH(), YD),

Comparing with (7.8), we get formula (7.9). By (7.1) and (7.9), we have

{H s o) ()= S Holf =t () o

= —(dH(f)-/)(dH(f))
=f([dH (f), dH (1))
Thus (7.10) follows from (7.5)
Remark. Let 7:G x 0— 0O be the projection. Then
() *(0")=0lg xq,
as one calculates easily using Lemma 7.1. Also for He Cg(g*), one has
to(vg) =X4,

so the Hamiltonian flow on @ generated by HY is the projection onto O of the flow
on T*(G) generated by H.

We now turn to the case g=b=a®u, as in Sect. 2, with {a,,...,a,} Ca* the
roots of a on u and {X,,...X,}Cu an orthonormal basis of root vectors
([H,X]=0o(H)X, for Hea). It is immediate that

Center(b)=a,®u,,
where
ap= () Ker(a,), 1, =span {X,:0;,=0}.
i=1
Thus replacing b by b/(a,®u,), we shall assume that:
o,0,1<i<m, and {«,,...o,} spans a*. (7.11)

Let {X%,..,X} Cb* be the dual basis to {X,, ..., X,,}, extended to be zero on a,
and consider {a;,...,,} as elements of b* which are zero on u. One easily
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calculates that the coadjoint action of b on b* is given by

H-X*%=—a(H)X}, H-0,=0,
X X7=0;00X; 0;=0.

ijrje

(7.12)

Let B be the connected and simply-connected Lie group with Lie algebra b.
The map

(H,X)—exp(H)exp(X)
is a global diffeomorphism from a X u onto B. Suppose f= Y cX}. Then by (7.12),

exp(H)exp(X)-f= Y. ce " @XF+ Y cXFX)a,. (7.13)
i=1 i=1

Assume that f is generic, i.e. dim(@’ is maximal. By (7.11) and (7.13) one has
¢;*0 for all i in this case, and the isotopy group

={expX):Xeu and Y cX¥X)o,=0}
={expX):(H-f)(X)=0, all Hea}.

By (7.11), dima-f=dima, so we see that dimB,=dimu—dima. Thus
dim ¢ = dim B—dim B, =2dima.

We shall assume the o; are numbered so that {a;, ...,a,} is linearly independent
(¢/=dima). Define

u, =span{X,,...X,}, b, =a®u,,

and let B, be the corresponding subgroup of B. Then it is clear from (7.13) that B,
acts simply-transitively on (/. We may use this observation to obtain canonical

symplectic coordinates on ¢/ as follows:
Let {H,,...,H,} be the basis for a dual to {o,, ...,®,}. Define a diffefomorphism
p: R xR/ > 0(=0’) by

1

w(p, g)=exp <,Z qH i) eXp< g (pi/c)X )

i=1

If we express the remaining roots o, , ..., o, in terms of o, ..., o, by

3
Z T

j

and define

£
=Y dy;, i>C, (7.14)
ji=1

then

2 m
wp, @)= Y poy+ ). cie VX (7.15)
j=1

i=1
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Viewing p; and g; as functions on 0, it is immediate from (7.15) that
Hy,=p, Hy,=ce™ . (7.16)
Since [H;, X ;]=0,X ;, the corresponding Poisson bracket relation is thus
{pre” ¥} =07,
by (7.16) and Lemma 7.3. Hence
{psa;}=—0y;.

[Recall that if f and g are real functions on a symplectic manifold, and ¢ is a
smooth function defined on an open set containing the range of g, then
{£,#(9)} =¢'(9) {f,¢}.] Similarly, one has {p,, p;} =0 and {g;,q;} =0. Thus g, ..., q,,
P1,---D, 18 a set of canonical symplectic coordinates on O.

With {H;} as above, the Laplacian of b is

£ m
Q= Y <KwpayHH;+ ) X7,
i=1

i,j=1
It follows from (7.16) that the corresponding Hamiltonian function j(2) on O is

2 m
i,jZ::1 (a0 pip;+ j; cle” 2, (7.17)
Note that the choice of ¢ determines the magnitude of the coefficients ¢? in the
“potential energy” term, while the geometry of the set of roots (relative to the given
inner product on a) determines the “kinetic energy” term.

By means of a canonical transformation we can put all the geometry of the
system into the potential energy term. Let {¢;} be an orthonormal basis for a*, and
assume that

¢
=) by, 1Zi<m.
Make the canonical coordinate transformation
X.=

J
i

M

¢
bijpi, Yi= Z b”‘]i’
i=1

]

1

where [b"], _, ;s the inverse matrix to [b;;], <; ;<, Then x,, ..., x,, yy, ..., y, are
global symplectic coordinates on ¢, and

4 m 12
JQ= Y x2+ Y cizexp(—2 Y bijyj). (7.18)
i=1 i=1 i=1

In these coordinates one sees that j(Q2) is a Hamiltonian of “generalized Toda
Lattice” type. (For more explicit formulas, cf. [12] for the case of Dynkin
diagrams, and [2, 5] for completed Dynkin diagrams.)

' 8. Lax Forms

Let G be a linear, connected semi-simple Lie group, with Lie algebra g and
Iwasawa decomposition G=KAN, (g=f+ a+n) as in Sect. 1. We assume that G is
split over R, and has rank />1. Let 0:g—g be the Cartan involution associated
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with f, and put fi=0(n). Since g is split, one has g=T+a+n. If Xeg, write
X=X,+X,+X_,whereX enX_efi,and X ca Letp={Xeg:0X = —X}. Then
Xepifand only if X ,)=—-X_.

Let 47 be the set of roots of a on 1. Let n={«,,...,a,} be the simple roots in
At andlet 4T ={oy, ...,0,}, with o, <o, <...<o, relative to a lexicographic order
on a*,

Let Z;en, be such that —B(Z,,0Z)=0,;. Put X;,=2,—0Z, Y,=Z,+0Z, Then

d d
f= ) RY, p=a® ) RX,,
i=1 i=

i=1

B(X,X)=20,

B( Y;’ Y;) =-20 ij
(B the Cartan-Killing form).

The set {a,...,o, —a,} corresponds to a completed Dynkin diagram in
Bourbaki’s terminology [6], and is an extended Dynkin diagram, in the sense of
Definition 5.1. We are assuming # > 1, so that a, is not a simple root. Let b=a®u
be the corresponding generalized “ax+b” algebra, as in Sect. 2. Here we label a
basis for u as Z 1o 7 5 Zd, with the only non-trivial commutation relations in b

being

ij

[H,Z]=a(H)Z;, 15i</ 8.1)
[H, Zd] = _%(H)Zd
for Hea. On b we put the inner product, <-,->, defined by

<'a'>‘axa=Biaxa
(Z,Zp=(1/2)3. 8.2)
Give b* the inner product dual to the inner product on b. For feb*, define
f’eb by
. X)>=fX),Xeb.
Thus for f,, f,€b*, one has f7%-f,eb* given by f%-£,(X)=f,([X,f5]), Xeb. For
Xeb define X ¥eb* by X *(Y)=<(X, YD, Yeb.
In this section we show that every K-invariant smooth function on p defines a

function on b* which Poisson-commutes with the Laplacian of b. To do this, we
generalize Flaschka’s construction of Lax forms [7], as follows (van Moerbeke

[19]):

Define the subspace
2
p,=a® ) RY,®RX,
i=1

of p. For example, when g=s/(n,R), n=3, and p is taken as the trace zero
symmetric matrices, then p, consists of all “periodic Jacobi matrices” of trace zero:

by ag 0 ... a,

a; by a,

0 a, b, . 2.b=0
R

L9n a1 by, ]
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Let Z;“, for 1=<i=</ and i=d, be the linear functionals on b defined by
Z¥H+)Y ¢ Z)=c, for Hea.

Introduce a linear map F:p—b* by
d 3
F(H-}- > c,-Xi) =H*+ Y ¢ZF+c,Z%.
i=1 i=1

Since (Z},Z})=20,,, it is clear that F|,, is an isometry.

Denote by CR(p)* the Ad(K)-invariant smooth real-valued functions on p. For
a real C* function ¢ on p, let V¢ denote the gradient of ¢, relative to the inner
product given by the Cartan-Killing form. Let s,:p—p be the reflection about the
hyperplane (X ,)*. That is,

s,X)=X — B(X,X )X,
Lemma 8.1. If ¢eCx(p)%, then [Vd(X),X]1=0 for Xep.
Proof. Since Ad(k) acts orthogonally on p, for any ke K, one has
P(Ad(k)X)=Ad(k) (Vo(X)).
But Ad(k) is also a Lie algebra automorphism, so
[Vé(Ad(k)X), Ad(k)X]=Ad(k) [Vo(X),X].

Thus to prove the lemma, it suffices to take X eq, since p=Ad(K)a.
We may assume, by continuity, that X is regular, so that

a={Zep:[Z,X]=0}.
In this case, one has
a=(ad(®HX)*. (%)

Indeed, if Zep and Z L[ Y, X ]for all Yef, then 0=B(Z,[Y,X])=B([X, Z], Y). Since
[X, Z]et, it follows that [X, Z]1=0, and hence Ze a. Reversing the argument gives
the opposite inclusion and proves (x).

Now take Z =V¢(X). Since ¢ is constant on K orbits, Z is orthogonal to the K
orbit through X, and hence Zeaq, by (8.3), Q.E.D.

Lemma 8.2. Let Xep, and Yep. Then
F(YY - FX)=F([Y, = Y_,5,X],—s,[Y, X, =X _]). (8.3)

Proof. Assume that X =X, + Y bX; and Y=Y, + Y ¢X,, where b;=0 for /<i<d.
Then by (8.2),
¢
FY)=Y,4+2 Y ¢;Z;+2¢,Z,.
i=1

Formulas (7.12) for the coadjoint action of b imply that

F(Y)’- F(X) = — Z bo( V) Z}

3
b (Y)ZE+2 Y by —2byc e,  (8.4)

i=1
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On the other hand, X , —X _ =Y b,Y, and for Hea one has

[H.X;]1=(H)Y,
[H, Y] =o(H)X, &
Thus [V, X, —X 1= ba(Y)X, so that
F(s,[ Y, X, =X _1)= Zf: b V) ZF —b (V) Z . 8.6)
i1

Furthermore, for Hea, one has
B(H, [Y;’Xj]): _B([Han]a Y,)= —'ZOCJ(H)B(Y;, Y;):zéuaj(H)
by (85), so that [Y,X;],=26;H It follows that [Y,—-Y_,X],

|5 el 1Y

=Y be;[Y,X1,=2) bc;H,, and thus
¢
FOY, = Y_,5X7)=2 3 bt —2b,c,,. 87)
i1

Using (8.6) and (8.7) in (8.4), we obtain (8.3), Q.E.D.
To obtain the Lax forms from the two preceding lemmas, we need the
following calculation, which uses the maximality of the root o, for the first time:

Lemma 8.3. Suppose Xep,, Yep, and [X,Y]=0. Then
[Y,-Y_ ,sX] =—-[Y,X,-X_] . (8.8)

Proof. It suffices to calculate all commutators mods. Write X =X"+cX,, where
X'espan{X;;1<i</}. Then [Y,,X"]es, so that

[V, X]=[Y,,cX, )= —[Y,,5,X] (8.9)
mod(s). Furthermore [Y_,0Z,]=0 and [Y_, Z,]€s, since a, is maximal. Thus
[Y_ X]I=[Y_ X']=[Y_,s,X] (8.10)

mod(s).
Now to verify (8.8), note that —[Y X, -X_]=[Y X, +X J=[Y, X]
mod(s). But [ Y, X]=0 implies that

[Y,X]=—-[Y,+Y_X].
Hence by (8.9) and (8.10),
—[LX,—X_]=—-[Y,+Y_ X]=[Y, - Y ,s5,X]
mod(s), Q.E.D.
Lemma 8.4. Suppose Xep,, Yep, and [X,Y]=0. Then [Y, —Y_,X]ep,, and
F(s,[Y, —Y_,s,X])=F(Y)- F(X).

Proof. This follows immediately from Lemmas 8.2 and 8.3, since [Y,, X , —X _], =0
and [Y, X, —X_], =[Y, —Y_,5,X], by (88).

We come now to the main result of this section. If ¢ is a function on p, define a
function w, on b* by

wy(FX))= (s, X), Xep,. (8.11)
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Define a vector field L¢$ on p by

Le=[V(s,X) . —V(s,X)_, X1, (8.12)
for Xep.
Theorem 8.5. Suppose ¢pe CR(p)X. Then for Xep,,
dwy(F(X))- FX)=F(L%). (8.13)
Remarks. Recalling the results of Sect. 7 concerning left-invariant Hamiltonian
vector fields on T*(B) (B the simply-connected Lie group with Lie algebra b), we

see that L? is a “Lax form” for the field with Hamiltonian wy. For the case
¢X)=<X,X)> and G=SL(n,R), Eq. (8.13) was first observed by Flaschka [7].

Proof. Since the map F is linear and isometric on p,, one has
dw (FX)) = F(sV $(s,X))’ -

Let ¢ be the automorphism of b which fixes a and Z, 1<i<¢, and sends Z, to
—Z, Then F(s,Y)=0*F(Y)), and o*(Z-f)=(cZ)-o*f for Zeb, feb*. Thus

dwy(F(X))- FX) = o*(F(V(s,X))" - F(s,X)).
By Lemmas 8.1 and 8.4, this gives
dw(F(x))- FX) = *F(s,[ Vb(s,X) . —Veb(s,X)_.XT)=F(L).

Corollary 8.6. Suppose ¢, weCr(p)X. Set v =wyos, Then wy and w,. Poisson-
commute on b*. In particular, w, Poisson-commutes with the Laplacian of b.

Proof. Since w,-cF=vy and F|, is a linear isomorphism onto b*, it suffices by
Lemma 7.3 and Theorem 8.5 to show that L$(yp)=0 for Xep,. Now if we set

AX)=ad(Vd(s,X) . —V(s,X)-), then

L) = —pX +tAX) X)) =

dt
d tA(X)
= %w(e X)l=0=0,
since A(X)ead(f).

The Laplacian on b corresponds to the Hamiltonian w,, where p(X)=<X,X)
on p. Since yos, =y in this case, it follows that {w ,w,} =0, Q.E.D.

9. Complete Integrability via Lax Forms

We continue the hypotheses and notation of Sect. 8. Let  be the Laplacian of b,
j:U(b)—S(b) the symmetrization map. Then viewed as a function on b*, j(Q)=w,,
where p(X) =X, X), Xep.

Theorem 9.1. Let ¢,,...,¢, be a set of algebraically independent generators for
Sp*)X. Let

E=Zm.7%7,, 9.1)
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¢
where {Z,} satisfy (8.1) and ;= ) nu. Then S(bY is a polynomial ring, and is
i=1
generated by the elements wy,, ..., w,, and E, which mutually Poisson-commute on b*,
In particular, {wy, w,}=0 for all K-invariant polynomials ¢ and v on p.

Remark. To compare this result with Theorem 6.4, recall that we are here allowing
any completed Dynkin diagram for the set of roots of b. In particular, this includes
the completed diagrams of type G,, F,, E;, and Eg;, which were excluded in
Theorem 6.4. For these exceptional diagrams, however, we do not know if the
corresponding result holds in the enveloping algebra (Theorem 5.2). Also, we
cannot treat the extended diagrams defined by a short dominant root using Lax
forms.

Before proving Theorem 9.1, we need the Poisson algebra version of some
results from Sect. 3. Let o€ Aut(b) be the reflection sending Z, to — Z, and fixing
(Z,)*. From the definition of the “Flaschka map” F:p—b* it is clear that

owy,=wy, for ¢eS(p*). 9.2)

Here we have extended ¢ to an automorphism of S(b). Note that since ¢ is a Lie-
algebra automorphism of b, its extension to S(b) is a Poisson-algebra automor-
phism. Since ¢ =1, it follows that

7 :S(b) D — §(6)/
Lemma 9.2. If ¢peSp*)¥, then ow,—w, is divisible by &.

Proof. Let v:S(bY*—S(a) be the map as in diagram (6.3). Since voo =v, one has
ow,—wy€Ker(v). Now use the same argument as in Lemma 3.5, but with Lie
brackets replaced by Poisson brackets. The details are left to the reader.

Lemma 9.3. Let h be the Coxeter number of the Dynkin diagram =, and let
b, peSE*~.
(1) If degg <h, then aw,=w,,
(i) If degdp=nh, then ow,=w,+cE for some ceR.
(it) If degp<h and degyp <h, then {w,,w,} =0.

Proof. As before, we use the fact that h=1+ Z n,=degZ, and Z Poisson
i=1

commutes with any function on b* Thus (i) and (ii) follow immediately from

Lemma 9.2. As for (iii), note that {w,, w,} = {w,, w,-} by (i), (ii) and (9.2). But this

bracket vanishes, by Corollary 8.6.

Proof of Theorem 9.1. The existence of generators ¢, ..., ¢, for S(p*)¥ is given by
Chevalley’s theorem [9], which also asserts that the restriction mapping to a is an
isomorphism onto S(a*)". Thus w,,, .. > Wy, & are algebraically independent.

One knows that the Coxeter number h= max(deg¢;), so by Lemma 9.3
Wys - Wy, = mutually Poisson-commute. The proof that they generate S(b)/® is
then identical to the proof of Theorem 6.4, part (a), since by Chevalley’s theorem
viR[w,, ..., w¢£]—>S(a)W is surjective. This proves the theorem.

Corollary 9.4. Suppose dpeS(p*)X and degd <h, the Coxeter number of the Dynkin
diagram w. Then for feb*,

dwy(f)-f=dwg(f)-f.
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Proof. By Lemma 9.3, dw, =dw,+cdE. But & is constant on B-orbits in b*, so
dZ(f)-f=0, which yields the result.

Remarks on “Complete Integrability”. Let O Cb* be a generic orbit. From Sect. 7 we
know that dim @ =2/. The function Z is constant on @, since & =j(&) with £ in the
center of U(b). The remaining generators w,,, ..., w,, of S(b)/“® are easily seen to be
functionally independent at “generic” points of O. Indeed, if w: IR’ xR >( is the
map in (7.15), and we set

H(p)= Z p:H;, X(q)=

M~

ce 1X;,
i=1 i=1
then w(p, )= F(H(p)+X(q)) (notation as in Sect. 8). Hence for ¢e C(p), one has
ws(w(p, 9)) = $(H(p) +X(q)). 9.3)

Now X(g)—0 if g;— + oo for all i, and the basic invariants ¢, ..., ¢, are known to
be functionally independent at regular points of a [6, p. 113]. It follows then from
(9.3) that d(w,, .-, W¢)/‘7(l’1’ .., D,) has rank ¢ on a non-empty open subset of 0,
giving generic functional independence.
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Note added in proof. B. Kostant has informed us that he has also obtained a finite dimensional Lax
form for generalized periodic Toda lattices [“Poisson Commutativity and the Generalized Periodic
Toda Lattice” (preprint)].





